
Bit-Precise Reasoning via Int-Blasting?

Yoni Zohar1 , Ahmed Irfan1?? , Makai Mann1 , Aina Niemetz1 ,
Andres Nötzli1 , Mathias Preiner1 , Andrew Reynolds2 ,

Clark Barrett1 , and Cesare Tinelli2

1 Stanford University, Stanford, USA
2 The University of Iowa, Iowa City, USA

Abstract. The state of the art for bit-precise reasoning in the context
of Satisfiability Modulo Theories (SMT) is a SAT-based technique called
bit-blasting where the input formula is first simplified and then translated
to an equisatisfiable propositional formula. The main limitation of this
technique is scalability, especially in the presence of large bit-widths and
arithmetic operators. We introduce an alternative technique, which we
call int-blasting, based on a translation to an extension of integer arith-
metic rather than propositional logic. We present several translations,
discuss their differences, and evaluate them on benchmarks that arise
from the verification of rewrite rule candidates for bit-vector solving, as
well as benchmarks from SMT-LIB. We also provide preliminary results
on 35 benchmarks that arise from smart contract verification. The eval-
uation shows that this technique is particularly useful for benchmarks
with large bit-widths and can solve benchmarks that the state of the art
cannot.

1 Introduction

Bit-precise reasoning is paramount for software and hardware verification. Bit-
vectors directly and naturally model basic building blocks of both software and
hardware, like registers, integers, memory, and more. Many applications rely on
satisfiability modulo theories (SMT) for reasoning about bit-vectors, and the
number of solvers and techniques for handling bit-vector formulas is large and
increasing. One indication of that is the number of bit-vector benchmarks in
the SMT-LIB [7] benchmark library, by far the highest among all benchmark
categories in the library. The current state of the art for determining the satis-
fiability of fixed-size bit-vector formulas is a technique called bit-blasting. With
this technique, the input formula is first simplified by means of satisfiability pre-
serving transformations. Then, it is fully reduced to a propositional satisfiability
(SAT) problem and handed to a SAT solver [11]. The success of this approach

? This work was supported in part by DARPA (awards N66001-18-C-4012, FA8650-
18-2-7854 and FA8650-18-2-7861), ONR (award N68335-17-C-0558), the Stanford
Center for Blockchain Research, Certora Inc., and by an NSF Graduate Fellowship
(to Makai Mann).

?? This author’s contributions were made while he was a postdoc at Stanford University.

http://orcid.org/0000-0002-2972-6695
http://orcid.org/0000-0001-7791-9021
http://orcid.org/0000-0002-1555-5784
http://orcid.org/0000-0003-2600-5283
http://orcid.org/0000-0001-8669-0011
http://orcid.org/0000-0002-7142-6258
http://orcid.org/0000-0002-3529-8682
http://orcid.org/0000-0002-9522-3084
http://orcid.org/0000-0002-6726-775X

2 Zohar et al.

is mainly due to the fact that modern SAT solvers are able to solve complex
propositional formulas with millions of variables very efficiently. Thus, problems
that can be efficiently encoded as SAT instances can leverage the great progress
in SAT solving. Nevertheless, bit-blasting has scalability limitations, especially
with large bit-widths. In fact, even for conventional bit-widths such as 32 and
64, bit-blasting may face scalability issues, in particular for formulas containing
bit-vector arithmetic operators.

The work described in this paper is part of an ongoing effort to improve the
scalability of bit-precise reasoning by offering alternatives to bit-blasting that
primarily use word-level reasoning and rely on bit-level reasoning only when
needed. Specifically, we study a translation of bit-vector formulas to an extension
of integer arithmetic; that is, we replace bit-blasting by int-blasting. To encode
bitwise bit-vector operators, the extension introduces an operator that represents
the bitwise and operation over integers, parameterized by bit-width. The idea
of using arithmetic reasoning to solve bit-vector formulas is not new (e.g., [12,
19]). We believe, however, that recent progress in arithmetic solvers (e.g., [14]),
especially for non-linear arithmetic (e.g., [17, 18, 26, 41]), make it worthwhile to
revisit this approach, as these techniques can be leveraged by applying them to
the int-blasted formulas.

We study two kinds of translations: an eager one and a (semi-)lazy one. In the
former, the input bit-vector formula is eagerly translated to an integer formula
with uninterpreted functions. In the latter, most of the formula is translated
eagerly while preserving satisfiability except for bitwise operators (such as bit-
wise and), which are handled lazily using a counterexample-guided abstraction
refinement (CEGAR) loop [28].

We additionally consider two alternative ways to encode bitwise bit-vector
operations in integer arithmetic for the purposes of abstraction refinement: one
based on a polynomial expansion and the other based on bit-level comparisons.
Both alternatives require non-linear arithmetic reasoning, as recovering individ-
ual bits from an integer encoding of a bit-vector is achieved via division and
modulo operations. The main difference between the two alternatives in the
context of an SMT solver implementation, and our reason for considering both,
is that the first further exercises the arithmetic subsolver whereas the second
relies more heavily on the underlying SAT engine.

Contributions. We have implemented the aforementioned variants of int-blasting
in the cvc5 SMT solver (the successor of CVC4 [5]) and evaluated our implemen-
tation experimentally to estimate its potential. For that, we compiled a new set
of benchmarks, encoding equivalence checks of rewrite rule candidates proposed
by the syntax-guided rewrite rule enumeration framework presented by Nötzli
et al. [36]. We show that for those benchmarks, int-blasting significantly outper-
forms bit-blasting as the bit-width increases. We further evaluated our technique
on the QF BV benchmarks in the SMT-LIB benchmark library [6], as well as
on 35 benchmarks that arise from smart contract verification, and observed that
int-blasting is complementary to bit-blasting on those benchmarks.

Bit-Precise Reasoning via Int-Blasting 3

Symbol SMT-LIB Syntax Arity

= = σ[n] × σ[n] → Bool

<u
BV, >u

BV bvult, bvugt σ[n] × σ[n] → Bool

<s
BV, >s

BV bvslt, bvsgt σ[n] × σ[n] → Bool

≤u
BV, ≥u

BV bvule, bvuge σ[n] × σ[n] → Bool

≤s
BV, ≥s

BV bvsle, bvsge σ[n] × σ[n] → Bool

∼ BV, −BV bvnot, bvneg σ[n] → σ[n]

&BV, |BV, ⊕BV bvand, bvor, bvxor σ[n] × σ[n] → σ[n]

<<BV, >>BV bvshl, bvlshr σ[n] × σ[n] → σ[n]

+BV, −BV bvadd, bvsub σ[n] × σ[n] → σ[n]

·BV bvmul σ[n] × σ[n] → σ[n]

modBV, divBV bvurem, bvudiv σ[n] × σ[n] → σ[n]

[u : l]BV extract σ[n] → σ[u−l+1]

◦BV concatenation σ[n] × σ[m] → σ[n+m]

Table 1: Considered bit-vector operators with SMT-LIB 2 syntax. In [u : l]BV,
0 ≤ l ≤ u < n.

Outline. After introducing some background and notation in Section 2, Section 3
introduces an extension of the theory of integer arithmetic, in which an operator
representing bitwise and is added for each bit-width. We present a translation
from the theory of bit-vectors to this extension, in Section 4, along with eager
and lazy algorithms for solving the translated formula. We discuss an initial
experimental evaluation of the various translations in Section 5 and conclude in
Section 6 with some directions for further work.

2 Preliminaries

We review the usual notions and terminology of many-sorted first-order logic
with equality (see [21, 44] for more detailed information). Let S be a set of
sort symbols. For every sort σ ∈ S, we assume an infinite set of variables that
are pairwise disjoint across sorts. A signature Σ consists of a set Σs ⊆ S of
sort symbols and a set Σf of function symbols. Arities of function symbols are
defined in the usual way, and correspond to their types, that is, they take the
form σ1 × . . . × σn → σ where σ1, . . . , σn, σ are sorts. Constants are treated as
functions with no input sorts. We assume that Σ includes a sort Bool, interpreted
as the Boolean domain, and the Bool constants > and ⊥ (respectively for true
and false). Signatures do not contain separate predicate symbols and use instead
function symbols with Bool return type.

We assume the usual definitions of well-sorted terms, literals, and formulas,
and refer to them as Σ-terms, Σ-literals, and Σ-formulas, respectively. These

4 Zohar et al.

are constructed using the symbols in Σ, variables, quantifiers and connectives,
as well as the if-then-else constructor ite(ϕ, t1, t2), where ϕ is a formula and t1
and t2 are Σ-terms of the same sort.

A Σ-interpretation I maps: each σ ∈ Σs to a distinct non-empty set of values
σI (the domain of σ in I); each variable x of sort σ to an element xI ∈ σI ; and
each fσ1···σnσ ∈ Σf to a total function fI: σI1 × ... × σIn → σI if n > 0, and to
an element in σI if n = 0. We use the usual notion of a satisfiability relation
|= between Σ-interpretations and Σ-formulas. A term of the form ite(ϕ, t1, t2)
is interpreted in an interpretation I as tI1 if I |= ϕ, and as tI2 otherwise. For
each sub-signature Σ′ of Σ, the reduct IΣ′

of I to Σ′ is obtained from I by
restricting it to the sorts and symbols of Σ′.

A Σ-theory T is a non-empty class of Σ-interpretations, such that every
interpretation that only disagrees from one in T on the variable assignments is
also in T . A Σ-formula ϕ is T -satisfiable (resp., T -unsatisfiable, T -valid) if it is
satisfied by some (resp., no, all) interpretations in T .

The signature ΣBV of fixed-size bit-vectors is defined in the SMT-LIB 2 stan-
dard [7], and includes a unique sort for each positive integer n (representing the
bit-vector width), denoted here as σ[n]. Without loss of generality, we take ΣBV

to consist of a restricted set of bit-vector function symbols (or bit-vector opera-
tors) as listed in Table 1. The selection of operators is arbitrary but complete in
the sense that it suffices to express all bit-vector operators defined in SMT-LIB
2. We further assume that ΣBV includes all bit-vector constants of sort σ[n] for
each n, represented as bit-strings. To simplify the notation, we will sometimes
denote them by the corresponding natural number. If a term t has sort σ[n] then
we denote n by κ(t). The SMT-LIB 2 standard for the ΣBV-theory TBV defines
a set of ΣBV-interpretations I, such that for each positive integer n, σ[n]

I is the
set of all bit-vectors of size n and function symbols are interpreted as the cor-
responding word-level operations in these domains (for details, see [38, 39]). All
function symbols (of non-zero arity) in ΣBV are overloaded for every σ[n]∈ ΣBV.
We refer to the i-th bit of t as t[i] with 0 ≤ i < n. We interpret t[0] as the
least significant bit (LSB), and t[n − 1] as the most significant bit (MSB). The
unsigned interpretation of a bit-vector v of width k as a natural number is given
by [v]N = Σk−1

i=0 v [i] · 2i, and its signed interpretation as an integer is given by
[v]Z = −v [k − 1] · 2k−1 + [v[k − 2 : 0]BV]N. Given 0 ≤ n < 2k, the bit-vector

of width k with unsigned interpretation n is denoted [n]
k
BV. This notation is

extended also for n outside this bound by defining [n]
k
BV :=

[
n mod 2k

]k
BV.3

We consider a theory TIA of integer arithmetic whose signature ΣIA includes
a single sort Int, function symbols +, −, ·, div , and mod of arity Int× Int→ Int,
the function symbol pow2 of arity Int → Int, the predicate symbols < and ≤
of arity Int × Int → Bool, and a constant symbol of sort Int for every integer.
The pow2-free fragment of this theory is identical to the SMT-LIB 2 theory of
integers [43]. Its models are all possible expansions of the models of the SMT-

3 The result of this modulo operation is non-negative, even when the argument is
negative, as specified by the SMT-LIB 2 standard.

Bit-Precise Reasoning via Int-Blasting 5

LIB 2 theory obtained by interpreting pow2(n) as 2n when n is a non-negative
constant, and interpreting pow2(n) arbitrarily otherwise.

3 Integer Arithmetic with Bitwise and

In this paper, we reduce TBV-satisfiability to satisfiability in a theory that extends
TIA as follows. We first extend the signature ΣIA with binary function symbols
&N
k : Int × Int → Int, one for each positive integer k. We define two theories for

the extended signature: the first treats the new symbols &N
k as uninterpreted

functions (UF); the second interprets them as bitwise and operators on integers
modulo 2k. This is defined formally as follows:

Definition 1. The signature ΣIA(&N) is obtained from ΣIA by adding a function
symbol &N

k of arity Int × Int → Int for each k > 0. The ΣIA(&N)-theory TIAUF

consists of all ΣIA(&N)-interpretations whose ΣIA-reduct is a TIA-interpretation.
The ΣIA(&N)-theory TIA(&N) consists of all TIAUF-interpretations I in which

(&N
k)I(a, b) =

[
[a]

k
BV &BV[b]

k
BV

]
N

.

Following Footnote 3, notice that &N
k is fully interpreted, even for integers

that are not between 0 and 2k. In the following definition, we identify a decidable
fragment of TIA(&N) that corresponds to formulas that originate from ΣBV.

Definition 2. Let n be a positive integer, and let t be a ΣIA(&N)-term of sort
Int. A ΣIA(&N)-formula ϕ is a t-n-range constraint if it has the form ⊥, >, or
(0 ./1 t ∧ t ./2 n) for ./1, ./2∈ {<,≤}. A formula ϕ is a range constraint if it
is a t-n-range constraint for some t and n; a formula ϕ is bounded if there are
quantifier-free formulas ϕ1, ϕ2, ψ1, . . . , ψm such that ϕ = ϕ1∧ϕ2, ϕ2 =

∧m
i=1 ψi,

each ψi is a range constraint, and for each term t that occurs in ϕ1 that is either
a variable or has the form &N

k(t1, t2), there exist 1 ≤ i ≤ m and a positive integer
n such that ψi is a t-n-range constraint.

Example 1. Let ϕ1 be (&N
3(x, 0) < x) ∨ (&N

3(x, y) < x) and ϕ2 be (0 ≤ x ∧
x < 8) ∧ (0 ≤ y ∧ y < 8) ∧ (0 ≤ &N

3(x, 0) ∧ &N
3(x, 0) < 8). Then ϕ1 ∧ ϕ2

is not bounded, because it does not include any range constraint for &N
3(x, y).

Consider the formula ϕ′2 obtained from ϕ2 by conjoining the range constraint
(0 ≤ &N

3(x, y) ∧&N
3(x, y) < 8). Then ϕ1 ∧ ϕ′2 is bounded.

A naive algorithm for deciding TIA(&N)-satisfiability of bounded ΣIA(&N)-
formulas can be obtained by enumerating all possible values for variables within
the specified bounds, and checking if the formula evaluates to true. If it does, a
full model can be constructed according to Definition 1. In fact, bounds over vari-
ables are sufficient for TIA(&N)-satisfiability since the semantics of &N in TIA(&N)
is fixed. A similar decision procedure can be obtained for TIAUF-satisfiability,
which does require the bounds over &N-terms. This algorithm gives us:

Proposition 1. The TIA(&N)- and TIAUF-satisfiability of bounded formulas is
decidable.

6 Zohar et al.

In the next section, we show that the class of bounded formulas in TIA(&N) is
both useful and effective: it is expressive enough to describe bit-vector formulas
and can be reduced to problems for which there are efficient solvers.

4 Int-Blasting

In this section, we present our integer-based approach for solving TBV-satisfiab-
ility. There are two stages in our approach. The first, described in Section 4.1 and
proved correct in Section 4.2, translates TBV-formulas to TIA(&N). The second,
described in Sections 4.3 and 4.4, solves the resulting formulas by eager and lazy
reductions to TIAUF, respectively. Although we developed our translations for
the full fragment of TBV, to simplify the exposition in this paper, we will restrict
ourselves to quantifier-free formulas only.

4.1 From TBV to TIA(&N)

The first step is to translate ΣBV-formulas to equisatisfiable ΣIA(&N)-formulas,
so that the original formula is TBV-satisfiable if, and only if, its translation
is TIA(&N)-satisfiable. For this purpose, we define a translation function T as
shown in Figure 1, which recursively translates ΣBV-formulas to ΣIA(&N) (via
the conversion function C) and collects additional lemmas about the ranges of
the translated variables and the introduced &N-terms (via the function Lem≤).

Conversion Function C. We use a one-to-one mapping χ from bit-vector vari-
ables (i.e., variables of sort σ[k] for some k > 0) to integer variables (i.e., vari-
ables of sort Int). A bit-vector constant c is translated to its integer counterpart
using []N which maps c to its unsigned integer interpretation. For Boolean con-
nectives � ∈ {∧,∨,⇒,¬,⇔}, equalities, and unsigned comparators ./BV with
./ ∈ {<,≤, >,≥}, the conversion function is recursively applied to their ar-
guments. In the latter case, ./BV is replaced by its ΣIA counterpart ./. Signed
comparators are handled similarly, except that the arguments are processed with
function utsk() (unsigned to signed with bit-width k), also defined in Figure 1,
which ensures that the semantics of signed comparison is preserved properly.

For a given integer n in the range 0 ≤ n < 2k, it returns
[
[n]

k
BV

]
Z
, the signed

interpretation of the bit-vector whose unsigned interpretation is n. Bit-vector
addition is translated to integer addition modulo 2k, where k is the bit-width of
the arguments. Bit-vector subtraction, multiplication, and one’s and two’s com-
plement are handled similarly. For division, the SMT-LIB 2 standard defines
a default value for bit-vector division by 0, but not for integer division by 0.
This is handled by wrapping the translated division term in an ite, which em-
beds the semantics of bit-vector division within integer arithmetic. A similar
pattern is followed for remainder. Note that there is no need to take the result
modulo 2k for one’s complement and unsigned division and remainder, as they
are guaranteed to be within the correct bounds. Concatenation and extraction
are handled as expected, using multiplication, division, and modulo. Left/right

Bit-Precise Reasoning via Int-Blasting 7

T ϕ:

C ϕ ∧ Lem≤(ϕ)

C e:
Match e:
x → χ(x)
c → [c]N
t1 = t2 → C t1 = C t2
t1./

BVt2 → C t1 ./ C t2
t1./s

BVt2 → utsk(C t1) ./ utsk(C t2) ./∈ {<,≤, >,≥}
�(ϕ1, . . . , ϕn) → �(C ϕ1, . . . , C ϕn) � ∈ {∧,∨,⇒,¬,⇔}

t1 +BV t2 → (C t1 + C t2) mod 2k

t1 −BV t2 → (C t1 − C t2) mod 2k

t1 ·BVt2 → (C t1 · C t2) mod 2k

∼ BVt1 → 2k − (C t1 + 1)

−BVt1 → (2k − C t1) mod 2k

t1 divBVt2 → ite(C t2 = 0, 2k − 1, C t1 div C t2)
t1 modBVt2 → ite(C t2 = 0, C t1, C t1 mod C t2)

t1◦BVt2 → C t1 · 2k + C t2
t1[u : l]BV → C t1 div 2l mod 2u−l+1

t1<<
BVt2 → (C t1 · pow2(C t2)) mod 2k

t1>>
BVt2 → C t1 div pow2(C t2)

t1 &BVt2 → &N
k(C t1, C t2)

t1 |BV t2 → C ((t1 +BV t2)−BV (t1 &BVt2))

t1⊕BVt2 → C ((t1 |BV t2)−BV (t1 &BVt2))

utsk(x) = 2 · (x mod 2k−1)− x

Lem≤(e):
Match e:
x → 0 ≤ χ(x) < 2κ(x)

c → >
t1 = t2 → Lem≤(t1) ∧ Lem≤(t2)

fBV(t1, t2) → 0 ≤ &N
k(C t1, C t2) < 2k∧

Lem≤(t1) ∧ Lem≤(t2)
fBV ∈ {&BV, |BV,⊕BV}

gBV(t1, . . . , tn) →
∧n
i=1 Lem

≤(ti) gBV ∈ ΣBV \ {&BV, |BV,⊕BV}
�(ϕ1, . . . , ϕn) →

∧n
i=1 Lem

≤(ϕi)

Fig. 1: Translation T from ΣBV to ΣIA(&N). We denote by k the bit-width κ(t2)
of the second argument, except for the cases of −BV and ∼ BV, where it denotes
the bit-width κ(t1) of the only argument; x ranges over bit-vector variables; χ
is a one-to-one mapping from bit-vector variables to integer variables; c ranges
over bit-vector constants.

8 Zohar et al.

shifts are obtained by multiplying/dividing the first argument by 2 to the power
of the second argument. Bitwise and is translated to &N

k, where k is determined
according to the bit-width of the bit-vector arguments. Bitwise or (|BV

) and xor
(⊕BV) are reduced to other operators, using the following identities that hold for
all bit-vectors x and y [46]:

x |BV
y = (x +BV y)−BV (x &BVy) x⊕BVy = (x |BV

y)−BV (x &BVy) (1)

Lemmas Function Lem≤. Function Lem≤ takes a ΣIA(&N)-formula and collects
necessary range constraints for integer variables and terms of the form &N

k(t1, t2)
that are introduced by C. For variables, the range is determined by the bit-width
of the original bit-vector variable. For &BV, |BV

and ⊕BV terms, the constraint is
determined by the bit-width of the arguments. Since |BV

and ⊕BV are eliminated,
the constraint is stated in terms of &N. Notice that the &BV terms introduced
by Equation (1) have the same arguments as the original terms. For all other
terms and formulas, Lem≤ simply collects such constraints recursively.

4.2 Correctness

The correctness of T is stated in the following theorem. It follows from the SMT-
LIB 2 semantics of bit-vectors and arithmetic, and from Definition 1. Its proof
is by structural induction on ϕ. Most cases are similar to the correctness proof
of the translation by Niemetz et al. [35], from bit-vectors with parametric width
to integers, with the main difference being the case of &BV. Unlike that work,
where the quantified axiomatization had to be proven correct by induction on
the bit-width, here the correctness follows directly from Definition 1.

Theorem 1. A ΣBV-formula ϕ is TBV-satisfiable iff T ϕ is TIA(&N)-satisfiable.

The theorem is actually stronger than stated: from any model I of T ϕ one
can compute a satisfying assignment for ϕ’s free variables, simply by assigning
to each free variable x of ϕ the bit-vector corresponding to the (integer) value
of χ(x) in I. An analogous result holds in the opposite direction as well.

We prove this theorem in the remainder of this section, focusing on the left-
to-right direction. The other direction is shown similarly. Throughout the proof,
we employ the following notation:

bsel i(x) := (x div 2i) mod 2 (2)

The term bsel i(x) represents the selection of the i-th bit in the bit-vector repre-
sentation of x. In particular, it is always 0 or 1.

Let ϕ be aΣBV-formula. We assume without loss of generality that ϕ does not
have any occurrence of the ite operator, as it can be eliminated using the Boolean
operators and the introduction of fresh variables. Suppose ϕ is TBV-satisfiable
and let A be a TBV-interpretation that satisfies it. We prove that T ϕ is TIA(&N)-
satisfiable. Define the following ΣIA(&N)-interpretation B: all function symbols
and constants are interpreted as defined by TIA(&N); division and remainder by

Bit-Precise Reasoning via Int-Blasting 9

0, as well as pow2(m) for any negative m are defined arbitrarily; for every bit-
vector variable x, the value in B of its translation is the unsigned interpretation
of its value in A, that is:

χ(x)B :=
[
xA
]
N.

This fixes B. Also, B is a TIA(&N)-interpretation by construction.
Notice that every term of the form t1 div t2 or t1 mod t2 that occurs in the

translation is guarded by an assumption that t2 is not 0. Similarly, pow2 is
always applied on arguments that are guaranteed to be non-negative. Therefore,
the interpretation of these corner cases in B can indeed remain arbitrary.

We first prove the following lemma, which states the correctness of the trans-
lation for terms, that is, that the translation of each ΣBV-term is interpreted in
B as the unsigned interpretation of the original term’s value in A.

Lemma 1. (C t)B =
[
tA
]
N for every ΣBV-term t of sort σ[k].

Proof. By induction on t. If t is a bit-vector variable then (C t)B = χ(t)B =
[
tA
]
N

by the definitions of C and B. If t is a bit-vector constant then (C t)B = [t]
B
N =[

tA
]
N by the definition of []N. If t has the form t1 +BV t2, then by the definition

of C, (C t)B = (C t1 + C t2 mod 2k)B. Now, 2k 6= 0 and hence the interpretation
in B is governed by TIA(&N), and is equal to (C t1)B + (C t2)B mod 2k. By the

induction hypothesis, this is equal to
[
tA1
]
N +

[
tA2
]
N mod 2k. By the semantics

of +BV according to the SMT-LIB 2 standard, this is the same as
[
tA
]
N. The

other bit-vector operators are handled similarly. |BV
and ⊕BV are eliminated by

C, and the correctness of this elimination follows from [46].
Finally suppose t has the form t1 &BV t2. By the definition of C, (C t)B =

&N
k(Ct1, Ct2)B. By Definition 1, since B is a TIA(&N)-interpretation, &N

k(Ct1, Ct2)B =[[
(C t1)B

]k
BV &BV

[
(C t2)B

]k
BV

]
N

. By the induction hypothesis, this is the same as[[[
tA1
]
N

]k
BV &BV

[[
tA2
]
N

]k
BV

]
N

. Now, []N and []BV cancel each other, and hence we

get
[
tA1 &BVtA2

]
N, which is the same as

[
tA
]
N. ut

Going back to ϕ, which is assumed to be satisfied by A, we now prove that
B |= T ϕ, that is B |= Cϕ∧Lem≤(ϕ). First, we prove that B |= Cϕ by induction on
ϕ. The induction step, in which ϕ is recursively constructed from propositional
connectives, trivially follows from the induction hypothesis, hence we focus on
the induction base. In the induction base, ϕ has either the form t1 = t2, t1./

BVt2,
or t1./s

BVt2 for some ./∈ {<,≤, >,≥}. If ϕ has the form t1 = t2, then since
A |= ϕ, tA1 = tA2 . By Lemma 1, (C t1)B =

[
tA1
]
N =

[
tA2
]
N = (C t2)B, and therefore

B |= C ϕ. If ϕ has the form t1<u
BVt2 then since A |= ϕ, tA1 <

BVtA2 . By Lemma 1,
(C t1)B =

[
tA1
]
N and

[
tA2
]
N = (C t2)B. Thus we get (C t1)B < (C t2)B, and so

B |= C ϕ. The case of ≤u
BV is shown similarly. Finally, if ϕ has the form t1<s

BVt2
then since A |= ϕ, we have tA1 <s

BVtA2 . In turn, by the semantics of TBV as defined
in the SMT-LIB 2 standard, this means that

[
tA1
]
Z <

[
tA2
]
Z. By the definition

of uts, we get utsk(
[
tA1
]
N) < utsk(

[
tA2
]
N), with k = κ(t1). By Lemma 1 we have:

10 Zohar et al.

utsk((C t1)B) < utsk((C t2)B), which means B |= C ϕ. The case of ≤s
BV is shown

similarly.
Next, we prove that B |= Lem≤(ϕ), also by induction on ϕ. Similarly to the

above, the induction step follows directly from the induction hypothesis and so
we focus on the induction base, in which ϕ is atomic, and hence it has the form
t1 = t2, t1./

BVt2, or t1./s
BVt2 for some ./∈ {<,≤, >,≥}. By the definition of

Lem≤, Lem≤(ϕ) = Lem≤(t1)∧Lem≤(t2). We thus prove that B |= Lem≤(t) for
any term t of sort σ[k] by an inner induction on t. If t is a bit-vector variable,

Lem≤(t) = 0 ≤ χ(t) < 2k. By Lemma 1, χ(t)B =
[
tA
]
N, and by the definition

of []N, 0 ≤ χ(t)B < 2k. If t is a bit-vector constant, then the condition is

trivially satisfied. If t has the form fBV(t1, t2) with fBV ∈ {&BV, |BV
,⊕BV}, then

Lem≤(t) = 0 ≤ &N
k(C t1, C t2) < 2k ∧ Lem≤(t1) ∧ Lem≤(t2). By the induction

hypothesis, B |= Lem≤(t1) ∧ Lem≤(t2). Also, B |= 0 ≤ &N
k(C t1, C t2) < 2k by

Definition 1, and the fact that it is a TIA(&N)-interpretation. For any other form
of t, this follows immediately from the induction hypothesis. ut

4.3 TIA(&N)-Satisfiability: Eager Approach

Now that we have reduced TBV-satisfiability to TIA(&N)-satisfiability, we present
eager and lazy reductions from the latter to TIAUF-satisfiability. The first ap-
proach for determining TIA(&N)-satisfiability is an eager reduction to TIAUF-
satisfiability. The reduction is defined by the translation TA, which is param-
eterized by a mode A ∈ { sum, bitwise }, as shown in Figure 2.

The translation adds to ϕ a conjunction Lem&
A(ϕ) of lemmas that reflect the

definition of &N
k for each relevant k. Function Lem&

A, when applied to a term or
formula e, recursively collects lemmas for subterms of e of the form &N

k(t1, t2).
The introduced lemma depends on the mode A. For A = sum, the lemma

represents the usual encoding of integers in binary notation, by summing powers
of 2 with coefficients that depend on the bits. Alternatively, for A = bitwise, the
translation introduces a lemma that compares each i-parity of the &N

k-term to
its expected result, based on the i-parities of the two arguments. The lemmas
use the term ITEand(x, y) to encode each bit using the ite operator. This case
splitting requires access to the i-th bit in the bit-vector representations of t1,
t2, and &N

k(t1, t2). These are abbreviated by ai, bi, and ci in Figure 2, and are
defined using the function bsel from Equation (2).

The main difference between bitwise and sum is in the balance between the
arithmetic solver and the Boolean solver. While both approaches heavily use
mod and div terms, the bitwise mode only includes comparisons between such
terms, thus relying mainly on the SAT solver, as well as the equality solver. In
contrast, the sum mode incorporates them within sums and multiplications by
constants, making heavy use of the arithmetic solver.

The following theorem states the correctness of the reduction described in
Figure 2 from TIA(&N)-satisfiability to TIAUF-satisfiability. It follows from the
semantics of TBV and Definition 1, which induces the same semantics for &N as
the one induced by the lemmas that are produced in IandA(t1, t2).

Bit-Precise Reasoning via Int-Blasting 11

TA ϕ:

Lem&
A(ϕ) ∧ ϕ

Lem&
A(e):

Match e:

x → >
c → >
t1 = t2 → Lem&

A(t1) ∧ Lem&
A(t2)

�(ϕ1, . . . , ϕn) →
∧n
i=1 Lem

&
A(ϕi)

f(t1, . . . , tn) →
∧n
i=1 Lem

&
A(ti)

&N
k(t1, t2) → IandA(t1, t2) ∧

∧
i∈{ 1,2 } Lem

&
A(ti)

Iandsum(t1, t2):

&N
k(t1, t2) = Σk−1

i=0 2i · ITEand(ai, bi)

Iandbitwise(t1, t2):∧k−1
i=0 ci = ITEand(ai, bi)

where:

ai = bsel i(t1)

bi = bsel i(t2)

ci = bsel i(&
N
k(t1, t2))

ITEand(x, y) = ite(x = 1 ∧ y = 1, 1, 0)

Fig. 2: Translation TA from TIA(&N) to TIAUF, parameterized by A ∈
{ sum, bitwise }. x and c range over integer variables and constants, resp.; � ranges
over the connectives; f ranges over ΣIA-symbols; bsel is from Equation (2).

Theorem 2. Let ϕ be a ΣIA(&N)-formula. For all A ∈ { sum, bitwise }, ϕ is
TIA(&N)-satisfiable iff TA ϕ is TIAUF-satisfiable.

Proof. Suppose ϕ is TIA(&N)-satisfiable and let A be a TIA(&N)-interpretation
that satisfies it. Now, A is also a TIAUF-interpretation, and hence what is left
to show is that A |= Lem&

A(ϕ), which directly follows from Definition 1 and a
routine verification of the TIA(&N)-validity of Lem&

A(ϕ) for A ∈ { sum, bitwise }.
Now suppose TA ϕ is TIAUF-satisfiable and let A be a TIAUF-interpretation

that satisfies TAϕ. We prove that ϕ is TIA(&N)-satisfiable. Let B be the ΣIA(&N)-
interpretation obtained from A by ignoring the interpretations of &N

k in A, and
redefining them according to Definition 1. Clearly, B is a TIA(&N)-interpretation.

To show that it satisfies ϕ, it suffices to show that &N
k(t1, t2)A = &N

k(t1, t2)B

12 Zohar et al.

EagerABV (ϕ):

PTIAUF(TA (T ϕ))

LazyABV (ϕ):

Γ := { T ϕ }
∆ :=

{
&N
k(t1, t2) | &N

k(t1, t2) occurs in T ϕ
}

Λ := Prop(∆) ∪
{
IandA(t1, t2) | &N

k(t1, t2) ∈ ∆
}

Repeat:

1. If PTIAUF(
∧
Γ) is “unsat”, then return “unsat”.

2. Otherwise, let I = PTIAUF(
∧
Γ)

/* check I against properties of &N
k */

(a) If I satisfies Λ, return “sat”.

(b) Otherwise:

/* refine abstraction Γ */

Γ := Γ ∪ {ψ ∈ Λ | I 6|= ψ }

Prop(∆) =
{
Prop(t1, t2) | &N

k(t1, t2) ∈ ∆
}

Prop(t1, t2):

&N
k(t1, t2) ≤ t1 ∧&N

k(t1, t2) ≤ t2 ∧ bounds

(t1 = t2 ⇒ &N
k(t1, t2) = t1) ∧ idempotence

&N
k(t1, t2) = &N

k(t2, t1) ∧ symmetry

(t1 = 0⇒ &N
k(t1, t2) = 0) ∧

(t1 = 2k − 1⇒ &N
k(t1, t2) = t2) ∧

(t2 = 0⇒ &N
k(t1, t2) = 0) ∧

(t2 = 2k − 1⇒ &N
k(t1, t2) = t1)

 special cases

Fig. 3: Procedures for TBV-satisfiability. We assume PTIAUF is a procedure for
TIAUF-satisfiability that returns a finite representation of a model for satisfiable
formulas.

Bit-Precise Reasoning via Int-Blasting 13

for any term &N
k(t1, t2) that occurs in ϕ. All other terms that occur in ϕ are

interpreted the same as in A, by the way B was defined. Now suppose &N
k(t1, t2)

occurs in ϕ. Suppose for contradiction that &N
k(t1, t2)A 6= &N

k(t1, t2)B. Since B
is a TIA(&N)-interpretation, this means that &N

k(t1, t2)A 6=
[[
tA1
]k
BV &BV

[
tA2
]k
BV

]
N

.

In other words,
[
&N
k(tA1 , t

A
2)
]k
BV 6=

[
tA1
]k
BV &BV

[
tA2
]k
BV. Hence there is some 0 ≤

i < k such that
[
&N
k(tA1 , t

A
2)
]k
BV[i] 6= (

[
tA1
]k
BV &BV

[
tA2
]k
BV)[i]. Now, recall bsel from

Equation (2), which equals to 0 or 1, according to the i-th bit in the bit-vector
representation of the input integer. Using the semantics of &BV in SMT-LIB 2,
we get that bsel i(&

N
k(tA1 , t

A
2)) 6= ite(bsel i(t

A
1) = bsel i(t

A
2), 1, 0). For both modes

sum and bitwise, this means A 6|= IandA(t1, t2). For the former, the sums will
evaluate differently, while for the latter, a direct disequality will be obtained.
This is a contradiction to the assumption that A |= TA ϕ. ut

We use TA in the eager procedure EagerABV (ϕ) of Figure 3, in which the
input ΣBV-formula ϕ is processed through T to obtain an equisatisfiable for-
mula T ϕ in TIA(&N), and then through TA to get an equisatisfiable formula in
TIAUF. The result is then handed to a TIAUF-solver PTIAUF

for bounded formu-
las, which is expected to be a decision procedure for the TIAUF-satisfiability of
quantifier-free formulas that also returns (a finite representation of) a TIAUF-
model satisfying the input formula whenever that formula is TIAUF-satisfiable.
Notice that T always generates bounded formulas due to Lem≤, and TA pre-
serves boundedness as it does not introduce any new variables or terms of the
form &N

k(t1, t2). This leads to the following correctness result for EagerABV .

Proposition 2. EagerABV is a decision procedure for the TBV-satisfiability of
quantifier-free formulas.

4.4 TIA(&N)-satisfiability: Lazy Approach

We now examine a CEGAR-based approach, which applies the function Lem&
A

in the TA translation in a lazy and incremental way. Our CEGAR-procedure
LazyABV is described in Figure 3. It maintains a set Γ of assertions, initially set
to the translation of the input ΣBV-formula ϕ using T , and a set ∆ of terms of
the form &N

k(t1, t2) in T ϕ. Similarly to the eager approach, we utilize the decision
procedure PTIAUF for TIAUF-satisfiability. If, at any point, PTIAUF determines that
Γ is TIAUF-unsatisfiable, LazyABV returns “unsat”. Otherwise, the model I of
Γ returned by PTIAUF

is validated against a set Λ of lemmas, instantiated with
the terms in ∆. The set Λ is a union of two sets of lemmas: (i) a set of basic
lemmas Prop(∆) that capture basic properties of bitwise and: upper bounds,
idempotence, symmetry, and values for special inputs; and (ii) lemmas based
on Lem&

A, as defined in Figure 2. Any lemmas falsified by I make the model
unsuitable for ϕ. Such lemmas are then added to Γ , and the process repeats. If
all of the lemmas in Λ are satisfied, the algorithm returns “sat”.

The correctness argument for LazyABV is similar to that of Proposition 2. At
any point in the procedure, Γ consists of T ϕ, as well as a subset of Λ. It is routine

14 Zohar et al.

to check that every formula in Λ is TIA(&N)-valid. If the procedure returns “un-
sat”, this means that the abstraction Γ is not TIAUF-satisfiable, which means that
T ϕ itself is TIA(&N)-unsatisfiable. By Theorem 1, ϕ is TBV-unsatisfiable. In con-
trast, when the procedure returns “sat”, a satisfying TIA(&N)-interpretation for
T ϕ can be constructed according to Definition 1 from the TIAUF-interpretation
I, in a similar fashion to the proof of Theorem 2. In turn, this interpretation can
be translated to a TBV-interpretation following Theorem 1. Since T ϕ is bounded,
we then have the following.

Proposition 3. LazyABV is a decision procedure for the TBV-satisfiability of
quantifier-free formulas.

Remark 1. At this point, it is instructive to compare the translation presented
here to that by Niemetz et al. [35]. Although the solutions offered in the two
works are similar, they differ on the problem they address. Niemetz et al. study
the satisfiability of formulas over bit-vectors with parametric bit-widths, while
this paper focuses on the regular SMT-LIB 2 theory of fixed-width bit-vectors.
Since the translation to integers involves the bit-width of the terms in the in-
put formula, parametric bit-widths require the introduction of quantifiers in the
translation in practically all cases. In contrast, by considering only inputs over
fixed bit-widths, our approach requires no quantifiers at all. Also, the solving
technique we present here has both eager and lazy variants, with two alternative
encodings in each. Instead, Niemetz et al. present only eager translations. The
most successful translation there mostly resembles our eager sum mode, with
some additional quantified axioms that correspond Prop(t1, t2) from Figure 3.
A counterpart to the bitwise mode was not considered there. Furthermore, their
method was only evaluated on benchmarks with a single parametric bit-width
due to the limited expressiveness supported by the prototype implementation.
In contrast, our technique is fully implemented within the cvc5 solver.

5 Experimental Results

5.1 Implementation and Experiments

We implemented both EagerABV and LazyABV in the cvc5 SMT solver and evalu-
ated the implementation on three classes of benchmarks.4 The eager translations
are implemented in a preprocessing pass that translates the entire input formula
to a formula over the SMT-LIB 2 theory of integers, without any extension.
The lazy translations use the same preprocessing pass; however, the translated
formulas include the &N

k operators. The CEGAR loop for &N
k is implemented as

part of the non-linear extension of the arithmetic solver of cvc5.
Note that cvc5 does not have built-in support for pow2. For all ΣBV-operators

except <<BV and >>BV this does not matter in practice since the argument to
pow2 is a concrete constant. For the shift operators, the argument t to pow2

4 An artifact that includes the implementation, benchmarks, and results is available
at https://doi.org/10.5281/zenodo.5652826.

https://doi.org/10.5281/zenodo.5652826

Bit-Precise Reasoning via Int-Blasting 15

SMT-LIB ECRW SC

slvd sat uns m slvd sat uns m slvd sat uns m

eagerb 35031 10447 24584 38 41989 119 41870 0 24 9 15 0

eagers 35035 10459 24576 28 41435 119 41316 77 24 9 15 0

lazyb 35001 10383 24618 23 47071 119 46952 0 24 9 15 0

lazys 34819 10297 24522 27 45350 119 45231 138 24 9 15 0

Bitwuzla 41220 14233 26987 19 37297 265 37032 11120 16 8 8 0

cvc5 40543 14204 26339 36 33187 220 32967 17535 - - - -

Yices 41228 14280 26948 11 31646 255 31391 15801 9 3 6 0

bw-ind - - - - 25608 0 25608 0 - - - -

Table 2: Overall results on all three benchmark sets.

may include variables, but the value of pow2(t) only matters when 0 ≤ t < k,
where k is the bit-width of the original ΣBV-term. Thus, we are able to eliminate
pow2-terms by enumerating a finite set of cases using ite-terms.

In accordance with Section 4, our implementation focuses on finding and
improving strategies for lemma instantiation. Another aspect of integer reasoning
is the evaluation of operations over constants, especially when the constants are
large, as in our experience, operations on big integers can take up to 30-40% of
the overall runtime. In the experiments described below, these are handled by the
CLN library [25], which is supported by cvc5. Our focus on lemma instantiation
is meant to reduce how often expensive numeric operations must be invoked.

We evaluated our int-blasting approaches EagerABV and LazyABV for A ∈
{sum, bitwise} on three sets of benchmarks: (1) the QF BV benchmarks from
SMT-LIB, (2) a set of benchmarks consisting of equivalence checks of bit-vector
rewrite rule candidates, and (3) 35 benchmarks originating from a smart con-
tract verification application.5 We compared our four int-blasting configurations,
denoted eagers , eagerb , lazys , lazyb , where b stands for bitwise and s stands for
sum, against (1) cvc5 running its eager bit-vector solver using CaDiCaL [10] as
the SAT back end, (2) Bitwuzla [31] version 0.1-202011 (the QF BV winner of
the 2020 SMT competition), (3) Yices [20] version 2.6.2 with CaDiCaL as the
SAT back end (the QF BV runner-up at the same competition), and (4) bw-ind,
the prototype implementation for proving bit-width independent properties used
by Niemetz et al. [35], which uses the arithmetic solver of cvc5 as a back-end,
the same arithmetic solver used in our int-blasting approaches. We used bw-ind
only for the second benchmark set since its support is limited to benchmarks
that contain a single bit-width. We performed all experiments on a cluster with
Intel Xeon CPU E5-2620 v4 CPUs with 2.1GHz and 128GB memory.

5 Provided to us by collaborators at Certora.

https://www.certora.com

16 Zohar et al.

16 32 64 128 256 512 1,024 2,048 4,096 8,192

500

1,000

1,500

Bit-width

S
o
lv

e
d

(a) With bitwise and operator.

16 32 64 128 256 512 1,024 2,048 4,096 8,192

1,000

2,000

3,000

4,000

Bit-width

S
o
lv

e
d

(b) Without bitwise and operator.

16 32 64 128 256 512 1,024 2,048 4,096 8,192

1,000

2,000

3,000

4,000

5,000

Bit-width

S
o
lv

e
d

(c) All ECRW benchmarks.

eagerb eagers lazyb lazys bw-ind Bitwuzla cvc5 Yices

Fig. 4: Number of solved benchmarks grouped by bit-width.

Bit-Precise Reasoning via Int-Blasting 17

5.2 Results

Table 2 summarizes the overall results for all benchmark sets. For each set and
running configuration, it shows the total number of solved benchmarks (slvd),
sat results (sat), unsat result (uns) and number of memory-outs (m).

QF BV Benchmarks (SMT-LIB). The QF BV benchmark set includes all 41,713
benchmarks from the 2020 SMT-LIB release. We used a limit of 600s of CPU
time and a memory limit of 8GB for each solver/benchmark pair. None of the
int-blasting configurations is competitive with the other bit-blasting solvers. This
is as expected since the QF BV benchmark set contains few benchmarks with
bit-widths larger than 64, the target of our approach. The pspace family of
QF BV benchmarks consists of benchmarks with bit-widths ranging from 5,000
to 30,000. The more challenging benchmarks in this set, however, contain the bit-
wise and operator, and our int-blasting approach cannot solve them within the
time limit. All four int-blasting approaches are more competitive on unsatisfiable
benchmarks than satisfiable ones. This is because int-blasting relies heavily on
the performance of cvc5’s procedure for non-linear integer arithmetic. This pro-
cedure is based on instantiating a set of lemma schemas [16, 41], which may show
unsatisfiability quickly when useful lemmas are discovered, but may take longer
to converge when the problem is satisfiable. Overall, each of our int-blasting
configurations is able to solve 18 benchmarks that none of the bit-blasting ap-
proaches is able to solve; 14 of these are from the arithmetic-heavy Sage2 family,
which includes a wide range of both arithmetic and bitwise operators, including
shifts and bitwise and , or , and xor .

Equivalence Checks of Rewrite Rule Candidates (ECRW). The ECRW benchmark
set consists of equivalence checks of rewrite rule candidates for TBV-terms and
formulas. They were automatically generated using a state-of-the-art Syntax-
Guided Synthesis (SyGuS) [2] solver implemented in cvc5 [40]. We enumerated
pairs of ΣBV-terms that are equivalent for bit-vectors of bit-width 4. These pairs
of terms were generated over a sub-signature of ΣBV consisting of the constants
0 and 1, the = operator, and the unsigned comparison operators <u

BV and ≤u
BV,

as well as the operators −BV, ∼ BV, +BV, ·BV, divBV, &BV, and modBV. In total,
we generated 5,491 distinct equivalence checks with bit-width 4. Each equiva-
lence check was then instantiated with bit-widths 16, 32, 64, 128, 256, 512, 1024,
2048, 4096, and 8192, resulting in a total of 54,910 benchmarks. An important
feature of the generated checks is that they exclude equivalences that are already
derivable solely by the rewriter of cvc5. We used a CPU time limit of 300s and
a memory limit of 8GB per solver/benchmark pair. For this benchmark set, our
evaluation included bw-ind, whose primary purpose is to prove bit-width inde-
pendent properties via bit-vectors of parametric widths. Since this benchmark
set consists of fixed-width bit-vectors and not parametric ones, we added a con-
straint that specifies the concrete bit-width of each benchmark, by comparing it
to the parametric bit-width. It is evident that bw-ind does not perform well on

18 Zohar et al.

this benchmark set. This is expected given that this approach is the only one
that makes any use of quantifiers.

On this benchmark set, all int-blasting approaches outperformed all other
approaches. Figures 4a to 4c provide a more fine-grained analysis for this set
by depicting the number of solved benchmarks grouped by bit-width for each
solver on (a) benchmarks with applications of the bitwise and operator &BV

(29%), (b) benchmarks without &BV (71%), and (c) the full ECRW benchmark
set. The bit-blasting approaches are marked with circles, while the int-blasting
approaches are marked with other shapes. For each subset of benchmarks there is
a bit-width k for which the best int-blasting configuration, the lazy bitwise mode,
outperforms all other configurations and solvers: 512 for those benchmarks with
&BV, 128 for those without, and 256 for the full set. This shows that int-blasting
can be a useful tool to add to the tool-box of bit-precise reasoning engines,
in the presence of large bit-widths. Surprisingly, even for bit-width 16, there
were benchmarks for which int-blasting performed better than bit-blasting. For
example, there are 78 benchmarks of bit-width 16, without the &BV operator
that were solved by the int-blasting approaches in less than 1 second, while all
the bit-blasting approaches required more than 10 seconds (in many of these
cases, bit-blasting required more than 100 seconds).

Comparing the different int-blasting configurations, Figure 4b clearly shows
that for benchmarks without &BV applications, the lazy and eager int-blasting
configurations are almost bit-width independent, and perform equally well (in
turn, their markings overlap in the figure). This is expected because the trans-
lations differ from one another only in the way they handle &BV. Moreover, the
&BV-free part of our translations is actually bit-width independent, as the size
of the generated terms does not depend on it, except for shift operators, which
are not included in this benchmark set. The differences between the translations
are visible, also as expected, for benchmarks with &BV applications, as shown
in Figure 4a. There, the best int-blasting configuration is lazyb . In the pres-
ence of bitwise operators, both the eager and lazy translations introduce terms
whose size does depend on the bit-width. Accordingly, we see a clear decrease in
the performance of the eager translations as the bit-width increases, while little
performance degradation is observable for the lazy translations. This can be ex-
plained by the fact that the eager approach introduces bit comparison lemmas
or sum-based lemmas before the integer solver comes into play. In contrast, the
lazy approach introduces those lemmas only if the model generated in the CE-
GAR loop falsifies them, so there are generally fewer terms whose size depends
on the bit-width.

As for the better performance of bitwise compared to sum, we conjecture that
the bitwise translation outperforms the sum translation because it is a more
direct translation to SAT. The sum translation relies on the linear arithmetic
solver generating simple conflicts and lemmas over linear arithmetic literals that
correspond to the same reasoning in a more indirect way. While this choice is
not obvious, our experiments have confirmed that the former is superior.

Bit-Precise Reasoning via Int-Blasting 19

Smart Contract Verification Benchmarks (SC). This benchmark set consists
of 35 benchmarks from a smart contract verification application. They contain
(linear and non-linear) arithmetic operators, bitwise operators, as well as un-
interpreted functions, and reason about bit-vectors of width 256. These bench-
marks originate from verification conditions that are directly produced by Cer-
tora’s verification tool for Ethereum smart contracts [15]. They encode algebraic
properties of low-level methods in smart contracts (e.g., commutativity of bal-
ance updates). The application requires the generation of models, which the
eager bit-blasting configuration of cvc5 does not support for uninterpreted func-
tions. We imposed a CPU time limit of 3,600s and a memory limit of 32GB per
solver/benchmark pair.

The int-blasting configurations are able to solve 24 benchmarks, whereas the
bit-blasting solvers solve less (Bitwuzla solves 16 and Yices solves 9). In addition
to solving more benchmarks in this benchmark set, the int-blasting approaches
are also faster: The 24 benchmarks that are solved by int-blasting take a total
of 232 seconds, to be solved, where 22 out of these benchmarks are solved in
a total time of 20 seconds. This is the case for all int-blasting configurations.
In contrast, Bitwuzla solves 16 benchmarks in 5,900 seconds, and Yices solves 9
benchmarks in 3,900 seconds. Notice that unsatisfiable benchmarks seem to be
better suited for int-blasting, while satisfiable benchmarks are solved better with
bit-blasting. This positions int-blasting as a useful complement to bit-blasting.

6 Related Work, Conclusion, and Future Work

Related Work. Earlier integer-based techniques for bit-precise reasoning focus
on translating hardware register transfer level (RTL) constraints into integer
linear programming (ILP) and are thus limited to the linear arithmetic sub-
set of the theory of bit-vectors [13, 48]. Similarly, Achterberg’s PhD thesis [1]
studies translations of bit-vector constraints over linear arithmetic to integers in
the context of constraint programming, while bit-blasting non-linear and bitwise
operators. Kafle et al. [27] present an approach based on Benders Decomposi-
tion [9] for solving modular arithmetic problems after translating them to linear
integer arithmetic (LIA). Another approach to solving modular arithmetic prob-
lems that originates from software verification was studied by Vizel et al. [45],
using a model checking approach. The MathSAT5 solver [19] applies a layered
approach for computing Craig’s interpolants for the theory of bit-vectors by
first converting the problem into an overapproximated LIA problem [24]. When
that approach is unsuccessful, MathSAT5 automatically falls back to finding
a propositional interpolant via bit-blasting. Earlier versions of MathSAT also
utilized this approach for solving bit-vector problems [12]. A similar but more
sophisticated approach [3, 4] is implemented in the Princess theorem prover [42].
Another recent LIA-based interpolation method is presented in [37]. Although
similar in spirit to that of MathSAT5 [24], it is often able to recover the word-
level structure from the propositional interpolant.

20 Zohar et al.

In contrast to [3, 13, 27, 48], we focus on general bit-vector problems, and
unlike [3, 12, 13, 24, 27, 48], we translate bit-vector problems into an extension
of non-linear integer arithmetic. As a result, our approach can handle all oper-
ators of the theory of bit-vectors. We present several variants of our technique,
including a CEGAR-based one similar in spirit to the lazy approaches discussed
above.

Alternative approaches to bit-blasting based on bit-vector reasoning and
the so-called model constructing satisfiability calculus (mcSAT) [30] have shown
promising results [23, 47]. Other orthogonal bit-vector-based alternatives include
local search techniques which, while refutationally incomplete, are particularly
effective in combination with bit-blasting [22, 32–34]. We reduce the amount of
bit-blasting by converting bit-vector formulas to non-linear integer arithmetic
formulas and relying on a DPLL(T)-based SMT approach [8] to solve them.

Our translation of bit-vector formulas to integer formulas is similar to the
one for solving formulas with bit-vectors of parametric bit-width we proposed in
previous work [35]. However, in this case, the bit-width is not parametric but
fixed, which eliminates the need for the translation to introduce quantifiers. A
more detailed comparison with that work is provided in Remark 1.

We implemented an earlier prototype of this approach in lazybv2int [49] that
used our SMT solver cvc5 as a black box, via the solver-agnostic API of Smt-
switch [29]. Initial evaluation led us to the conclusion that it is preferable to
implement int-blasting inside cvc5, thus utilizing its efficient mechanisms such
as handling of terms and rewriting.

Conclusion. We studied eager and lazy translations from bit-vector formulas to
an extension of integer arithmetic, and implemented them in the SMT solver
cvc5. The translations reduce arithmetic bit-vector operators as defined in the
SMT-LIB 2 standard, and differ in the way they handle bitwise operators. For
those, we examined sum-based and bit-based approaches. The experiments we
conducted on equivalence checks for rewrite rule candidates show promising re-
sults for formulas that involve multiplications and divisions of large bit-vectors.
For SMT-LIB benchmarks, our approach is less effective than state-of-the-art
approaches largely based on bit-blasting, though not in all cases. Finally, the
smart contracts benchmarks show that our approach provides a complement to
bit-blasting, especially for unsatisfiable formulas.

Future Work. We believe that alternative approaches for bit-precise reasoning,
including mcSAT, local search, and integer-based approaches, can be further de-
veloped and improved to the point where they can become a true complement
to bit-blasting in applications where bit-blasting struggles to scale up. We plan
to continue this line of research by studying integer-based abstractions of other
bit-vector operators, in particular, the shift operators. Interestingly, our trans-
lations also generate challenging benchmarks for non-linear integer arithmetic
solvers. We plan to use these benchmarks to improve non-linear integer reason-
ing, specifically in the presence of division and modulo operations. For that, we
target a submission of such benchmarks to the SMT-LIB library.

Bit-Precise Reasoning via Int-Blasting 21

References

1. Achterberg, T.: Constraint integer programming. Ph.D. thesis, Berlin Institute of
Technology (2007)

2. Alur, R., Bod́ık, R., Juniwal, G., Martin, M.M.K., Raghothaman, M., anjit A. Se-
shia, S., Singh, R., Solar-Lezama, A., Torlak, E., Udupa, A.: Syntax-guided syn-
thesis. In: Formal Methods in Computer-Aided Design, FMCAD 2013, Portland,
OR, USA, October 20-23, 2013. pp. 1–8 (2013)

3. Backeman, P., Rümmer, P., Zeljic, A.: Bit-vector interpolation and quantifier elim-
ination by lazy reduction. In: FMCAD. pp. 1–10. IEEE (2018)

4. Backeman, P., Rümmer, P., Zeljić, A.: Interpolating bit-vector formulas using unin-
terpreted predicates and presburger arithmetic. Formal Methods in System Design
pp. 1–36 (2021)

5. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Proceedings of the 23rd International Con-
ference on Computer Aided Verification. pp. 171–177. CAV’11, Springer-Verlag
(2011), http://dl.acm.org/citation.cfm?id=2032305.2032319

6. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB). www.SMT-LIB.org (2020)

7. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0. In: Gupta,
A., Kroening, D. (eds.) Proceedings of the 8th International Workshop on Satisfi-
ability Modulo Theories (Edinburgh, UK) (2010)

8. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo the-
ories. In: Handbook of Satisfiability, Frontiers in Artificial Intelligence and Appli-
cations, vol. 185, pp. 825–885. IOS Press (2009)

9. Benders, J.F.: Partitioning procedures for solving mixed-variables
programming problems. Numer. Math. 4(1), 238252 (Dec 1962).
https://doi.org/10.1007/BF01386316, https://doi.org/10.1007/BF01386316

10. Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Paracooba,
Plingeling and Treengeling entering the SAT Competition 2020. In: Balyo, T.,
Froleyks, N., Heule, M., Iser, M., Järvisalo, M., Suda, M. (eds.) Proc. of SAT
Competition 2020 – Solver and Benchmark Descriptions. Department of Computer
Science Report Series B, vol. B-2020-1, pp. 51–53. University of Helsinki (2020)

11. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability,
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)

12. Bozzano, M., Bruttomesso, R., Cimatti, A., Franzén, A., Hanna, Z., Khasidashvili,
Z., Palti, A., Sebastiani, R.: Encoding RTL constructs for MathSAT: a preliminary
report. Electron. Notes Theor. Comput. Sci. 144(2), 3–14 (2006)

13. Brinkmann, R., Drechsler, R.: Rtl-datapath verification using integer linear pro-
gramming. In: VLSI Design. pp. 741–746. IEEE Computer Society (2002)

14. Bromberger, M., Fleury, M., Schwarz, S., Weidenbach, C.: SPASS-SATT - A
CDCL(LA) solver. In: CADE. Lecture Notes in Computer Science, vol. 11716,
pp. 111–122. Springer (2019)

15. Buterin, V.: Ethereum whitepaper, https://ethereum.org/en/whitepaper/
16. Cimatti, A., Griggio, A., Irfan, A., Roveri, M., Sebastiani, R.: Invariant checking

of NRA transition systems via incremental reduction to LRA with EUF. In: Tools
and Algorithms for the Construction and Analysis of Systems - 23rd International
Conference, TACAS 2017, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29,
2017, Proceedings, Part I. pp. 58–75 (2017). https://doi.org/10.1007/978-3-662-
54577-5 4, https://doi.org/10.1007/978-3-662-54577-5 4

http://dl.acm.org/citation.cfm?id=2032305.2032319
https://doi.org/10.1007/BF01386316
https://doi.org/10.1007/BF01386316
https://ethereum.org/en/whitepaper/
https://doi.org/10.1007/978-3-662-54577-5_4
https://doi.org/10.1007/978-3-662-54577-5_4
https://doi.org/10.1007/978-3-662-54577-5_4

22 Zohar et al.

17. Cimatti, A., Griggio, A., Irfan, A., Roveri, M., Sebastiani, R.: Experimenting on
solving nonlinear integer arithmetic with incremental linearization. In: SAT. Lec-
ture Notes in Computer Science, vol. 10929, pp. 383–398. Springer (2018)

18. Cimatti, A., Griggio, A., Irfan, A., Roveri, M., Sebastiani, R.: Incremental lin-
earization for satisfiability and verification modulo nonlinear arithmetic and tran-
scendental functions. ACM Trans. Comput. Log. 19(3), 19:1–19:52 (2018)

19. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
solver. In: TACAS. Lecture Notes in Computer Science, vol. 7795, pp. 93–107.
Springer (2013)

20. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) Computer Aided Ver-
ification - 26th International Conference, CAV 2014, Held as Part of the Vi-
enna Summer of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceed-
ings. Lecture Notes in Computer Science, vol. 8559, pp. 737–744. Springer (2014).
https://doi.org/10.1007/978-3-319-08867-9 49

21. Enderton, H., Enderton, H.B.: A mathematical introduction to logic. Elsevier
(2001)

22. Fröhlich, A., Biere, A., Wintersteiger, C.M., Hamadi, Y.: Stochastic local search
for satisfiability modulo theories. In: Bonet, B., Koenig, S. (eds.) Proceedings of
the Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25-30, 2015,
Austin, Texas, USA. pp. 1136–1143. AAAI Press (2015)

23. Graham-Lengrand, S., Jovanovic, D., Dutertre, B.: Solving bitvectors with MC-
SAT: explanations from bits and pieces. In: IJCAR (1). Lecture Notes in Computer
Science, vol. 12166, pp. 103–121. Springer (2020)

24. Griggio, A.: Effective word-level interpolation for software verification. In: FM-
CAD. pp. 28–36. FMCAD Inc. (2011)

25. Haible, B., Kreckel, R.: CLN, a class library for numbers (1996), http://www.
ginac.de/CLN

26. Jovanovic, D.: Solving nonlinear integer arithmetic with MCSAT. In: VMCAI.
Lecture Notes in Computer Science, vol. 10145, pp. 330–346. Springer (2017)

27. Kafle, B., Gange, G., Schachte, P., Søndergaard, H., Stuckey, P.J.: A benders de-
composition approach to deciding modular linear integer arithmetic. In: SAT. Lec-
ture Notes in Computer Science, vol. 10491, pp. 380–397. Springer (2017)

28. Kroening, D., Groce, A., Clarke, E.M.: Counterexample guided abstraction re-
finement via program execution. In: ICFEM. Lecture Notes in Computer Science,
vol. 3308, pp. 224–238. Springer (2004)

29. Mann, M., Wilson, A., Zohar, Y., Stuntz, L., Irfan, A., Brown, K., Donovick, C.,
Guman, A., Tinelli, C., Barrett, C.W.: Smt-Switch: A solver-agnostic C++ API for
SMT solving. In: Li, C., Manyà, F. (eds.) Theory and Applications of Satisfiability
Testing - SAT 2021 - 24th International Conference, Barcelona, Spain, July 5-
9, 2021, Proceedings. Lecture Notes in Computer Science, vol. 12831, pp. 377–
386. Springer (2021). https://doi.org/10.1007/978-3-030-80223-3 26, https://doi.
org/10.1007/978-3-030-80223-3 26

30. de Moura, L.M., Jovanovic, D.: A model-constructing satisfiability calculus. In:
VMCAI. Lecture Notes in Computer Science, vol. 7737, pp. 1–12. Springer (2013)

31. Niemetz, A., Preiner, M.: Bitwuzla at the SMT-COMP 2020. CoRR
abs/2006.01621 (2020), https://arxiv.org/abs/2006.01621

32. Niemetz, A., Preiner, M.: Ternary propagation-based local search for more bit-
precise reasoning. In: FMCAD. pp. 214–224. IEEE (2020)

33. Niemetz, A., Preiner, M., Biere, A.: Propagation based local search for bit-precise
reasoning. Formal Methods Syst. Des. 51(3), 608–636 (2017)

https://doi.org/10.1007/978-3-319-08867-9_49
http://www.ginac.de/CLN
http://www.ginac.de/CLN
https://doi.org/10.1007/978-3-030-80223-3_26
https://doi.org/10.1007/978-3-030-80223-3_26
https://doi.org/10.1007/978-3-030-80223-3_26
https://arxiv.org/abs/2006.01621

Bit-Precise Reasoning via Int-Blasting 23

34. Niemetz, A., Preiner, M., Biere, A., Fröhlich, A.: Improving local search for bit-
vector logics in SMT with path propagation. In: Proceedings of the Fourth Inter-
national Workshop on Design and Implementation of Formal Tools and Systems,
Austin, TX, USA, September 26-27, 2015. pp. 1–10 (2015)

35. Niemetz, A., Preiner, M., Reynolds, A., Zohar, Y., Barrett, C.W., Tinelli, C.:
Towards bit-width-independent proofs in SMT solvers. In: CADE. Lecture Notes
in Computer Science, vol. 11716, pp. 366–384. Springer (2019)

36. Nötzli, A., Reynolds, A., Barbosa, H., Niemetz, A., Preiner, M., Barrett, C.W.,
Tinelli, C.: Syntax-guided rewrite rule enumeration for SMT solvers. In: SAT.
Lecture Notes in Computer Science, vol. 11628, pp. 279–297. Springer (2019)

37. Okudono, T., King, A.: Mind the gap: Bit-vector interpolation recast over linear
integer arithmetic. In: TACAS (1). Lecture Notes in Computer Science, vol. 12078,
pp. 79–96. Springer (2020)

38. Ranise, S., Tinelli, C., Barrett, C.: Definition of the logic QF BV in the SMT-LIB
standard, http://smtlib.cs.uiowa.edu/logics-all.shtml#QF BV

39. Ranise, S., Tinelli, C., Barrett, C.: Definition of the theory FixedSizeBitVectors in
the SMT-LIB standard, http://smtlib.cs.uiowa.edu/theories-FixedSizeBitVectors.
shtml

40. Reynolds, A., Barbosa, H., Nötzli, A., Barrett, C.W., Tinelli, C.: cvc4sy: Smart
and fast term enumeration for syntax-guided synthesis. In: CAV (2). Lecture Notes
in Computer Science, vol. 11562, pp. 74–83. Springer (2019)

41. Reynolds, A., Tinelli, C., Jovanovic, D., Barrett, C.: Designing theory solvers
with extensions. In: Frontiers of Combining Systems - 11th International Sympo-
sium, FroCoS 2017, Braśılia, Brazil, September 27-29, 2017, Proceedings. pp. 22–
40 (2017). https://doi.org/10.1007/978-3-319-66167-4 2, https://doi.org/10.1007/
978-3-319-66167-4 2

42. Rümmer, P.: A constraint sequent calculus for first-order logic with linear integer
arithmetic. In: Proceedings, 15th International Conference on Logic for Program-
ming, Artificial Intelligence and Reasoning. LNCS, vol. 5330, pp. 274–289. Springer
(2008)

43. Tinelli, C.: Definition of the theory Int in the SMT-LIB standard, http://smtlib.
cs.uiowa.edu/theories-Ints.shtml

44. Tinelli, C., Zarba, C.G.: Combining decision procedures for sorted theories. In:
Alferes, J.J., Leite, J. (eds.) Logics in Artificial Intelligence. pp. 641–653. Springer
Berlin Heidelberg, Berlin, Heidelberg (2004)

45. Vizel, Y., Nadel, A., Malik, S.: Solving linear arithmetic with sat-based model
checking. In: 2017 Formal Methods in Computer Aided Design (FMCAD). pp.
47–54 (2017). https://doi.org/10.23919/FMCAD.2017.8102240

46. Warren, H.S.: Hacker’s delight. Pearson Education (2013)
47. Zeljic, A., Wintersteiger, C.M., Rümmer, P.: Deciding bit-vector formulas with mc-

sat. In: SAT. Lecture Notes in Computer Science, vol. 9710, pp. 249–266. Springer
(2016)

48. Zeng, Z., Kalla, P., Ciesielski, M.J.: LPSAT: a unified approach to RTL satisfia-
bility. In: DATE. pp. 398–402. IEEE Computer Society (2001)

49. Zohar, Y., Irfan, A., Mann, M., Notzli, A., Reynolds, A., Barrett, C.: lazybv2int
at the SMT competition 2020 (2020), https://arxiv.org/abs/2105.09743

http://smtlib.cs.uiowa.edu/logics-all.shtml#QF_BV
http://smtlib.cs.uiowa.edu/theories-FixedSizeBitVectors.shtml
http://smtlib.cs.uiowa.edu/theories-FixedSizeBitVectors.shtml
https://doi.org/10.1007/978-3-319-66167-4_2
https://doi.org/10.1007/978-3-319-66167-4_2
https://doi.org/10.1007/978-3-319-66167-4_2
http://smtlib.cs.uiowa.edu/theories-Ints.shtml
http://smtlib.cs.uiowa.edu/theories-Ints.shtml
https://doi.org/10.23919/FMCAD.2017.8102240
https://arxiv.org/abs/2105.09743

	Bit-Precise Reasoning via Int-Blasting

