
Induction for SMT Solvers

Andrew Reynolds and Viktor Kuncak�

École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
{firstname.lastname}@epfl.ch

Abstract. Satisfiability modulo theory solvers are increasingly being used to
solve quantified formulas over structures such as integers and term algebras.
Quantifier instantiation combined with ground decision procedure alone is in-
sufficient to prove many formulas of interest in such cases. We present a set of
techniques that introduce inductive reasoning into SMT solving algorithms that
is sound with respect to the interpretation of structures in SMT-LIB standard. The
techniques include inductive strengthening of conjecture to be proven, as well as
facility to automatically discover subgoals during an inductive proof, where sub-
goals themselves can be proven using induction. The techniques have been im-
plemented in CVC4. Our experiments show that the developed techniques have
good performance and coverage of a range of inductive reasoning problems. Our
experiments also show the impact of different representations of natural numbers
and quantifier instantiation techniques on the performance of inductive reasoning.
Our solution is freely available in the CVC4 development repository. In addition
its overall effectiveness, it has an advantage of accepting SMT-LIB input and
being integrated with other SMT solving techniques of CVC4.

1 Introduction

One of the strengths of satisfiability modulo theory (SMT) solvers [3,10] lies in their ef-
ficient handling of many useful theories arising in software verification. These theories
often model ubiquitous data types, such as integers, bitvectors, arrays, algebraic data
types, sets, or maps. The theories of many of these data types can be naturally thought of
as statements that hold in certain concrete structures (for example, integers), or families
of structures [20] (for example, lists instantiated into lists of integers). Such semantics
is also supported by the SMT-LIB standard’s definition of theories [1], meaning that
the satisfiability of such formulas is determined by its interpretation in these structures,
whether or not the satisfiability problem is easily axiomatizable in first-order logic, or
whether it is decidable.

From the early days, many SMT solvers and their predecessors have been support-
ing satisfiability of not only quantifier-free but also universally quantified formulas,
typically using quantifier instantiation strategies [11], which have become increasingly
more robust over time [12,13,24]. Quantifiers together with uninterpreted functions and
theory-specific symbols give great modeling power to the input language.

� This work is supported in part by the European Research Council (ERC) Project Implicit Pro-
gramming.

D. D’Souza et al. (Eds.): VMCAI 2015, LNCS 8931, pp. 76–94, 2015.
c© Springer-Verlag Berlin Heidelberg 2015



Induction for SMT Solvers 77

Unfortunately, the use of quantifier instantiation alone for such problems is highly
incomplete, not only in a theoretical sense (the problem is not even recursively enumer-
able), but also in a very concrete practical sense. Namely, current solvers cannot solve
any statements requiring non-trivial use of induction! This is an acknowledged fact
in the SMT community. For example, the Z3 tutorial [2] clarifies explicitly that “The
ground decision procedures for recursive datatypes don’t lift to establishing inductive
facts. Z3 does not contain methods for producing proofs by induction.” Similarly, CVC4
(until now) did not contain a method to perform induction, nor did most other competi-
tive SMT solvers of which we are aware.

Automating induction is a considered very difficult for automated provers [5,9]. Re-
cent progress has been made in several tools [7, 16, 17], with which we make detailed
comparison in Section 4. Interactive theorem provers heavily use inductive proofs, but
have largely avoided to automate induction within their tactics, suggesting that this is
among the most difficult tasks to automate. A notable exception is the ACL2 prover,
which has early been recognized for its sophisticated inductive reasoning [19]. How-
ever, these tools miss an opportunity to fully benefit from efficient theory reasoning:
they encode most values using algebraic data types, and need to prove from scratch
theory lemmas, which could be handled more efficiently with an SMT approach.

It is worthwhile mentioning that program analysis and verification tools implicitly
incorporate inductive reasoning into their algorithms. In fact, it could be argued that
the current division of tasks between program analyzers (including software model
checkers and verifiers) delegates non-inductive reasoning to SMT solvers, and performs
induction in a specialized manner. We do not claim that the techniques we propose
will replace such verification techniques, often specialized for the meaning of non-
deterministic programs. Instead, we expect that they will complement them, in similar
ways that algebraic reasoning of SMT solvers complements fixpoint reasoning of ab-
stract interpretation and software model checking engines. Note that for infinite-state
systems, the form of invariants inferred by these tools is often of a particular form,
either given by an abstract domain, or given by a class of formulas such as linear con-
straints [26], or constraint satisfying certain templates [14, 15, 18, 23]. Thefore, espe-
cially in cases when invariants themselves may contain recursive functions, it seems
desirable to incorporate inductive reasoning into an SMT solver. In fact, Rustan Leino
has proposed a pre-processing of formulas to incorporate inductive reasoning, which
already proved very helpful for a program verifier based on an SMT solver [22].

In this paper, we present the first technique and implementation of inductive rea-
soning within an SMT solver. Among the advantages of this approach are not only
convenience and, in some cases, performance, but also the ability to exploit the internal
state of the solver to automatically discover subgoals that themselves need to be proved
by induction, which is essential to be able to prove more difficult conjectures.

Contributions. This paper makes the following contributions:

– We describe an approach for supporting inductive reasoning inside an SMT solver
that integrates well with existing approaches for handling quantified formulas in
SMT. The starting point of this approach is inductively strengthening existentially
quantified conjectures.



78 A. Reynolds and V. Kuncak

– We present techniques that help to infer relevant subgoals used in inductive proofs.
The generation of subgoals is based on introduction of splitting lemmas into the
DPLL(T) framework. The automatically discovered lemmas are generated by enu-
merating potential equalities while applying the following filtering techniques:
• limiting the generalization to terms that refer to variables in the conjecture

being proven;
• inferring universally quantified identities that allow us to remove subgoals that

are found to be equivalent to others;
• removing subgoals that are contradicted by ground facts in the current context.

– We provide a set of 933 benchmarks in the SMT-LIB2 syntax, which are publicly
available at http://lara.epfl.ch/˜reynolds/VMCAI2015-ind. This
is the first set of SMT-LIB2 benchmarks targeting inductive reasoning, and includes
several previously used benchmark sets used to exercise inductive theorem provers.

– We demonstrate that our implementation in the SMT solver CVC4 performs well on
this set of benchmarks, in particular through the use of newly developed techniques
for inductive reasoning described in this paper. We show our approach is competi-
tive with existing tools for automating induction, comparing favorably against these
tools in many cases.

2 Skolemization with Inductive Strengthening

To determine the T -satisfiability of an input set of ground clauses F for some back-
ground theory T , a DPLL(T)-based SMT solver first consults a SAT solver for finding
a subset of its literals M (which we will call a context) that propositionally entails F . If
successful, the ground decision procedure for theory T determines the satisfiability of
M , adding additional clauses to F as necessary when M is found to be T -unsatisfiable.
When extending SMT to quantified formulas, the input F (and likewise a context M )
may contain literals whose atoms are universally quantified formulas ∀x. P (x).

SMT solvers commonly handle universally quantified formulas ∀x.P (x) from
M using instantiation-based techniques, and handle existentially quantified formu-
las1 ¬∀x. P (x) from M by skolemization. In the latter case, they infer the lemma
(∀x. P (x)) ∨ ¬P (k), where k is a fresh constant, which is then added to F . We will
refer to ¬P (k) as the skolemization of ¬∀x. P (x), and k as the skolem constant for
¬∀x. P (x). Assuming P (k) is quantifier-free, the aforementioned lemma enables a
ground decision procedure to reason about the satisfiability of ¬P (k). Unfortunately,
SMT solvers have limited ability to prove the unsatisfiability of ¬P (k) in cases when
inductive reasoning is required, as in the following example.

Example 1. Assume an axiomatization of the length function len : List → Int:

len(nil) ≈ 0 (A1)
∀xy. len(cons(x, y)) ≈ 1 + len(y) (A2)

1 Informally, we refer to ¬∀x. P (x) as an existentially quantified formula, since it is equivalent
to ∃x. ¬P (x).

http://lara.epfl.ch/~reynolds/VMCAI2015-ind


Induction for SMT Solvers 79

and the conjecture ψ := ∀x. len(x) ≥ 0. To determine the satisfiability of
F := {A1, A2,¬ψ}, the SMT solver by skolemization will add the clause (ψ ∨
¬len(k) ≥ 0) to F for fresh constant k, after which we find a context M :=
{A1, A2,¬ψ,¬len(k) ≥ 0} that propositionally entails it. The (combined) decision
procedure for inductive datatypes and linear arithmetic will determine the satisfiabil-
ity of the ground porition of this context, {A1,¬len(k) ≥ 0}, where it will find a
model where k ≈ cons(head(k), tail(k)) and len(k) ≈ −1. By instantiation, the
solver may add (¬A2 ∨ len(cons(head(k), tail(k))) ≈ 1 + len(tail(k))) to F . In
turn, the solver will find a context M ′ that in addition to M now contains the right
disjunct above. The ground portion of M ′ is satisfied, for instance, by a model where
len(k) ≈ −1 and len(tail(k)) ≈ −2. Again by instantiation, the solver may add
(¬A2 ∨ len(cons(head(tail(k)), tail(tail(k)))) ≈ 1 + len(tail(tail(k)))) to F , and
this loop will continue indefinitely. This is not a coincidence: there exist, in fact, a non-
standard model of the axioms used to decide the ground theory of algebraic data types,
in which the conjecture is false. In other words, the theory axioms implicitly used within
the solver are inadequate for our purpose. �

The aforementioned example can be solved using inductive reasoning. In particular,
we may assume without loss of generality that our skolem constant k is the smallest
such list that satisfies the property ¬len(k) ≥ 0, thereby allowing us to assume in
particular that len(tail(k)) ≥ 0. More generally, we may strengthen a conjecture for a
variable of sort T when we have a well-founded ordering R over terms of sort T . The
general scheme for strengthening our skolemization according to such an R is:

(∀x. P (x) ) ∨ (¬P (k) ∧ ∀x. (R(x, k) ⇒ P (x))
)

(1)

where k is a fresh constant. We call ∀x. (R(x, k) ⇒ P (x)) the inductive strengthening
of¬P (k) based on R. Note that conjoining the formula (1) with the initial input formula
F does not affect the outcome of the satisfiability ofF . The intuition is that if a universal
statement does not hold, then there exists the least counterexample with respect to R.

Remark 1. Let ϕ be the formula (1) for well-founded relation R. The formula ∃k. ϕ
holds in all interpretations.

Proof: Consider any interpretation for symbols other than k. If ∀x. P (x) holds in this
interpretation, then the first disjunct of ϕ holds in this interpretation. We show that
otherwise the second disjunct holds. Consider the set S of all elements y of sort T in
this structure such that ¬P (y). Let y0 any element in S, which exists because ∀x. P (x)
does not hold. If we consider an arbitrary maximal sequence y0, y1, . . . ∈ S such that
R(yi+1, yi) for all i, then this sequence must be finite and stop at some yn, because R
is well founded. Let us interpret the fresh constant k as yn. Then ¬P (k) holds because
yn ∈ S. Because yn is the last element of the sequence, k also satisfies ∀x. R(x, k) ⇒
P (x), so the second disjunct of ϕ holds. �

Two examples of well-founded relations R in the context of SMT solving are struc-
tural induction for inductive datatypes where R(s, t) if and only if s is a subterm of t,
and natural number induction on integers where R(s, t) if and only 0 ≤ s < t. Both of
these refer to forms of strong induction, where a conjecture is assumed for all terms less
than k according to a transitive relation R. Alternatively, we may apply forms of weak



80 A. Reynolds and V. Kuncak

induction, where for inductive datatypes R(s, t) if and only if s is a direct subterm of t,
and for integers R(s, t) if and only if 0 ≤ s = t − 1. The advantage of the weak form
for induction is that, in the case of inductive datatypes, R(s, t) can be encoded without
introducing a subterm relation, which is not supported natively by the solver.

Example 2. The skolemization with inductive strengthening of the negated conjecture
¬∀x. len(x) ≥ 0 in Example 1 based on weak structural induction is:

¬len(k) ≥ 0 ∧ ∀y.(k ≈ cons(head(k), tail(k)) ∧ y ≈ tail(k)) ⇒ len(y) ≥ 0)

The right conjunct in the formula above simplifies to k ≈ cons(head(k), tail(k)) ⇒
len(tail(k)) ≥ 0. With this constraint, the original conjecture can be solved immedi-
ately, noting that the length of tail(k) is forced to be non-negative in the case where
k ≈ cons(head(k), tail(k)). �

For quantification over multiple variables, we consider induction schemes that are
limited to lexicographic orderings. As a result, we skolemize variables one at a time
and independently, starting from the outermost variable. Thus a formula ¬∀xy. P (x, y)
is skolemized as: ∀xy. P (x, y) ∨ (¬∀y.P (k, y) ∧ ∀xy. R(x, k) ⇒ P (x, y)). The first
conjunct in the conclusion, ¬∀y.P (k, y), can then be skolemized in the same manner
if and when it is necessary to do so. It is also important to note that the variable y is
universally quantified in the rightmost conjunct, meaning that P (x, y) can be assumed
for any y assuming we choose an x that is smaller k according to R.

For some problems requiring inductive reasoning, it is challenging to determine
which variable to apply induction on first. In our approach, the SMT solver is capa-
ble of applying induction for different variable orders simultaneously. For instance, in
the case of a quantified formula over x and y and induction on y is necessary, this can
be done simply by inferring: ∀xy.P (x, y)∨¬∀yx.P (x, y). Subsequently, we will apply
induction based on y if and when skolemization is applied to ¬∀yx.P (x, y).

Our approach is closely related to the approach used in the Dafny tool [22], where
(non-negated) conjectures are inductively weakened in an intermediate language before
being sent to an SMT solver. Here, we advocate an approach where this transformation
is pushed within the core of the SMT solver. This gives several advantages over external
approaches. First, the SMT solver may have insight into how and when to invoke in-
ductive strengthening, performing this step lazily or with multiple induction schemes as
necessary. Second, certain benchmarks require the skolemization of existentially quan-
tified formulas during the search procedure when a new quantified formula is created or
becomes asserted. This may occur, for instance, when instantiating quantified formulas
with nested existentially quantified formulas, or in the case when the SMT solver itself
introduces an existentially quantified formula of interest, as we will see in the next sec-
tion. Our approach enables the SMT solver to inductively strengthen its assertions for
each such skolemization, which otherwise would not be possible if done externally.

3 Subgoal Generation

A majority of the complexity in inductive reasoning lies in discovering intermediate
lemmas, or subgoals, that are required for proving the overall conjecture. A variety of



Induction for SMT Solvers 81

tools, including [7,16,17], have focused on inferring such subgoals automatically in the
context of automated theorem proving. In context of software verification, a subgoal
corresponds to a necessary loop invariant or adequate post-condition describing the
input/output behavior of a function that is required for a proof to succeed. Tools for this
purpose that analyze functional programs include [21, 23, 25].

In this section, we use the following as a running example.

Example 3. Consider the (combined) theory T of equality and inductively defined
datatypes Nat and List whose signature Σ contains the functions plus, app, rev, and
sum, representing natural number addition, list append and reverse, and summing the
elements of list respectively. Let A be the axiomatization of app, rev, and sum where
for the latter, A contains:

sum(nil) ≈ Z ∀xy. sum(cons(x, y)) ≈ plus(x, sum(y))

Now, consider the conjecture ψ := ∀x. sum(rev(x)) ≈ sum(x). Showing the va-
lidity of this conjecture requires, for instance, discovering the intermediate subgoals
ϕ1 := ∀xy. sum(app(x, y)) ≈ plus(sum(x), sum(y)) and ϕ2 := ∀xy. plus(x, y) ≈
plus(y, x). Even more so, proving ϕ1 itself requires induction and the intermediate
subgoal ϕ3 := ∀xyz. plus(x, plus(y, z)) ≈ plus(plus(x, y), z). As we will see in our
evaluation, theory reasoning capabilities of the SMT solver can preempt the need for
discovering the latter two subgoals ϕ2 and ϕ3, by enabling the solver to assume that
various properties of the builtin integer operator for addition + also hold for applica-
tions of the function plus. Even so, the solver will not succeed in showing the validity
of ψ until it has first discovered and proven ϕ1, or some other sufficient subgoal. �

A naive approach for subgoal generation is to enumerate candidate subgoals accord-
ing to a fair strategy until a set of sufficient subgoals is discovered. In Example 3, we
could enumerate all well-typed equalities between Σ-terms built from variables, con-
structors of sort List and Nat, plus, app, rev, and sum up to a particular size until
the subgoal ϕ1 is discovered. However, an exhaustive enumeration of subgoals is not
scalable even for cases where the signature and necessary subgoals are small. It is thus
crucial to avoid enumeration of a vast majority of candidate subgoals ϕ, either by de-
termining that ϕ is not relevant, redundant, or does not hold.

In this section, we present a design and implementation of an additional component
of an SMT solver, which we will refer to as the subgoal generation module, whose
aim is to discover subgoals that are relevant for proving a given conjecture. We first
describe our scheme for basic operation of the subgoal generation module in relation to
the rest of the SMT solver, and then describe several heuristics for how it determines
which subgoals are likely to be relevant. In particular, these heuristics will make use of
the information maintained at the core of a DPLL(T)-based SMT solver. Conceptually,
our approach is similar to that of subgoal generation in the Quickspec tool [8], which
enumerates candidate subgoals in a principled fashion that can in turn be used within
a theorem prover [7]. Like their approach, here we limit ourselves to equality subgoals
only. Unlike Quickspec, however, we benefit from integration into a DPLL(T) engine.



82 A. Reynolds and V. Kuncak

proc check(F )
M := findSatAssignment(F )
if M = fail

return “unsat”
else
C := getTConflict(M)
if C = fail

I := quantInst(M) ∪ subgoalGen(M)
return check(F ∪ I)

else
return check(F ∪ ¬C)

Fig. 1. The method check, giving the interaction of components within an SMT solver, for an
input set of clauses F . The SAT solver (method findSatAssignment), when possible, returns
a set of literals M that propositionally entails F . The ground decision procedure(s) (method
getTConflict), when possible, returns a subset C ⊆ M that is inconsistent according to the back-
ground theory. The quantifier instantiation and subgoal generation modules (methods quantInst
and subgoalGen) return a set of clauses I based on M .

3.1 Subgoal Generation in DPLL(T)

To prove the conjecture ψ in Example 3, the solver must (1) determine that ϕ1 is a
relevant subgoal, (2) prove that ϕ1 holds, and (3) prove the original conjecture ψ under
the assumption ϕ1. The DPLL(T) search procedure used by SMT solvers enables a
straightforward scheme for accomplishing both (2) and (3). If the subgoal generation
module determines that ∀x.t ≈ s is a relevant subgoal, it adds (¬∀x.t ≈ s)∨∀x.t ≈ s,
which we refer to as a splitting lemma, to the set of clauses currently known by the
solver, and additionally may set its decision heuristic to explore the branch ¬∀x.t ≈ s
first. A subgoal may be proven by induction, since the skolemization of the assertion
¬∀x. t ≈ s can in turn be inductively strengthened according to the method described in
Section 2. Subsequently, the solver will backtrack and assert ∀x.t ≈ s positively if and
only if the standard conflict analysis mechanism of the SMT solver causes ¬∀x. t ≈ s
to be backtracked during the search. In terms of Example 3, the solver will succeed
in proving ψ only after it does so for such a ∀x.t ≈ s that entails ϕ1. Notice that
this behavior is managed entirely by a combination of the SAT solver, ground decision
procedures and quantifier instantiation mechanism of the SMT solver, and requires no
further intervention from the subgoal generation module, thus enabling it to focus its
attention solely on its choice of which subgoals to introduce. This scheme also allows
conjecturing multiple candidate subgoals to the system at once, and as needed, during
the search, which plays to the advantage of an SMT solver, which is capable of handling
inputs having a large number of clauses.

Figure 1 gives the overall interaction between the ground solver, quantifier instan-
tiation, and subgoal generation modules. Notice that the quantifier instantiation and
subgoal generation both run after the SAT solver finds a context M which proposi-
tionally entails F that is T -consistent according to ground decision procedure(s). Both
modules add additional clauses I to F in the form of instances of quantified formulas
and splitting lemmas for candidate subgoals respectively. It remains to be shown which



Induction for SMT Solvers 83

subgoals are chosen by the subgoal generation module, i.e. the subgoals in the splitting
lemmas returned by the method subgoalGen(M) for context M .

As mentioned, a naive approach for subgoal generation amounts to a fair enumer-
ation of candidate subgoals. At its core, our approach performs such an enumeration,
but discards all candidates that it determines are not useful. For enumerating candidate
subgoals in a fair manner, our approach considers subgoals that are smaller than larger
ones according to the following measure. Let size of a term t be the number of function
applications occurring in t plus the number of duplicated variables. For instance, the
size of f(g(x, y)) is 2, and the the size of g(x, f(x)) is 3. The size of a subgoal of the
form ∀x. t ≈ s is the maximum of the size of t and the size of s. Thus, the size of
the subgoal ϕ1 from Example 3 has size 3. Given a fixed signature Σ, we enumerate
the set of all subgoals Sn of size n, starting with n = 0. We will call this the set of can-
didate subgoals of size n. For each n, we heuristically determine a subset SR

n ⊆ Sn of
these subgoals, which we will call relevant; all others we say are filtered. The method
subgoalGen returns splitting lemmas corresponding to a subset of the subgoals SR

n ,
where the total number of splitting lemmas it returns does not exceed some fixed num-
ber (typically ≤ 3). We continue constructing relevant subgoals for increasing values of
n until this limit is reached. In the rest of this section, we will focus on three effective
techniques for determining which subgoals are relevant, and which should be filtered.

3.2 Filtering Candidate Subgoals

Filtering Based on Active Conjectures. Consider the conjecture ψ := ¬∀x.
sum(rev(x)) ≈ sum(x) from Example 3, and its corresponding skolemization
¬sum(rev(k)) ≈ sum(k). An implicit side effect of this skolemization is that a new
function symbol k (not occurring in func(Σ)) is introduced, thus requiring the solver to
determine the satisfiability of constraint in a signatureΣ′ that extendsΣ with k. Assum-
ing all functions in Σ are axiomatized as terminating functions in our axiomatization,A,
the introduction of k into our constraint is in fact the very reason why inductive reason-
ing is required, since now the solver cannot reason aboutΣ′-constraints simply based on
a combination of ground theory reasoning and unfolding function definitions by quan-
tifier instantiation. Based on this observation, our first form of filtering is to generate
candidate subgoals that state properties about terms that generalize Σ′-terms only, in
particular, ones that are not entailed to be equivalent to Σ-terms in the current context.

We thus say a term t is inactive if M |=T t ≈ s for some Σ-term s, and active
otherwise.2 An existentially quantified formula is inactive in context M if and only
if its skolem constant is inactive in M , and active otherwise. For instance in Exam-
ple 3, if k ≈ nil ∈ M , then k and ψ are inactive in M , indicating that inductive
reasoning is not required for reasoning about the skolemization of ψ in M . Indeed,
k ≈ nil,¬sum(rev(k)) ≈ sum(k) imply ¬sum(rev(nil)) ≈ sum(nil), and deter-
mining the satisfiability of A∧¬sum(rev(nil)) ≈ sum(nil) can be done by a ground
decision procedure and quantifier instantiation for unfolding function definitions.

2 Determining if term t is active in M can be accomplished when t is an inductive datatype,
since our decision procedure for inductive datatypes [4] infers all entailed equalities.



84 A. Reynolds and V. Kuncak

We say that a term f(t1, . . . , tn) occurring in M is ground-relevant in M if and only
if at least one of t1, . . . , tn is active in M . We say a Σ-term t is relevant in M if and
only if it generalizes a ground-relevant term s from M , that is, M entails (t ≈ s)σ
for some grounding substitution over FV (t), the free variables of t. Notice that since
s contains symbols from Σ′, all relevant terms are necessarily non-ground. For context
M , the subgoal generation module will only consider subgoals ∀x.t ≈ s where t is
relevant in M , and FV (s) ⊆ FV (t).

Example 4. Assume a context M = {sum(k) ≈ Z, sum(rev(k)) ≈ S(Z), rev(k) ≈
nil}. The term sum(x) is relevant in context M since it generalizes the term sum(k),
which is ground-relevant since k is active. The term sum(rev(x)) is not relevant in
context M since it only generalizes sum(rev(k)), which is not ground-relevant. As a
result, in contextM , the subgoal generation module will filter out all candidate subgoals
of the form ∀x. sum(rev(x)) ≈ s. �

To generate the set of all candidate subgoals of size n, we first generate the set Rn

of terms (unique up to variable renaming) of size at most n that are relevant in M ,
which will be set of terms used on the left-hand side of all candidate subgoals. The set
Rn can be efficiently computed by a branching procedure whose states are an (initially
empty) sequence of substitutions of the form ({x1 → tn}, . . . , {xn → tn}) where
for each j = 1, . . . , n, either tj = xi for some i ≤ j or tj is a well-typed term of
the form f(xk+1, . . . , xk+n), where FV (t1, . . . , tj−1) = {x1, . . . , xk} for k > j. Let
term((σ1, . . . , σn)) denote the term (. . . (x1σ1) . . .)σn. Intuitively, appending σn+1 to
a state s = (σ1, . . . , σn) corresponds to deciding on the form of the subterm xn+1

of term(s), either it is a variable or a function applied to new variables not occurring
in term(s). We do not explore states s where term(s) has size greater than n, or if
term(s) does not generalize an active term from M . Then, Rn is the set {term(s) |
s ∈ S} where S is the set of states reached by this procedure.

After several iterations of the loop from Figure 1 on the axiomatization and conjec-
ture from Example 3, we obtain a context M where there are on the order of 20 relevant
terms of size 2, and on the order of 100 relevant terms of size 3 that are unique up to
variable renaming. Overall in the signature Σ, there are > 40 terms of size at most
2 and > 200 terms of size at most 3 unique up to variable renaming, indicating that
this form of filtering determines over half of Σ-terms do not generalize an active term.
Notice when Σ contains functions not occurring in the conjecture ψ, the percentage of
potential terms this filtering eliminates is even higher.

Filtering Based on Canonicity. SMT solvers contain efficient methods for reasoning
about conjunctions of ground equalities and disequalities, in particular through the use
of data structures for maintaining equivalence classes of ground terms, and performing
congruence closure over these terms. Note that all inferences (reflexivity, symmetry,
transitivity, and congruence) either implicitly or explicitly made by a standard proce-
dure for congruence closure extend to universal equalities as well. Thus, such data struc-
tures can be lifted without modification to maintain equivalence classes of non-ground
terms that are entailed to be equivalent in a context M .

In detail, say we have a set of equalities U ⊆ M between (possibly) non-ground
Σ-terms, corresponding to function definitions from our axiomatization, and the set of



Induction for SMT Solvers 85

subgoals we have proven thus far. The subgoal generation module maintains a con-
gruence closure U∗ over the set U , where each equivalence class {t1, . . . , tn} in U∗

is such that M entails ∀[FV (ti) ∪ FV (tj)]. ti ≈ tj for each i, j ∈ {1, . . . , n}. The
structure U∗ can be used to avoid considering multiple conjectures that are equivalent.
Each equivalence class in U∗ is associated with one of its terms, which we call its rep-
resentative term. We say a term is canonical in U∗ if and only if it is a representative of
an equivalence class in U∗, and non-canonical in U∗ if and only if it exists in U∗ and
is not canonical. In our approach, we choose the term in an equivalence class with the
smallest size to be its representative term. While enumerating candidate subgoals, we
discard all subgoals that contain at least one non-canonical subterm.

Determining whether a subgoal ϕ is canonical involves adding an equality t ≈ t
to U for each subterm t of ϕ not occurring in U∗, and then recomputing U∗. For the
purposes of increasing the frequency when a term such as t is found to be non-canonical,
we may infer additional equalities between t and terms from U∗, which is based on the
following. If t = sσ for some substitution σ where s is a term from U∗, and moreover
if s ≈ r ∈ U∗ and rσ is a term from U∗, then we add the equality t ≈ rσ to U∗, noting
that (s ≈ r)σ is a consequence of s ≈ r by instantiation. This allows us to merge
the equivalence classes of t and rσ in U∗, forcing one of them to be non-canonical, as
demonstrated in the following example.

Example 5. Say our context M is {∀x. app(x, nil) ≈ x}. Our set U is {app(x, nil) ≈
x}, and U∗ contains the equivalence classes {x, app(x, nil)} and {nil}. Consider
a candidate subgoal ϕ := ∀x. rev(app(rev(x), nil))) ≈ x. We recompute U∗,
now including all subterms of this conjecture, after which it will additionally contain
the equivalence classes {rev(x)}, {app(rev(x), nil)} and {rev(app(rev(x), nil))}.
Since app(rev(x), nil)) = app(x, nil)σ for substitution σ := {x → rev(x)}, and
app(x, nil) ≈ x ∈ U∗, and since xσ = rev(x), our procedure will merge the equiv-
alence classes {rev(x)} and {app(rev(x), nil)} to obtain one having rev(x) as its
representative term. This indicates that the subgoal ∀x. rev(app(rev(x), nil))) ≈ x is
redundant in context M , since it contains the non-canonical subterm app(rev(x), nil).
We are justified in filtering this subgoal since the above reasoning has determined that
it is equivalent to ∀x. rev(rev(x))) ≈ x, which the subgoal generation module may
choose to generate instead, if necessary. �

This technique is particularly useful in our approach for subgoal generation in
DPLL(T), since our ability to filter candidate subgoals is refined whenever a new sub-
goal becomes proven. In the previous example, learning ∀x.app(x, nil) ≈ x allows us
to filter an entire class of candidate subgoals, namely that contains a subterm of the form
app(t, nil) for any term t. This gives us a constant factor of improvement in our ability
to filter future subgoals for each subgoal that we prove during the DPLL(T) search.

Filtering Based on Ground Facts. As mentioned, DPLL(T)-based SMT solvers main-
tain a context of ground facts M that represent the current satisfying assignment for the
set of clauses F . A straightforward method for determining whether a candidate sub-
goal ∀x. t ≈ s does not hold (in M ) is to determine if one of its instances is falsified by
M . In other words, if M entails ¬(t ≈ s)σ, where σ is a grounding substitution over
x, then clearly ∀x. t ≈ s does not hold in context M .



86 A. Reynolds and V. Kuncak

Example 6. Assume our context M is { k ≈ nil, sum(cons(Z, k)) ≈ sum(k),
sum(k) ≈ Z }, and a candidate subgoal ϕ := ∀x. sum(cons(Z, x)) ≈ S(Z). We
have that M entails ¬(sum(cons(Z, x)) ≈ S(Z)){x → nil}, indicating that ϕ does
not hold in context M . �

Notice that the fact that ϕ has a counterexample in context M does not imply that ϕ
will always be filtered out, since the solver may later find a different context that does
not contain sum(k) ≈ Z . Conversely, we may filter candidate subgoals ∀x. t ≈ s if
none (or fewer than a constant number) of its instances are entailed in M , that is, M
does not entail (t ≈ s)σ for any grounding substitution over x. Note the following
example.

Example 7. Assume our context M is { sum(cons(Z, k)) ≈ plus(Z, sum(k)),
plus(Z, sum(k)) ≈ sum(k) }, and a candidate subgoal ϕ := ∀x. sum(x) ≈ S(Z).
Although no ground instance of ϕ is falsified, neither is any ground instance of ϕ en-
tailed. Thus, we may choose to filter out ϕ. �

When the above two forms of filtering are enabled, our implementation also intro-
duces additional ground terms, initially 40 per function symbol, which are subsequently
incorporated into contexts and may be evaluated as a result of our quantifier instantia-
tion heuristics. This both increases the likelihood that witnesses are found that falsify
candidate subgoals, and can ensure that at least one ground instance of candidate sub-
goals is confirmed.

To give a rough and informal idea of the overall number of subgoals that are filtered
by these techniques, consider the axiomatization and conjecture ψ from Example 3. We
found there were approximately 33800 well-typed equalities between Σ-terms that met
the basic syntactic requirements of being a candidate subgoal3. We measured the aver-
age number of relevant subgoals for contexts M obtained after several iterations of the
loop from Figure 1. With filtering based on active conjectures alone, there were on av-
erage approximately 11200 relevant subgoals of size at most 3, with filtering based on
canonicity alone (given only the set of axioms in A), there were approximately 23400,
and with filtering based on ground facts alone, there were approximately 2100. With
all three filtering techniques enabled, there were approximately 450 relevant subgoals
of size at most 3, reducing the space of conjectures well over fifty times. Furthermore,
filtering based on the canonicity of the candidate subgoal is refined whenever a new
subgoal becomes proven. We thus found that, once the solver proves the commutativity
and right identity of plus, as well as the right identity of app, the number of relevant
subgoals of size at most 3 decreased to around 260 on average. After proving the as-
sociativity of plus and app, this further decreases to 70, making the discovery of the
sufficient subgoal ϕ1 in this example much less daunting from a practical perspective.

4 Evaluation

We have implemented the techniques described in this paper in the SMT solver
CVC4 [3]. We evaluate the implementation on a library of 933 benchmarks, which we

3 Namely, for a subgoal ∀x. t ≈ s, we require FV (s) ⊆ FV (t), and t must be an application
of an uninterpreted function.



Induction for SMT Solvers 87

constructed from several sources, including previous test suites for tools that specif-
ically target induction (Isaplanner, Clam, Hipspec), as well as verification conditions
from the Leon verification system. The benchmarks in SMT-LIB2 format can be re-
trieved from http://lara.epfl.ch/˜reynolds/VMCAI2015-ind.

Isaplanner. We considered 85 benchmarks from the test suite for automatic induc-
tion introduced by the authors of the Isaplanner system [17]. These benchmarks con-
tain conjectures involving lists, natural numbers, and binary trees. A handful of these
benchmarks involved higher-order functions on lists, such as map, which we encoded
using an auxiliary uninterpreted function as input (the function to be mapped) for each
instance of map in a conjecture.

Clam. We considered 86 benchmarks used for evaluating the CLAM prover [16]. Of
the 86 benchmarks, 50 are conjectures designed such that subgoal generation is likely
necessary for the proof to succeed, 12 are generalizations of these conjectures, and 24
are subgoals that were discovered by CLAM during its evaluation. These benchmarks
involve lists, natural numbers, and sets.

Hipspec. We considered benchmarks based on three examples from [7], which in-
cluded intermediate subgoals used by the HipSpec theorem prover for proving various
conjectures. The first example states that list reverse is equivalent to its tail-recursive
version, the second example states that rotating a list by its length returns the original
list, and the third example states that the sum of the first n cubes is the nth triangle
number squared. Between the three examples, there are a total of 26 benchmarks, 16 of
which are reported to require subgoals.

Leon. We considered three sets of benchmarks for programs taken from Leon, a sys-
tem for verification and synthesis of Scala programs (http://lara.epfl.ch/w/
leon). We considered these benchmarks since they involve more sophisticated data
structures (such as queues, binary trees and heaps), and are representative of properties
seen when verifying simple functional programs. In the first set, we conjecture the cor-
rectness of various operations on amortized queues, in particular that enqueue and pop
behave analogously to a corresponding implementation on lists. In the second set, we
conjecture the correctness of some of the more complex operations on binary search
trees, in particular that membership lookup according to binary search is correct if the
tree is sorted, and the correctness of removing an element from a tree.

4.1 Encodings

For our evaluation, we considered three encodings of the aforementioned benchmarks
into SMT-LIB2 syntax. In the first encoding, which we will refer to as dt, all functions
were encoded as uninterpreted functions over inductive datatypes. In particular, natural
numbers were encoded as an inductive datatype with constructors S and Z , and sets
were represented using the same datatype for lists, where its constructors cons and nil
represented insertion and the empty set respectively.

Direct Translation to Theory. For the purposes of leveraging the decision procedures
of the SMT solver for reasoning about the behavior of built-in functions, we considered
an alternative encoding, which we will refer to as dtt. This encoding is obtained as a
result of replacing all occurrences of certain datatypes with builtin sorts. For instance,

http://lara.epfl.ch/~reynolds/VMCAI2015-ind
http://lara.epfl.ch/w/leon
http://lara.epfl.ch/w/leon


88 A. Reynolds and V. Kuncak

we replace all occurrences of Nat (the datatype for natural numbers) with Int (the
built-in type for integers) according to the following steps. First, all occurrences of
f -applications are replaced by fi-applications where fi is an uninterpreted function
whose sort is obtained from the sort of f by replacing all occurrences of Nat by Int.
All variables of sort Nat in quantified formulas are replaced by variables of sort Int.
All occurrences of S(t) are replaced by 1 + t (where + is the built-in operator for
integer addition), and all occurrences of Z were replaced by the integer numeral 0.
Second, to preserve the semantics of natural numbers, all quantified formulas of the
form ∀x.ϕ where x is of type Int are replaced with ∀x.x ≥ 0 ⇒ ϕ (indicating a
pre-condition for the function/conjecture), and for all functions fi : S1 × . . . × Sn →
Int, the quantified formula ∀x1, . . . , xn.fi(x1, . . . , xn) ≥ 0 was added (indicating
a post-condition for the function). Finally, constraints are added, wherever possible,
stating the equivalence between uninterpreted functions from Σ and a corresponding
built-in functions supported by the SMT solver if one existed. For instance, we add the
quantified formulas ∀xy. (x ≥ 0∧y ≥ 0) ⇒ plus(x, y) = x+y and ∀xy. (x ≥ 0∧y ≥
0) ⇒ less(x, y) ⇔ x < y. 4 Since CVC4 has recently added support for a native theory
for sets, a similar translation was done for set operations as well, so insertion and empty
data structure are replaced by {x} ∪ y and ∅, respectively.

Datatype to Theory Isomorphism. We considered a third encoding, which we will
refer to dti, that is intended to capitalize on the advantages of both encodings dt and
dtt. In this encoding, we use the signature Σ, axioms for function definitions, and all
conjectures as for dtt, and introduce uninterpreted functions to map between certain
datatypes and builtin types. For instance, we introduce an uninterpreted function fNat :
Nat → Int mapping natural numbers as algebraic data type into the built-in integer
type. We add constraints to all benchmarks for its definition, also stating that fNat is an
injection to non-negative integers:

fNat(Z) ≈ 0 ∀x. fNat(S(x)) ≈ 1 + fNat(x)

∀x. fNat(x) ≥ 0 ∀xy. fNat(x) ≈ fNat(y) ⇒ x ≈ y

We then add constraints for the uninterpreted functions from Σ that correspond to
built-in functions involving Int that are supported by the solver. For instance, we add
the constraints ∀xy. fNat(plus(x, y)) ≈ fNat(x) + fNat(y) and ∀xy. less(x, y) ⇔
fNat(x) < fNat(y). A similar mapping was introduced between lists and sets, where
constraints were added for each basic set operation.

4.2 Results

In our results, we evaluate the performance of our implementation in the SMT solver
CVC4 on all benchmarks in each of the three encodings. To measure the number of bench-
marks that can be solved without inductive reasoning, we ran the SMT solver Z3 [10],
as well as CVC4 without the inductive reasoning module enabled (as indicated by the
configuration cvc4).5 We then ran two configurations of CVC4 with inductive reasoning.

4 We did not provide this constraint for multiplication mult, since it introduces non-linear arith-
metic, which SMT solvers only have limited support for.

5 Note these two configurations were only run to measure the number of benchmarks that did
not require inductive reasoning, and not to be considered as competitive.



Induction for SMT Solvers 89

Isaplanner Clam+sg Clam Hipspec+sg Hipspec Leon+sg Total
Encoding Config 85 86 50 26 16 46 311
dt z3 16 11 0 2 0 6 35

cvc4 15 4 0 3 0 7 29
cvc4+i 68 72 7 25 3 29 204
cvc4+ig 75 79 40 24 8 34 260

dtt z3 35 19 4 4 1 9 72
cvc4 34 14 2 4 1 8 63
cvc4+i 64 57 5 14 3 37 180
cvc4+ig 67 61 16 14 4 39 201

dti z3 35 22 3 5 1 9 75
cvc4 34 16 3 5 1 9 68
cvc4+i 76 78 14 25 6 41 240
cvc4+ig 80 83 38 25 9 42 277

Fig. 2. Number of solved benchmarks. All experiments run with a 300 second timeout. The suffix
+sg indicates classes where subgoals were explicitly provided. All benchmarks in the Clam and
Hipspec classes are reported to require subgoals. The Isaplanner class contains a mixture of
benchmarks, some of which require subgoals.

The first, configuration cvc4+i is identical to the behavior of CVC4, except that it applies
skolemization with inductive strengthening as described in Section 2. The second config-
uration cvc4+ig additionally enables the subgoal generation scheme as described in Sec-
tion 3. In both configurations, inductive strengthening is applied to all inductive datatype
skolem variables based on weak structural induction, and to all integer skolem variables
based on weak natural number induction. All configurations of CVC4 used newly devel-
oped quantifier instantiation techniques that prioritize instantiations that lead to ground
conflicts [24].

Figure 2 shows the results for the four configurations on each of the three encod-
ings. For isolating the benchmarks where subgoal generation is reported to be neces-
sary, we divide the results for the Clam and Hipspec classes into two columns. The
first (columns Clam+sg and Hipspec+sg) explicitly provide all necessary subgoals (if
any) as indicated by the sources of the benchmarks in [16] and [7] as theorems. The
second (columns Clam and Hipspec) includes only the benchmarks where subgoals
were required, and does not explicitly provide these subgoals. The Leon benchmarks
were considered sequentially: to prove kth conjecture, the previous k − 1 conjectures
were assumed as theorems for the next conjecture, whether they were needed or not.
Therefore, these benchmarks contain many quantified assumptions.

As expected, a majority of the benchmarks over all classes in the base encoding dt
require inductive reasoning, as Z3 and CVC4 solve 35 and 29 respectively (around 10%
of the benchmarks overall). Encodings that incorporate theory reasoning eliminated the
need for inductive reasoning for approximately an additional 10% of the benchmarks,
as Z3 and CVC4 solve 72 and 63 respectively on benchmarks in the dtt encoding, and
75 and 68 respectively in the dti encoding.

Our results show that the basic configuration of inductive reasoning cvc4+i has a
relatively high success rate for classes where subgoal generation is reported to be un-
necessary (Clam+sg, Hipspec+sg and Leon+sg). Over these three sets, cvc4+i solves
126 (80%) of the benchmarks in the dt encoding, 108 (68%) in the dtt encoding, and
144 (91%) in the dti encoding. We found that 4 of the heapsort benchmarks from
Leon+sg likely require an induction scheme based on induction on the size of a heap,



90 A. Reynolds and V. Kuncak

consequently cvc4+i (as well as cvc4+ig) was unable to solve them. Our results con-
firm that subgoal generation is necessary for a majority of benchmarks in the Clam and
Hipspec classes, as cvc4+i solves only 10 out of 66 total in these sets. 6 However, note
that cvc4+i solves twice as many of these benchmarks (20) simply by leveraging theory
reasoning, as seen in the results for Clam and Hipspec in the dti encoding.

With subgoal generation enabled, CVC4 was able to solve an additional 114 bench-
marks over all classes and encodings. In total, CVC4 automatically inferred subgoals
sufficient for proving conjectures in 123 cases that were otherwise unsolvable without
subgoal generation. This improvement was most noticeable on the benchmarks from
the dt encoding, where cvc4+ig solved 56 more than cvc4+i (260 vs. 204). This can
be attributed to the fact that many of the subgoals it discovered related to simple facts
related to arithmetic functions, such as the commutatitivity and associativity of plus,
whereas in the other two encodings these facts are inherent consequences of theory rea-
soning. The performance of the subgoal generation module was the least noticeable on
benchmarks from the dtt encoding, which we attribute to the fact that the techniques
from Section 3 are not well suited for signatures that contain theory symbols. In the dti
encoding, subgoal generation led to cvc4+ig solving 37 more benchmarks than cvc4+i
(277 vs. 240). The techniques for filtering candidate subgoals from Section 3.2 were
critical for these cases. We found that only 1 of these 37 benchmarks was solved in a
configuration identical to cvc4+ig but where all filtering techniques were disabled.

The majority of subgoals found by cvc4+ig were small, the largest for a given
benchmark typically having size at most three. Nevertheless, we remark that cvc4+ig
was able to discover and prove several interesting subgoals. For the conjecture
∀nx. count(n, x) ≈ count(n, sort(x)) from the Isaplanner class, stating the num-
ber of times n occurs in a list is the same after an insertion sort, we first determined by
paper-and-pencil analysis this would need two subgoals (also from the Isaplanner set):

∀nx. count(n, insert(n, x)) ≈ S(count(n, x)), and

∀nmx. ¬n ≈ m ⇒ count(n, insert(m,x)) ≈ count(n, x)

However, CVC4’s subgoal generation module found and proved a single subgoal
∀nmx. count(n, insert(m,x)) ≈ count(n, cons(m,x)), which by itself was suffi-
cient to prove the original conjecture. CVC4 was thus able to fully automatically find a
simpler proof than we found by hand.

On most of the benchmarks we considered, the subgoal generation module has only
a small overhead in performance for benchmarks where subgoal generation is not re-
quired. In only 30 cases cvc4+ig took more than twice as long to solve a benchmark
than cvc4+i (for benchmarks that took cvc4+ig more than a second to solve), and in
only 9 cases cvc4+ig was unable to solve a benchmark that cvc4+i solved.

6 These 10 benchmarks are solved by CVC4 without subgoal generation, despite being described
in literature as requiring subgoals. In some cases, the reason is that CVC4 chose a different
variable to apply induction to. For instance, the conjecture rotate(S(n), rotate(m,xs)) ≈
rotate(S(m), rotate(n, xs)) is said to be proven by Hipspec by induction on xs after dis-
covering the subgoal rotate(n, rotate(m,xs)) ≈ rotate(m,rotate(n, xs)). Instead, CVC4
proved this conjecture by induction on n using no subgoals.



Induction for SMT Solvers 91

Id Property Solved only by
47 ∀t. height(mirror(t)) = height(t) CVC4, HipSpec, Zeno
50 ∀x. butlast(x) = take(minus(len(x), S(Z)), x) CVC4, Zeno
54 ∀mn. minus(plus(m, n), n) = m CVC4, HipSpec, Zeno
56 ∀nmx. drop(n, drop(m,x)) = drop(plus(n,m), x) CVC4, HipSpec, Zeno
66 ∀x. leq(len(filter(x)), len(x)) CVC4, ACL2, Zeno
67 ∀x. len(butlast(x)) = minus(len(x), S(Z)) CVC4, HipSpec, Zeno
68 ∀xl. leq(len(delete(x, l)), len(l)) CVC4, ACL2, Zeno
81 ∀nmx. take(n, drop(m,x)) = drop(m, take(plus(n,m), x)) CVC4, HipSpec, Zeno
83 ∀xyz. zip(app(x, y), z) = app(zip(x, take(len(x), z)), zip(y, drop(len(x), z))) CVC4, HipSpec, Zeno
84 ∀xyz. zip(x, app(y, z)) = app(zip(take(len(y), x)y), zip(drop(len(y), x), z)) CVC4, HipSpec, Zeno
72 ∀ix. rev(drop(i, x)) = take(minus(len(x), i)rev(x)) Hipspec
73 ∀x. rev(filter(x)) = filter(rev(x)) HipSpec, Zeno
74 ∀ix. rev(take(i, x)) = drop(minus(len(x), i)rev(x)) Hipspec
78 ∀l. sorted(sort(l)) ACL2, Zeno
85 ∀xy. len(x) = len(y) ⇒ zip(rev(x), rev(y)) = rev(zip(x, y))

Fig. 3. Isaplanner benchmarks that cannot be solved by either a competing inductive prover, or
using CVC4 with its inductive mode with subgoal generation on the dti encoding. The first part
shows benchmarks solved by our approach but not by one of the competing provers. Zeno excels
at these benchmarks, but note that, e.g., CVC4 solves 21 Clam benchmarks that Zeno cannot.

Overall, the results show that the performance of all configurations is the best for
benchmarks in the dti encoding. While the dtt encoding enables the SMT solver to
leverage the decision procedure for linear integer arithmetic when reasoning about in-
ductive conjectures, it degrades performance for many benchmarks, often leading to
conjectures being unsolved. We attribute this to several factors. Firstly, the dtt encoding
complicates the operation of the matching-based heuristic for quantifier instantiation.
For instance, finding ground terms that modulo equality match a pattern f(1+x) is less
straightforward than finding terms that match a pattern f(S(x)). Secondly, as opposed
to the other two encodings, the dtt encoding relies heavily on decisions made by the
theory solver for linear integer arithmetic. For a negated conjecture ¬Pi(ki) for inte-
ger ki, a highly optimized Simplex decision procedure for linear integer arithmetic will
find a satisfying assignment, which may or may not choose to explore useful values of
ki. On the other hand, given a negated conjecture ¬P (k) for natural number k, in the
absence of conflicts, the decision procedure for inductive datatypes will first case-split
on whether k is zero. We believe the behavior of the decision procedure for inductive
datatypes has more synergy with the quantifier instantiation mechanism in CVC4 for
our axiom sets, since its case splitting naturally corresponds with the case splitting in
the definition of recursive functional programs. As a result, the dti encoding is the best
of the three, as it allows the solver to effectively consult the integer solver for mak-
ing theory-specific inferences as needed, without affecting the interaction between the
ground solver and quantifier instantiation mechanism.

Comparison with Inductive Theorem Provers. By comparing to reported results of
inductive provers, we find that tools perform well on their own benchmark sets, but,
unsurprisingly, less well on benchmarks used to evaluate competing tools. Although no
tool dominates, cvc4+ig performs well across all benchmark sets. Combined with the
convenience of using the standardized SMT-LIB2 format and the benefits of other SMT
techniques, CVC4 becomes an attractive choice for inductive proofs.



92 A. Reynolds and V. Kuncak

For the 85 benchmarks in Isaplanner set, cvc4+ig solves a total of 80 benchmarks in
the dti encoding. These benchmarks have been translated into the native formats sup-
ported by a number of tools. As points of comparison, as reported in [27], Zeno solves
a total of 82 benchmarks, 2 that cvc4+ig cannot. Hipspec [7] solves a total of 80 bench-
marks, 3 that cvc4+ig cannot, while cvc4+ig solves 3 benchmarks that Hipspec cannot.
ACL2 [6] solves a total of 73 benchmarks, 1 that cvc4+ig cannot, while cvc4+ig solves
8 that ACL2 cannot. We list all benchmarks that either CVC4, Zeno, Hipspec, or ACL2
does not solve in Figure 3. Isaplanner [17] and Dafny [22] solve 47 and 45 benchmarks
respectively, the latter of which does not incorporate techniques for automatically gen-
erating subgoals. Interestingly, we found one property in the original set of benchmarks
from [17], ∀xyz. less(x, y) ⇒ mem(x, insert(y, z)) ≈ mem(x, z) is true, although
it is cited in later sources as not a theorem, and excluded from the evaluation of the
other tools. We found that CVC4 was able to prove this property, both by enabling the-
ory reasoning (cvc4+i on the dtt and dti encodings) and by enabling subgoal generation
(cvc4+ig on the dt encoding).

For the original 50 benchmarks from the Clam set (which include 38 benchmarks
from Clam class in Figure 2 that require subgoals and 12 benchmarks from Clam+sg
that do not), cvc4+ig solves a total of 39 benchmarks in the dti encoding. A version
of Hipspec solves a total of 47 of these benchmarks, 10 that cvc4+ig cannot, while
cvc4+ig solves 2 benchmarks that Hipspec cannot (which were solved due to the use of
CVC4’s native support for sets). Zeno solves a total of 21 benchmarks, 3 that cvc4+ig
cannot, while cvc4+ig solves 21 that Zeno cannot. The Clam tool itself solves 41 fully
automatically, 7 that cvc4+ig cannot, while cvc4+ig solves 5 that Clam cannot.

5 Conclusion

We have presented a method for incorporating inductive reasoning within a DPLL(T)-
based SMT solver. We have shown an implementation that has a high success rate for
benchmarks taken from inductive theorem proving and software verification sources,
and is competitive with state-of-the-art tools for automating induction. We have pro-
vided a larger and unified set of benchmarks in a standard SMT-LIB2 format, which will
make future comparisons more feasible. Our evaluation indicates the inductive reason-
ing capabilities in our approach benefit from an encoding where theory reasoning can be
consulted using a mapping between datatypes and builtin types, allowing the solver to
leverage inferences made by its ground decision procedures. Our evaluation shows that
our approach for subgoal generation is feasible for automatically inferring subgoals that
are relevant to proving a conjecture. The scalability of our approach is made possible by
several powerful techniques for filtering out irrelevant candidate subgoals based on the
information the solver knows about its current context. Future work includes incorpo-
rating further induction schemes, inferring subgoals containing propositional symbols,
and improvements to the heuristics used for filtering candidate subgoals.

Acknowledgments. We thank Ravichandhran Madhavan for an initial version of the
Leon benchmarks and Cesare Tinelli for discussions about SMT-LIB semantics.



Induction for SMT Solvers 93

References

1. SMT-LIB theories (2014), http://smtlib.cs.uiowa.edu/theories.shtml.
2. Z3 will not prove inductive facts (September 2014),

http://rise4fun.com/z3/tutorial.
3. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T., Reynolds, A.,

Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806,
pp. 171–177. Springer, Heidelberg (2011)

4. Barrett, C., Shikanian, I., Tinelli, C.: An abstract decision procedure for satisfiability in the
theory of recursive data types. Electronic Notes in Theoretical Computer Science (2007)

5. Bundy, A.: The automation of proof by mathematical induction. In: Handbook of Automated
Reasoning. vol. 1, ch. 13, Elsevier and The MIT Press (2001)

6. Chamarthi, H.R., Dillinger, P., Manolios, P., Vroon, D.: The ACL2 Sedan theorem proving
system. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 291–
295. Springer, Heidelberg (2011)

7. Claessen, K., Johansson, M., Rosén, D., Smallbone, N.: Automating inductive proofs using
theory exploration. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 392–
406. Springer, Heidelberg (2013)

8. Claessen, K., Smallbone, N., Hughes, J.: QUICKSPEC: Guessing formal specifications using
testing. In: Fraser, G., Gargantini, A. (eds.) TAP 2010. LNCS, vol. 6143, pp. 6–21. Springer,
Heidelberg (2010)

9. Comon, H.: Inductionless induction. In: Handbook of Automated Reasoning, vol. 1, ch. 14.
Elsevier and The MIT Press (2001)

10. de Moura, L., Bjørner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J.
(eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

11. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: A theorem prover for program checking. J.
ACM 52(3), 365–473 (2005)

12. Flanagan, C., Joshi, R., Saxe, J.B.: An explicating theorem prover for quantified formulas.
Technical Report HPL-2004-199, HP Laboratories Palo Alto (2004)

13. Ge, Y., Barrett, C.W., Tinelli, C.: Solving quantified verification conditions using satisfia-
bility modulo theories. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp.
167–182. Springer, Heidelberg (2007)

14. Grebenshchikov, S., Lopes, N.P., Popeea, C., Rybalchenko, A.: Synthesizing software veri-
fiers from proof rules. In: PLDI, pp. 405–416 (2012)

15. Gupta, A., Popeea, C., Rybalchenko, A.: Solving recursion-free Horn clauses over LI+UIF.
In: Yang, H. (ed.) APLAS 2011. LNCS, vol. 7078, pp. 188–203. Springer, Heidelberg (2011)

16. Ireland, A.: Productive use of failure in inductive proof. J. Autom. Reasoning 16(1-2), 79–
111 (1996)

17. Johansson, M., Dixon, L., Bundy, A.: Case-analysis for rippling and inductive proof. In:
Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 291–306. Springer,
Heidelberg (2010)

18. Kahsai, T., Ge, Y., Tinelli, C.: Instantiation-based invariant discovery. In: Bobaru, M.,
Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 192–206.
Springer, Heidelberg (2011)

19. Kaufmann, M., Manolios, P., Moore, J.S. (eds.): Computer-Aided Reasoning: An Approach.
Kluwer Academic Publishers (2000)

20. Krstić, S., Goel, A., Grundy, J., Tinelli, C.: Combined satisfiability modulo parametric the-
ories. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 602–617.
Springer, Heidelberg (2007)

http://smtlib.cs.uiowa.edu/theories.shtml
http://rise4fun.com/z3/tutorial


94 A. Reynolds and V. Kuncak

21. Ledesma-Garza, R., Rybalchenko, A.: Binary reachability analysis of higher order func-
tional programs. In: Miné, A., Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 388–404.
Springer, Heidelberg (2012)

22. Leino, K.R.M.: Automating induction with an SMT solver. In: Kuncak, V., Rybalchenko, A.
(eds.) VMCAI 2012. LNCS, vol. 7148, pp. 315–331. Springer, Heidelberg (2012)

23. Madhavan, R., Kuncak, V.: Symbolic resource bound inference for functional programs. In:
Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 762–778. Springer, Heidelberg
(2014)

24. Reynolds, A., Tinelli, C., Moura, L.D.: Finding conflicting instances of quantified formulas
in SMT. In: Formal Methods in Computer-Aided Design (FMCAD) (2014)

25. Rondon, P.M., Kawaguchi, M., Jhala, R.: Liquid types. In: PLDI, pp. 159–169 (2008)
26. Rümmer, P., Hojjat, H., Kuncak, V.: Disjunctive interpolants for Horn-clause verification.

In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 347–363. Springer,
Heidelberg (2013)

27. Sonnex, W., Drossopoulou, S., Eisenbach, S.: Zeno: An automated prover for properties of
recursive data structures. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214,
pp. 407–421. Springer, Heidelberg (2012)


	Induction for SMT Solvers
	Introduction
	Skolemization with Inductive Strengthening
	Subgoal Generation
	Subgoal Generation in DPLL(T)
	Filtering Candidate Subgoals

	Evaluation
	Encodings
	Results

	Conclusion


