Call-By-Name Normalization for System F

Aaron Stump

November 10, 2014

1 Introduction

This note gives a proof that call-by-name reduction is normalizing for unannotated System F (polymorphic lambda calculus), and considers a few consequences. System F is defined with annotated terms, where λ-bound variables must be declared with their types. So we have \(\lambda x : T.t \) instead of just \(\lambda x.t \). For metatheoretic analysis, I prefer to work with unannotated terms. This system (with unannotated terms) is also called \(\lambda 2 \).

2 Syntax

\[
\begin{align*}
term\;variables\;x \\
type\;variables\;X
\end{align*}
\]
\[
\begin{align*}
terms\;t & ::= x | \lambda x.t | t t' \\
types\;T & ::= X | T \rightarrow T' | \forall X.T
\end{align*}
\]

3 Typing

A typing context \(\Gamma \) declares free term and type variables:

\[
\text{Typing context } \Gamma ::= \cdot | \Gamma, x : T | \Gamma, X : \star
\]

We treat \(\Gamma \) as a function, and write \(\Gamma(x) = T \) to mean that \(\Gamma \) contains a declaration \(x : T \). We will implicitly require that \(\Gamma \) does not declare any variable \(x \) twice. Variables can be implicitly renamed in \(\lambda \)-terms to make it possible to enforce this requirement. The typing rules are in Figure 1. To ensure that types are well-formed, we use some extra rules, called \textit{kinding} rules, in Figure 2.

\[
\begin{align*}
\Gamma(x) = T & \quad \Gamma, x : T \vdash t : T' \\
\Gamma \vdash x : T & \quad \Gamma \vdash \lambda x.t : T \rightarrow T' \\
\Gamma \vdash t : T_1 \rightarrow T_2 & \quad \Gamma \vdash t' : T_1 \\
\Gamma \vdash t : T_2 & \quad \Gamma \vdash t' : T_2
\end{align*}
\]

\[
\begin{align*}
\Gamma, X : \star \vdash t : T & \quad \Gamma \vdash t : \forall X.T \quad \Gamma \vdash T' : \star \\
\Gamma \vdash t : \forall X.T & \quad \Gamma \vdash T' : \star
\end{align*}
\]

Figure 1: Typing rules for unannotated System F
\[
\begin{align*}
\Gamma(X) &= * \\
\Gamma \vdash X : * & \quad \implies & \quad \Gamma \vdash T_1 : * & \quad \implies & \quad \Gamma \vdash T_2 : * & \quad \implies & \quad \Gamma \vdash \forall X. T : *
\end{align*}
\]

Figure 2: Kinding rules for unannotated System F

\[
\begin{align*}
\llbracket X \rrbracket_\rho &= \rho(X) \\
\llbracket T_1 \to T_2 \rrbracket_\rho &= \{ t \in \mathcal{N} \mid \forall t' \in \llbracket T_1 \rrbracket_\rho, t \ t' \in \llbracket T_2 \rrbracket_\rho \} \\
\llbracket \forall X. T \rrbracket_\rho &= \bigcap_{R \in \mathcal{R}} \llbracket T \rrbracket_\rho \downarrow \rho \downarrow X \to R
\end{align*}
\]

Figure 3: Reducibility semantics for types

4 Semantics for types

Figure 3 gives a compositional semantics \(\llbracket T \rrbracket_\rho \) for types. The function \(\rho \) gives the interpretations of free type variables in \(T \). Each free type variable is interpreted as a reducibility candidate, and write \(\rho \) only for functions mapping type variables \(X \) to reducibility candidates. To define what a reducibility candidate is: let us denote the set of closed terms which normalize using call-by-name reduction as \(\mathcal{N} \). We will write \(\rightsquigarrow \) for call-by-name reduction. Then a reducibility candidate \(R \) is a set of terms satisfying the following requirements:

- \(R \subseteq \mathcal{N} \)
- If \(t \in R \) and \(t' \rightsquigarrow t \), then \(t' \in R \)

The set of all reducibility candidates is denoted \(\mathcal{R} \).

Lemma 1 (\(\mathcal{R} \) is a cpo). The set \(\mathcal{R} \) ordered by subset forms a complete partial order, with greatest element \(\mathcal{N} \) and greatest lower bound of a nonempty set of elements of \(\mathcal{R} \) given by intersection.

Proof. \(\mathcal{N} \) satisfies both requirements for a reducibility candidate, and since one of those requirements is being a subset of \(\mathcal{N} \), it is clearly the largest such set to do so. Let us prove that the intersection of a nonempty set \(S \) of reducibility candidates is still a reducibility candidate. Certainly if the members of \(S \) are subsets of \(\mathcal{N} \) then so is \(\bigcap S \). For the second property: assume an arbitrary \(t \in \bigcap S \) with \(t' \rightsquigarrow t \), and show \(t' \in \bigcap S \). For the latter, it suffices to show \(t' \in R \) for every \(R \in S \). Consider an arbitrary such \(R \). From \(t \in \bigcap S \) and \(R \in S \), we have \(t \in R \). Then since \(R \) is a reducibility candidate, \(t \in R \) and \(t' \rightsquigarrow t \) implies \(t' \in R \).

Lemma 2 (The semantics of types computes reducibility candidates). If \(\rho(X) \) is defined for every free type variable of \(T \), then \(\llbracket T \rrbracket_\rho \in \mathcal{R} \).

Proof. The proof is by induction on the structure of the type. If \(T \) is a type variable \(X \), then by assumption, \(\rho(X) \) is a reducibility candidate, and this is the value of \(\llbracket T \rrbracket_\rho \).

If \(T \) is an arrow type \(T_1 \to T_2 \), we must prove the two properties listed above for being a reducibility candidate. Certainly \(\llbracket T \rrbracket_\rho \subseteq \mathcal{N} \), because the semantics of arrow types requires this explicitly. Now suppose that \(t \in \llbracket T_1 \to T_2 \rrbracket_\rho \) and \(t' \rightsquigarrow t \). We must show \(t' \in \llbracket T_1 \to T_2 \rrbracket_\rho \). Since \(t \) is normalizing and \(t' \rightsquigarrow t \), we know that \(t' \) is also normalizing (there is a reduction sequence from \(t' \) to \(t \) and from \(t \) to a normal form). So let us assume an arbitrary \(t'' \in \llbracket T_1 \rrbracket_\rho \), and show that \(t' \ t'' \in \llbracket T_2 \rrbracket_\rho \). Since \(t' \rightsquigarrow t \), by the definition of call-by-name reduction, we have

\[
t' \ t'' \rightsquigarrow t \ t''
\]
Since \(t \in \llbracket T_1 \to T_2 \rrbracket_\rho \), we know by the semantics of types that \(t, t'' \in \llbracket T_2 \rrbracket_\rho \), and \(t'' \in \llbracket T_1 \rrbracket_\rho \). By the IH, \(\llbracket T_2 \rrbracket_\rho \) is a reducibility candidate. So since \(t', t'' \leadsto t, t'' \in \llbracket T_2 \rrbracket_\rho \), we also have \(t', t'' \in \llbracket T_2 \rrbracket_\rho \). This was all we had to prove in this case.

Finally, if \(T \) is a universal type \(\forall X.T' \), then by IH, the set \(\llbracket T' \rrbracket_{\rho[X\to R]} \) is a reducibility candidate for all \(R \in \mathcal{R} \). Since \(\mathcal{R} \) is a complete partial order, \(\bigcap_{R \in \mathcal{R}} \llbracket T' \rrbracket_{\rho[X\to R]} \) is then also a reducibility candidate.

\[\Box \]

5 Soundness of Typing Rules

The goal of this section is to prove that terms which can be assigned a type using the rules of Figure 1 are normalizing. We will actually prove a stronger statement, based on an interpretation of typing judgments. First, we must define an interpretation \(\llbracket \cdot \rrbracket \) for typing contexts \(\Gamma \). This interpretation will be a set of pairs \((\sigma, \rho)\), where \(\rho \) is, as above, a function mapping type variables to reducibility candidates; and \(\sigma \) maps term variables to terms. The definition is by recursion on the structure of \(\Gamma \):

\[
(\sigma, \rho) \in \llbracket x : T, \Gamma \rrbracket \iff \sigma(x) \in \llbracket T \rrbracket_\rho \land (\sigma, \rho) \in \llbracket \Gamma \rrbracket \\
(\sigma, \rho) \in \llbracket X : *, \Gamma \rrbracket \iff \rho(x) \in \mathcal{R} \land (\sigma, \rho) \in \llbracket \Gamma \rrbracket \\
(\sigma, \rho) \in \llbracket \rrbracket
\]

In the statement of the theorem below, we write \(\sigma t \) to mean the result of simultaneously substituting \(\sigma(x) \) for \(x \) in \(t \), for all \(x \) in the domain of \(\sigma \).

Lemma 3. Suppose \((\sigma, \rho) \in \llbracket \Gamma \rrbracket \). If \(t \in \llbracket T \rrbracket_\rho \), then \((\sigma[x \mapsto t], \rho) \in \llbracket \Gamma, x : T \rrbracket \). Also, if \(R \in \mathcal{R} \), then \((\sigma, \rho[x \mapsto R]) \in \llbracket \Gamma, X : * \rrbracket \).

Proof. The proof of the first part is by induction on \(\Gamma \). If \(\Gamma = \cdot \), then to show \((\sigma[x \mapsto t], \rho) \in \llbracket \cdot, x : T \rrbracket \), it suffices to show \(t \in \llbracket T \rrbracket_\rho \), which holds by assumption. If \(\Gamma = y : T, \Gamma' \), then we have \((\sigma, \rho) \in \llbracket \Gamma' \rrbracket \) by the definition of \(\llbracket \Gamma \rrbracket \), and we may apply the IH to conclude \((\sigma[x \mapsto t], \rho) \in \llbracket \Gamma', x : T \rrbracket \), from which we can conclude the desired \((\sigma[x \mapsto t], \rho) \in \llbracket \Gamma, x : T \rrbracket \), again by the definition of \(\llbracket \Gamma \rrbracket \). Similar reasoning applies if \(\Gamma = X : *, \Gamma' \). The proof of the second part of the lemma is exactly analogous.

Theorem 4 (Soundness of typing rules with respect to the semantics). If \(\Gamma \vdash t : T \), then for all \((\sigma, \rho) \in \llbracket \Gamma \rrbracket \), we have \(\sigma t \in \llbracket T \rrbracket_\rho \).

Proof. The proof is by induction on the structure of the assumed typing derivation. In each case, we will implicitly assume an arbitrary \((\sigma, \rho) \in \llbracket \Gamma \rrbracket \).

Case:

\[
\Gamma(x) = T \\
\Gamma \vdash x : T
\]

We proceed by inner induction on \(\Gamma \). If \(\Gamma \) is empty, then \(\Gamma(x) = T \) is false, and this case cannot arise. Suppose \(\Gamma \) is of the form \(x : T, \Gamma' \). Then \(\sigma(x) \in \llbracket T \rrbracket_\rho \) by definition of \(\llbracket \Gamma \rrbracket \), which suffices to prove the conclusion. Suppose \(\Gamma \) is of the form \(y : T, \Gamma' \), where \(y \neq x \), or of the form \(X : *, \Gamma' \). Then \(\Gamma'(x) = T \) and \((\sigma, \rho) \in \llbracket \Gamma' \rrbracket \), and we use the induction hypothesis to conclude \(\sigma x \in \llbracket T \rrbracket_\rho \).

Case:

\[
\Gamma, x : T \vdash t : T' \\
\Gamma \vdash \lambda x. t : T \to T'
\]

To prove \((\lambda x. \sigma t) \in \llbracket T \to T' \rrbracket_\rho \), it suffices to assume an arbitrary \(t' \in \llbracket T' \rrbracket_\rho \) and prove \((\lambda x. \sigma t) t' \in \llbracket T' \rrbracket_\rho \). Since \(\llbracket T' \rrbracket_\rho \) is a reducibility candidate, it suffices to prove \([t'/x] \sigma t \in \llbracket T' \rrbracket_\rho \), since \((\lambda x. \sigma t) t' \leadsto [t'/x](\sigma t) \). But if
we let $\sigma' = \sigma[x \mapsto t']$, then we have $(\sigma', \rho) \in \llbracket \Gamma, x : T \rrbracket$ by Lemma 3, so we may apply the IH to conclude $\sigma t \in \llbracket T \rrbracket_{\rho}$, as required.

Case:

\[
\frac{\Gamma \vdash t : T_1 \to T_2 \quad \Gamma' \vdash t' : T_1}{\Gamma \vdash t' : T_2}
\]

By the IH, $\sigma t \in \llbracket T_1 \to T_2 \rrbracket_{\rho}$ and $\sigma t' \in \llbracket T_1 \rrbracket_{\rho}$. By the semantics of arrow types, this immediately implies $(\sigma t) (\sigma t') \in \llbracket T_2 \rrbracket_{\rho}$, as required.

Case:

\[
\frac{\Gamma, X : * \vdash t : T}{\Gamma \vdash t : \forall X. T}
\]

We must prove $\sigma t \in \llbracket \forall X. T \rrbracket_{\rho}$. By the semantics of universal types, it suffices to assume an arbitrary $R \in \mathcal{R}$, and prove $\sigma t \in \llbracket T \rrbracket_{\rho[X \mapsto R]}$. But this follows by the IH, which we can apply because $(\sigma, \rho[X \mapsto R]) \in \llbracket \Gamma, X : * \rrbracket$, by Lemma 3.

Case:

\[
\frac{\Gamma \vdash t : \forall X. T \quad \Gamma' \vdash T' : *}{\Gamma \vdash t : [T'/X]T}
\]

By the IH, we know $\sigma t \in \llbracket \forall X. T \rrbracket_{\rho}$, which by the semantics of universal types is equivalent to

\[
\sigma t \in \bigcap_{R \in \mathcal{R}} T_{\rho[X \mapsto R]}
\]

(1)

Since $(\sigma, \rho) \in \llbracket \Gamma \rrbracket$, we may easily observe that ρ is defined for all the free type variables of T'. So by Lemma 2, $\llbracket T' \rrbracket_{\rho} \in \mathcal{R}$. From the displayed formula above (1), we can conclude $\sigma t \in \llbracket T \rrbracket_{\rho[X \mapsto [T']_{\rho}]}. \text{ Now we must apply the following lemma, whose easy proof by induction on } T \text{ we omit, to conclude } \sigma t \in \llbracket [T'/X]T \rrbracket_{\rho}.$

Lemma 5. $\llbracket [T'/X]T \rrbracket_{\rho} = \llbracket T \rrbracket_{\rho[X \mapsto T']}$.

\[\square\]