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In this talk, let us

Seek out green type theory, by

going back to a simpler time,

without data,

only λ.
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Plan for the talk

ç Cedille, motivation and architecture

merge Histomorphic mergesort

ç Current and future directions

4 / 51



ç Cedille, motivation and architecture

5 / 51



The mission: seek out this greener type theory,

passing through perilous, unexplored territory

following the course of

the Missouri River...?
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The object of your mission is to explore the Missouri
river, & such principal stream of it, as, by it’s course & com-
munication with the water of the Pacific ocean may offer the
most direct & practicable water communication across this
continent, for the purposes of commerce.

Thomas Jefferson to Meriwether Lewis, June 20, 1803.
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Let us form a type-theoretic Corps of Discovery!

For a tour of the recent history of type theory
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Pittsburgh, Pennsylvania

Reynolds, Girard invent System F (1970s)

Impredicative polymorphism ∀X . F

Beyond (current) ordinal analysis: powerful!

9 / 51



Pittsburgh, Pennsylvania

Reynolds, Girard invent System F (1970s)

Impredicative polymorphism ∀X . F

Beyond (current) ordinal analysis: powerful!

9 / 51



Pittsburgh, Pennsylvania

Reynolds, Girard invent System F (1970s)

Impredicative polymorphism ∀X . F

Beyond (current) ordinal analysis: powerful!

9 / 51



Pittsburgh, Pennsylvania

Reynolds, Girard invent System F (1970s)

Impredicative polymorphism ∀X . F

Beyond (current) ordinal analysis: powerful!

9 / 51



St. Louis, Missouri

Coquand, Huet: Calculus of Constructions (1988)

Add dependent types Πx ∶ A.B

No induction [Geuvers 2001]
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Council Bluffs, Iowa

Luo: Extended Calculus of Constructions (1990)

Add predicative hierarchy Prop,Typej , j ∈ N

Extend impredicativity Πx ∶ Typej . P ∶ Prop
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Great Falls, Montana

Werner: Calculus of Inductive Constructions [1994]

Add primitive inductive types

(No predicative hierarchy)

Finally ready for formalizing Math/CS!
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Pacific
Ocean:
Coq
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Wait a second!

Coq is fantastic, but...

We locked a fixed notion of inductive types

into our core theory.

Should we maybe try the Platte through Nebraska?
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Introducing Cedille

CC

∀ x ∶ T . T ′ implicit products (Miquel)
ι x ∶ T . T ′ dependent intersections (Kopylov)
{ t ≃ t ′} untyped equality

▷ Small theory, formal syntax and semantics
▷ Core checker implemented in < 1000loc Haskell
▷ Logically sound
▷ Turing complete(!)
▷ Since Cedille 1.1, datatype notations, elaborated to
▷ Inductive, efficient lambda-encodings
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Architecture of Cedille

Emacs mode
3.3kloc elisp

Backend
13kloc Agda

.ced files

.cdle files
Cedillecore

900loc Haskell

Ok

Error
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Demo

▷ Deriving induction
▷ Casts and recursive types
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Histomorphic mergesort
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Classic mergesort

⋯

⋯

split

mergesort mergesort

merge
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Classic mergesort (in Haskell)

mergeSort [] = []
mergeSort [x] = [x]
mergeSort xs = let (as,bs) = split xs

in merge (mergeSort as) (mergeSort bs)

split (x:y:zs) = let (xs,ys) = split zs in (x:xs,y:ys)
split [x] = ([x],[])
split [] = ([],[])

From rosettacode.org
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Classic mergesort is not simple in Type Theory

mergeSort xs = let (as,bs) = split xs
in merge (mergeSort as) (mergeSort bs)

▷ Splitting and merging are structurally recursive.

▷ mergeSort itself is not.

To rectify, various techniques can be applied:

▷ well-founded recursion

▷ sized types [Copello et al. 2014]

▷ inductive domains (cf. great survey paper “Partiality and Recursion in ITPs”,
[Bove et al. 2016])
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Bottom-up mergesort: a balanced tree of merges
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Bottom-up mergesort also bad for TT

mergeSortBottomUp list = mergeAll (map (\x -> [x]) list)

mergeAll [sorted] = sorted
mergeAll sorteds = mergeAll (mergePairs sorteds)

mergePairs (s1 : s2 : ss) = merge s1 s2 : mergePairs ss
mergePairs sorteds = sorteds

From rosettacode.org

▷ mergeAll not structurally recursive
▷ though mergePairs decreases size of list (if non-nil)
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A new variant: prefix mergesort
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A new variant: prefix mergesort

merge (new p)

merge (p)

merge merge

merge (s)

merge merge

For increasing k starting from 0:

▷ Let p be prefix (length 2k ) already sorted

▷ Let s be bottom-up mergesort of next 2k elements

▷ Update p to merge of p and s

▷ Stop when list is empty
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Prefix mergesort (in Haskell)

data Nat = Zero | Succ Nat

takePow2 :: Nat -> Int -> [Int] -> ([Int],[Int])
takePow2 = ...

prefixMergeSort :: [Int] -> [Int]
prefixMergeSort [] = []
prefixMergeSort (h : t) = loop t [h] Zero
where loop [] p _ = p

loop (h : t) p n =
let (s,t’) = takePow2 n h t in

loop t’ (merge p s) (Succ n)

▷ takePow2 structurally recursive on the Nat

▷ takePow2 takes head and tail, to assure that

▷ t’ is a sublist of t

▷ So recursive call to loop is structurally decreasing (h : t ≻ t’)
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How do we code this in Cedille?

▷ Cedille implements histomorphic recursion
▷ Pattern-matching recursions on inductive data D provide

▸ An abstract type A
▸ A function to use for recursive calls on type A
▸ Evidence that A is D-like

- can be decomposed like D, and
- cast to D

▷ Datatype declarations add predicate for D-like, some helpers
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The List datatype

data List (A: ⋆): ⋆ =
| nil: List
| cons: A → List → List.

This declaration introduces:

Is/List : Π A : ⋆ . ⋆ → ⋆ predicate for list-like

is/List : ∀ A : ⋆ . Is/List ·A ·(List ·A)
evidence that List is list-like

to/List : ∀ A : ⋆ . ∀ X : ⋆ . &
Is/List ·A ·X ⇒ X → List ·A

cast from list-like X to List

28 / 51



The List datatype

data List (A: ⋆): ⋆ =
| nil: List
| cons: A → List → List.

This declaration introduces:

Is/List : Π A : ⋆ . ⋆ → ⋆ predicate for list-like
is/List : ∀ A : ⋆ . Is/List ·A ·(List ·A)

evidence that List is list-like

to/List : ∀ A : ⋆ . ∀ X : ⋆ . &
Is/List ·A ·X ⇒ X → List ·A

cast from list-like X to List

28 / 51



The List datatype

data List (A: ⋆): ⋆ =
| nil: List
| cons: A → List → List.

This declaration introduces:

Is/List : Π A : ⋆ . ⋆ → ⋆ predicate for list-like
is/List : ∀ A : ⋆ . Is/List ·A ·(List ·A)

evidence that List is list-like
to/List : ∀ A : ⋆ . ∀ X : ⋆ . &

Is/List ·A ·X ⇒ X → List ·A
cast from list-like X to List

28 / 51



The loop helper function for prefix mergesort
Haskell:
loop [] p _ = p
loop (h : t) p n =
let (s,t’) = takePow2 n h t in
loop t’ (merge p s) (Succ n)

Cedille:
µ loop . t
@ (λ _ : List · Nat . List · Nat → Nat → List · Nat)
{ nil → λ p . λ _ . p
| cons h t → λ p . λ n .

µ’ takePow2 -isType/loop n h t
{ pair s t’ → loop t’ (merge p s) (succ n) }}

▷ µ introduces pattern-matching recursion
▸ always over some given data, here a list t

▷ µ’ is a simple pattern-match
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What do you get for histomorphic recursion?

µ loop . t
@ (λ _ : List · Nat . List · Nat → Nat → List · Nat)
{ nil → λ p . λ _ . p
| cons h t → λ p . λ n .

µ’ takePow2 -isType/loop n h t
{ pair s t’ → loop t’ (merge p s) (succ n) }}

The following are available in the body of cons-clause:
Type/loop : ⋆ abstract type for subdata

t : Type/loop subdata (tail of list), at abstract type
loop : Type/loop → List ·Nat → Nat → List ·Nat

for recursive calls
isType/loop : Is/List ·Nat ·Type/loop

evidence that abstract type is list-like
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takePow2, using Is/List

takePow2 : ∀ T : ⋆ . Is/List · Nat · T ⇒
Nat → Nat → T → Pair · (List · Nat) · T =

Λ T . Λ mT . λ n .
µ takePow2 . n

{ zero → λ a . λ l . pair (singleton a) l
| succ n → λ a . λ l .

[p = takePow2 n a l ] -
µ’ p
{ pair t1 l →
µ’<mT> l
{ nil → p
| cons a l →
µ’ (takePow2 n a l)
{ pair t2 l →

pair (merge t1 t2) l }}}} .

▷ µ’ accepts evidence that T is list-like!

▷ So you can use pattern-matching on D-like types
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Types for histomorphic mergesort

merge : List ·Nat → List ·Nat → List ·Nat

takePow2 : ∀ T : ⋆ . Is/List · Nat · T ⇒
Nat → Nat → T → Pair · (List · Nat) · T

msort : List · Nat → List · Nat
loop : List · Nat → List · Nat → Nat → List · Nat

▷ Use Is/List and µ’ to define takePow2 outside of msort

▷ msort can recurse on values of type Type/List returned by takePow2

▷ Nothing else needed to convince the (implicit) termination checker!

▷ More flexible than nested recursions/lexicographic recursions
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Comparing mergesort variants in Haskell

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

8

9

10

classic

prefix

bottomup

list length / 100,000

tim
e

 (
s)

For each list length,
▷ Randomly generate 10 lists of that length
▷ Run each sorting algorithm (as a separate process)
▷ List elements range from min to max Int
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ç Current and future directions
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Schematic Cedille (Cedille 1.2)
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When you run out of power...

Because you must at some point, if sound [Gödel 1931]

▷ Predicative hierarchy?

▸ Complexities with level expressions
▸ Temptation to keep going (universe-polymorphism!)

▷ A time-honored alternative:

go schematic!
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What does schematic mean?

Allowing parametrized definitions not expressible in the language.

In type theory: definitions exceeding the allowed products.

A simple example in current Cedille: parametrized kind definitions.

κ(I : ⋆) = I → ⋆.

▷ In Cedille, λ I : ⋆ . I → ⋆ is not typable (no ⋆ → 2)
▷ All uses of κ must include an argument for I
▷ So such definitions work like typed macros
▷ But we want to go beyond this...
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Telescope-generic developments

▷ We are working on parametrization by telescopes
▸ A telescope is a dependent sequence of declarations, e.g.

(A : ⋆)(a : A)

▸ Allow definitions and modules to be parametric in γ : tel

▸ Form products over such γ, with λ-abstractions and applications

▷ Benefits:
▸ More generic developments (avoid duplication), especially
▸ Lambda-encodings with different parameter/index lists
▸ Eliminate complex code in Cedille for translating datatypes,
▸ Replacing with telescope-generic Cedille
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Schematic RecType

For recursive indexed types:

module RecType (γ : tel) (F : (γ → ⋆) → γ → ⋆).

Cast : (γ → ⋆) → (γ → ⋆) → ⋆ = ...

Mono : ⋆ = ∀ A: γ → ⋆. ∀ B: γ → ⋆.
Cast ·A ·B ⇒ Cast ·(F ·A) ·(F ·B).

Rec : γ → ⋆ = λ τ: γ. ∀ A: γ → ⋆. Cast ·(F ·A) ·A ⇒ A τ.

Instantiate γ by (n : Nat) for Nat-indexed recursive types (e.g.)
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Native disjunctions and existentials (Cedille 1.3)
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We can already encode existential types

module WeakSigma(A : ⋆)(B : A → ⋆).

Exists : ⋆ = ∀ X : ⋆ . (∀ a : A . B a → X) → X .
witness : ∀ a : A . B a → wSigma =

Λ a . λ b . Λ X . λ c . c -a b .

▷ But witness -a b normalizes to λ c . c b

▷ For some situations, you really want just b
▷ Also, we are considering n-ary disjunctions

▸ Introductions injk t

▸ As opposed to inj2 (⋯ inj2 (inj1t)) for binary

▷ Long bad history in proof theory...
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The unpleasant eliminations

Γ ⊢ t ∶ ∃x ∶ T .F Γ,x ∶ T ,u ∶ F ⊢ t ′ ∶ C
Γ ⊢ unpack t as (x .y .t ′) ∶ C

Γ ⊢ t ∶ F1 ∨ F2 Γ,u ∶ F1 ⊢ t1 ∶ C Γ,v ∶ F2 ⊢ t2 ∶ C
Γ ⊢ case t of (u.t1,v .t2) ∶ C

▷ Host of well-known issues (commuting conversions, etc.)
▷ Like a cut of sequent calculus

. . . !
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Γ ⊢ unpack t as (x .y .t ′) ∶ C

Γ ⊢ t ∶ F1 ∨ F2 Γ,u ∶ F1 ⊢ t1 ∶ C Γ,v ∶ F2 ⊢ t2 ∶ C
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Sequent calculus and natural deduction

▷ Natural deduction as emerging from sequent calculus
▸ (Historically the reverse.)
▸ Left-rules of seq. calc. give rise (somehow!) to eliminations
▸ We pivot seq. calc. proofs so left-rules go to the top
▸ Eliminations followed by introductions (normal proofs)

▷ For good connectives, this works (→, ∧, ⊺, ⊥, ∀)

▷ For ∨ and ∃, we get stuck
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A Curry-style perspective
Let us assign natural-deduction terms to sequent proofs

Right-rules get assigned introduction forms

Left-rules get elimination forms... but where? how?

formulas T ∶∶= T → T ′ ∣ T ∧ T ′ ∣ T ∨ T ′ ∣ ⋯
terms t ∶∶= λ x . t ∣ t t ′ ∣ t .1 ∣ t .2 ∣ (t , t ′) ∣

t .(1) ∣ t .(2) ∣ t∥t ′ ∣ ⋯
contexts Γ ∶∶= ⋅ ∣ t : T

(t ∶ T ) ∈ Γ
Γ ⊢ t ∶ T

ax
Γ, t ∶ T1 ∧ T2, t .1 ∶ T1, t .2 ∶ T2 ⊢ t ′ ∶ C

Γ, t ∶ T1 ∧ T2 ⊢ t ′ ∶ C ∧L

Γ, t .(1) ∶ T1 ⊢ t1 ∶ C Γ, t .(2) ∶ T2 ⊢ t2 ∶ C
Γ, t ∶ T1 ∨ T2 ⊢ t1∥t2 ∶ C

∨L
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Co-projections

Γ, t .(1) ∶ T1 ⊢ t1 ∶ C Γ, t .(2) ∶ T2 ⊢ t2 ∶ C
Γ, t ∶ T1 ∨ T2 ⊢ t1∥t2 ∶ C

∨L

Eliminations t .(1) and t .(2), introductions inj1 t , inj2 t

The (∨L) rule ensures that one branch of t1∥t2 will succeed

▷ Failure is reducing (inj1 t).(2) or (inj2 t).(1)

Not sure yet how to formulate natural-deduction typing for these
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Switch to Sequent Calculus (Cedille 2.0)
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Cuts and control!

▷ Cuts give rise to control operators classically

▷ Good reasons for avoid classicality for programs
▸ Under Curry-Howard, T ∨ T ′ is a sum type
▸ But classically, get no information splitting on T ∨ ¬T

▷ Can we support control and retain canonicity?

▷ Can we also achieve perfect duality?
▸ Logics like BiInt have duality and control, but
▸ Not canonicity!
▸ Can prove F ∨ (⊺ * F)

▷ Modifying a system of Wansing’s, we have a candidate...

to be discussed another time!
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Conclusion: our route

Following the Missouri River (CC),
We took the North Platte from Omaha (Curry-style CC + ι,≃,∀)

Heading south (hotter? histomorphic recursion)
to the Colorado River (getting crazy)

towards the Pacific (ultimate Type Theory)

Right now we are maybe passing through...
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