
Syntax-Guided Rewrite Rule Enumeration
for SMT Solvers

Andres Nötzli1, Andrew Reynolds2,
Haniel Barbosa2, Aina Niemetz1,

Mathias Preiner1, Clark Barrett1, and Cesare Tinelli2

1 Stanford University, Stanford, USA
2 University of Iowa, Iowa City, USA

Abstract. The performance of modern Satisfiability Modulo Theories (SMT)
solvers relies crucially on efficient decision procedures as well as static simplifica-
tion techniques, which include large sets of rewrite rules. Manually discovering
and implementing rewrite rules is challenging. In this work, we propose a frame-
work that uses enumerative syntax-guided synthesis (SyGuS) to propose rewrite
rules that are not implemented in a given SMT solver. We implement this frame-
work in CVC4, a state-of-the-art SMT and SyGuS solver, and evaluate several use
cases. We show that some SMT solvers miss rewriting opportunities, or worse,
have bugs in their rewriters. We also show that a variation of our approach can be
used to test the correctness of a rewriter. Finally, we show that rewrites discovered
with this technique lead to significant improvements in CVC4 on both SMT and
SyGuS problems over bit-vectors and strings.

1 Introduction

Developing state-of-the-art Satisfiability Modulo Theories (SMT) solvers is challenging.
Implementing only basic decision procedures is usually not enough, since in practice,
many problems can only be solved after they have been simplified to a form for which
the SMT solver is effective. Typically, such simplifications are implemented as a set of
rewrite rules applied by a solver component that we will call the rewriter. Depending on
the theory, optimizing the rewriter can be as important as optimizing the decision proce-
dure. Designing an effective and correct rewriter requires extensive domain knowledge
and the analysis of many specific problem instances. New rewrite rules are often only
introduced when a new problem requires a particular simplification.

SMT rewriters also have other applications such as accelerating enumerative syntax-
guided synthesis (SyGuS). The SyGuS Interchangeable Format [6] uses a subset of the
theories defined in SMT-LIB [11] to assign meaning to pre-defined function symbols.
Because a term t is equivalent to its rewritten form t↓, an enumerative SyGuS solver can
limit its search space to rewritten terms only. This significantly prunes the search.

Rewriters are typically developed manually by SMT experts. Because this process
is difficult and error-prone, automating parts of this process is extremely useful. In this
paper, we propose a partially automated workflow that increases the productivity of
SMT solver developers by systematically identifying rewriting opportunities that the
solver misses. We leverage the common foundations of SyGuS and SMT solving to



2 A. Nötzli et al.

SMT + SyGuS Solver

Equivalence
Checking

Term
Database

Rewriter
Syntax Guided
Enumeration

Candidate
Rewrite Database

Matching,
Congruence
Checking

Developer

find pairs3

fil
te

r

en
um

-
er

at
e

2

fil
te

r

reportpairs
4

grammar + spec1implement5

Fig. 1: Overview of our workflow for the development of rewriters.

guide developers in the analysis and implementation of the rewriter, independently of
the theory under consideration.

Figure 1 shows an overview of our proposed workflow. In Step 1, the developer
provides a grammar and a specification as inputs (see Section 5 for examples). This
input describes the class of terms that the developer is interested in targeting in the
rewriter. In Step 2, we use previous techniques (implemented in the SyGuS module of
the SMT solver CVC4 [9]) to efficiently enumerate target terms into a term database.
In Steps 3 and 4, we pair those terms together to form a candidate rewrite database.
A subset of this database is then reported to the developer as a set of unoriented pairs
t1 ≈ s1, . . . , tn ≈ sn with the following key properties:

1. Terms ti and si were inferred to be equivalent based on some criteria in Step 3.
2. ti↓ is not equal to si↓; i.e., the rewriter does not treat ti and si as equivalent.

We can interpret these pairs as rewrites by picking an orientation (ti  si or si  ti)
and interpreting the free variables on the left-hand side as place-holders that match
arbitrary subterms. For example, x+ 0 ≈ x can be interpreted as a rewrite x+ 0 x
that rewrites matching terms such as y · z + 0 to y · z.

The set of pairs can be understood as a to do list of rewrites that are currently
missing in the rewriter. In Step 5, based on this list, the developer can extend the
rewriter to incorporate rules for these unhandled equivalences. We have found that our
workflow is most effective when candidate rewrite rules act as hints to inspire developers,
who, through creativity and careful engineering, are subsequently able to improve the
rewriter. In our experience, this workflow leads to a positive feedback loop. As the
developer improves the rewriter, term enumeration produces fewer redundant terms, thus
yielding more complex terms on the next iteration. As a result, the candidate rewrite
rules become more complex as well. Since our workflow is partially automated, there
are no restrictions on the complexity of the rewrites implemented. As we illustrate in
Section 5.1, some rewrites can only be defined with an expressive language, and fully
automated approaches tend to restrict themselves to a relatively simple form of rewrites.



Syntax-Guided Rewrite Rule Enumeration for SMT Solvers 3

Contributions

– We present a novel theory-independent workflow for generating candidate rewrite
rules, based on a user-provided grammar, that uses the solver under development as
an oracle for determining the missing rules.

– We propose techniques for efficient equivalence checking between terms and for
filtering to reduce redundancy in the candidate rewrite rules.

– We introduce several metrics for measuring coverage of the rewrite rules imple-
mented by SMT solvers and demonstrate their impact in practice.

– We show that our workflow is highly effective both for discovering shortcomings
in state-of-the-art SMT solvers, and as means of improving the performance of our
own solver CVC4 on a wide range of SyGuS and SMT benchmarks.

We discuss our approach for choosing suitable grammars (Step 1) in Section 5.1. We
describe Steps 2-4 of Figure 1 in Sections 2, 3, and 4 respectively. In Section 5, we report
on our experience with the proposed workflow and discuss using the workflow to test
other SMT solvers and to improve our confidence in our implementation. Finally, we
evaluate the impact of the rewrites on solving performance. We discuss related work in
Section 6 and future work in Section 7.

Preliminaries We use standard notions of typed (higher-order) logic, including formula,
term, quantifier, etc. We recall a few definitions here. A substitution σ = {x̄ 7→ t̄} is a
finite map from variables to terms of the same type, and sσ denotes the result of replacing
all occurrences of x̄ in s by t̄. A theory T is a pair (Σ, I), whereΣ is a signature (a set of
types and function symbols), and I is a set of Σ-interpretations, called the models of T .
We assume that Σ contains the equality relation ≈ for all types τ from Σ, interpreted
as the identity relation. A formula is T -satisfiable (resp., T -valid) if it is satisfied by
some (resp., all) models of T . Terms t1 and t2 are T -equivalent, written t1 ≈T t2, if the
formula t1 ≈ t2 is T -valid.

2 Syntax-Guided Synthesis for Term Enumeration

Step 2 of the workflow in Figure 1 is to enumerate terms from a given grammar. For this
task, we leverage previous work on enumerative approaches to the SyGuS problem [25].

Syntax-Guided Synthesis A SyGuS problem for an n-ary (first-order) function f in a
background theory T consists of: (i) a set of syntactic restrictions, given by a grammarR;
and (ii) a set of semantic restrictions, a specification, given by a T -formula of the form
∃f. ∀x̄. ϕ[f, x̄], where ϕ is typically a quantifier-free formula over the (second-order)
variable f and the first-order variables x̄ = (x1, ..., xn). A grammar R consists of an
initial symbol s0, a set S of non-terminal symbols, where s0 ∈ S, and a set R of rules
s → t, with s ∈ S, and where t is a term built from symbols of S, free variables, and
symbols in the signature of T—with the latter two acting as terminal symbols. The set of
rulesR defines a rewrite relation over terms s and t, denoted by→. A term t is generated
by R if s0 →∗ t, where→∗ is the reflexive-transitive closure of→ and t contains no
symbols from S. A solution for f is a closed lambda term λȳ. t of the same type as f
such that t is generated byR and ∀x̄. ϕ[λȳ. t, x̄] is T -valid.



4 A. Nötzli et al.

An enumerative SyGuS solver consists of a candidate solution generator, which
produces a stream of terms ti in the language generated by grammarR, and a verifier,
which, given a candidate solution ti, checks whether ∀x̄. ϕ[λȳ. ti, x̄] is T -valid. The
solver terminates as soon as it generates a candidate solution ti that the verifier accepts.
In practice, most state-of-the-art enumerative SyGuS solvers [33, 7] are implemented on
top of an SMT solver with support for quantifier-free T -formulas, which can be used as
a verifier in this approach. Our solver CVC4 acts as both the candidate solution generator
and the verifier [26].

Generating Rewrite Rules With SyGuS In the context of our proposed workflow, an
enumerative SyGuS solver can be used as a term generator in Step 2 from Figure 1. In
particular, it can be used to produce multiple solutions to the SyGuS problem specified
in Step 1, where each solution is added to the term database. Recall that free variables in
the solutions are interpreted as place-holders for arbitrary subterms. Thus, the arguments
of f determine the number and types of the place-holders in the generated rewrites.
A SyGuS specification ∃f. ∀x̄. ϕ[f, x̄] acts as a filtering mechanism to discard terms
that should not be included in rewrite rules. If we do not wish to impose any semantic
restrictions, the common case in our workflow, we can use the specification ∃f.>, which
causes the enumeration of all terms that meet the syntactic restrictions.

To achieve high performance, SyGuS solvers implement techniques that limit the
enumeration of equivalent candidate solutions in order to prune the search space. The
rationale for this is that if ∀x̄. ϕ[λȳ. t1, x̄] is not T -valid for a candidate t1, then it is
fruitless to consider any candidate t2 if t1 ≈T t2 since ∀x̄. ϕ[λȳ. t2, x̄] will not be
T -valid either. CVC4 uses its own rewriter as an (incomplete but fast) T -equivalence
oracle, where the syntactic equality of t1↓ and t2↓ implies, by the soundness of the
rewriter, that t1 ≈T t2 [27]. When the SyGuS solver of CVC4 discovers the equivalence
of two terms t1 and t2, it generates constraints to ensure that subsequent solutions only
include either t1 or t2 as a subterm. As a consequence, since CVC4 never generates two
candidate solutions that are identical up to rewriting, a better rewriter leads to a more
efficient term enumeration. This also ensures that the term database generated in Step 2
in Figure 1 contains no distinct terms s and t such that s↓ = t↓, which, in turn, also
ensures that no existing rewrites are considered as candidates.

3 Equivalence Checking Techniques for Rewrite Rules

In Step 3 in Figure 1, we are given a database of terms, which may contain free variables ȳ
corresponding to the arguments of the function to be synthesized. The term database, a
set of terms D, is generated by syntax-guided enumeration. From this set, we generate a
set of (unoriented) pairs of the form t1 ≈ s1, . . . , tn ≈ sn where for each i = 1, . . . , n,
terms ti and si are in D and meet some criterion for equivalence. We call such pairs
candidate rewrite rules.

Our techniques apply to any background theory with a distinguished set of values
for each of its types, i.e., variable-free terms for denoting the elements of that type, e.g.
(negated) numerals (−)n for an integer type. We assume that the initial rewriter reduces
any variable-free term to a value, e.g., 4−5 to−1. These assumptions hold for the initial
rewriter and the theories in our evaluation.



Syntax-Guided Rewrite Rule Enumeration for SMT Solvers 5

A naı̈ve way to find candidate rewrite rules is to consider each pair of distinct terms
s[ȳ], t[ȳ] ∈ D, check the satisfiability of ∃ȳ. t 6≈ s, and, if unsatisfiable, include t ≈ s
as a candidate. However, this can be inefficient and may even be infeasible for some
theories.3 To mitigate these issues, we have developed techniques based on evaluating
terms on a set of sample points, i.e. tuples of values c̄ of the same type as ȳ above. We
describe those techniques below.

We compute an equivalence relationE over the terms in our (evolving) term database
D. Two terms ti, tj are related in E if for every sample point c̄ they have the same
evaluation, i.e. (ti{ȳ 7→ c̄})↓ = (tj{ȳ 7→ c̄})↓. While equivalence in E does not entail
T -equivalence, terms disequivalent inE are guaranteed to be T -disequivalent. To see how
E evolves, let {r1, . . . , rn} ⊆ D be a set of representative terms from the equivalence
relation E containing exactly one term from each equivalence class. For each new term
t added to D, we either (i) determine t is equivalent to some ri, output t ≈ ri as a
candidate rewrite rule, and add t to the equivalence class of ri; or (ii) determine t is
not equivalent to any of r1, . . . , rn, i.e. for each ri there is at least one sample point on
which the evaluations differ, and add {t} as an equivalence class. Thus, each equivalence
class {t1, . . . , tn} of E is such that, for each i = 1, . . . , n, a pair of the form ti ≈ tj has
been generated for some j 6= i. In other words, E is the transitive closure of the set of
pairs generated so far.

To optimize the evaluation of terms on sample points we rely on a lazy evaluation
trie. This data structure maintains a list P = [c̄1, . . . , c̄n] of sample points, all of the
same type as ȳ. It indexes a term t by its evaluation sequence on the set of sample points
P , i.e., term t is indexed by a sequence of the form [(t{ȳ 7→ c̄1})↓, . . . , (t{ȳ 7→ c̄n})↓].
Due to our assumptions, each term in this list is a value. For example, if ȳ = (y1, y2)
and P = [(0, 1), (3, 2), (5, 5)], then the term y1 + 1 is indexed by the list [1, 4, 6]. When
a new term t is added to D, it is evaluated on each of the points in P . If the resulting
sequence is already in the trie, t is added to the equivalence class of the term indexed by
that sequence. If not, the new sequence is added to the trie and t becomes a singleton
equivalence class. This guarantees that each representative from E is indexed to a
different location in this trie. The technique can be made more efficient by performing
certain evaluations lazily. In particular, it is sufficient to only use a prefix of the above
sequence, provided that the prefix suffices to show that t is distinct from all other terms
in the trie. For the previous example, if y1 + 1 and y1 + y2 were the only two terms in
the trie, they would be indexed by [1, 4] and [1, 5] respectively, since the second sample
point (3, 2) shows their disequality. We now discuss our different equivalence checking
criteria by the way the sample points P are constructed.

Random Sampling A naı̈ve method for constructing P is to choose n points at random.
For that, we have implemented a random value generator for each type we are interested
in. For Booleans and fixed-width bit-vectors, it simply returns a uniformly random value
in the (finite) range. For integers, we first pick a sign and then iteratively concatenate
digits 0− 9, with a fixed probability to terminate after each iteration. For rationals, we
pick a fraction c1/c2 with integer c1 and non-zero integer c2 chosen at random. For
strings, we concatenate a random number of characters over a fixed alphabet that includes
all characters occurring in a rule of R and dummy character(s) for ensuring that the

3 E.g. for checks in the theory of strings with length whose decidability is unknown [17].



6 A. Nötzli et al.

cardinality of this alphabet is at least two. The latter is needed because, for instance, if
the alphabet contained only one letter, it would be impossible to generate witnesses that
disprove equivalences such as contains("A" ++ x ++ "A", "AA") ≈ true where
++ denotes string concatenation and contains(t, s) is true if s is a substring of t.

Grammar-Based Sampling While random sampling is easy to implement, it is not
effective at generating points that witness the disequivalence of certain term pairs.
Thus, we have developed an alternative method that constructs points based on the
user-provided grammar. In this method, each sample point in P (of arity n) is generated
by choosing random points c̄1, . . . , c̄n, random terms t1, . . . , tn generated by the input
grammar R, and then computing the result of ((t1{ȳ 7→ c̄1})↓, . . . , (tn{ȳ 7→ c̄n})↓).
The intuition is that sample points of this form are biased towards interesting values.
In particular, they are likely to include non-trivial combinations of the user-provided
constants that occur in the input grammar. For example, if the grammar contains ++,
"A", and "B", grammar-based sampling may return samples such as "BA" or "AAB".

Exact Checking with Model-based Sampling In contrast to the previous methods, this
method makes two terms equivalent only if they are T -equivalent. It is based on satis-
fiability checking and dynamic, model-based generation of a set of sample points P ,
which is initially empty. When a term t is generated, we check if it evaluates to the same
values on all sample points in P as any previously generated term s. If so, we separately
check the T -satisfiability of t 6≈ s. If t 6≈ s is unsatisfiable, we put t and s in the same
equivalence class. Otherwise, t 6≈ s is satisfied by some modelM, and we addM(ȳ) as
a new sample point to P , guaranteeing that s and t evaluate differently on the updated set.
The new sample point remains in P for use as other terms are generated. For example,
x+ 1 6≈ x is satisfied by x = 1, so x = 1 is added to P .

4 Filtering Techniques for Rewrite Rules

For developers, it is desirable for the workflow in Figure 1 to identify useful rewrites. For
instance, it is desirable for the set of candidate rewrite rules to omit trivial consequences
of other rules in the set. A rewrite rule t ≈ s is redundant with respect to a set {t1 ≈
s1, . . . , tn ≈ sn} of equations with free variables from ȳ if ∀ȳ. (t1 ≈ s1∧ . . .∧ tn ≈ sn)
entails ∀ȳ. t ≈ s in the theory of equality. Redundant rules are not useful to the user,
since they typically provide no new information. For example, if the framework generates
x ≈ x+ 0 as a candidate rewrite rule, then it should not also generate the redundant rule
x · y ≈ (x+ 0) · y, which is entailed by the former equality. Checking this entailment
with a solver, however, is expensive, since it involves first-order quantification. Instead,
we use several incomplete but sound and efficient filtering techniques. These techniques
significantly reduce the number of rewrite rules printed (as we show empirically in
Section 5.2).

Filtering Based on Matching One simple way to detect whether a rewrite rule is re-
dundant is to check if it is an instance of a previously generated rule. For example,
y1 + 1 ≈ 1 + y1 is redundant with respect to any set that includes y1 + y2 ≈ y2 + y1.
Our implementation caches in a database all representative terms generated as a result
of our equivalence checking. For each new candidate rewrite rule t ≈ s, we query this



Syntax-Guided Rewrite Rule Enumeration for SMT Solvers 7

database for a set of matches of the form t1σ1, . . . , tnσn where for each i = 1, . . . , n,
we have that ti is a previous term added to the structure, and tiσi = t. If for any such i,
we have that ti ≈ si was a previously generated candidate rewrite rule and siσi = s, we
discard t ≈ s.

Filtering Based on Variable Ordering This technique discards rewrite rules whose
variables are not in a given canonical order. For example, assume a grammar R with
free variables y1, y2 ordered as y1 ≺ y2. Furthermore, assume that y1 and y2 are
indistinguishable in R in the sense that if R has a rule s → t, then it also has rules
s→ t{y1 7→ y2} and s→ t{y2 7→ y1}. In this case, we can discard candidate rewrite
rules t1 ≈ t2 where y2 appears before y1 in (say, left-to-right, depth-first) traversals
of both t1 and t2. For example, we can pre-emptively discard the rewrite y2 + 0 ≈ y2,
without needing to apply the above filtering based on matching, by reasoning that we
will eventually generate y1 + 0 ≈ y1.

Filtering Based on Congruence Another inexpensive way to discover that a rewrite rule
is redundant is to verify that it can be deduced from previous ones by congruence. For
example, for any function f , it is easy to check that f(y1 + 0) ≈ f(y1) is redundant
with respect to a set of rules containing y1 + 0 ≈ y1. Our implementation maintains a
data structure representing the congruence closure C(S) of the current set S of rewrite
rules, i.e., the smallest superset of S closed under entailment in the theory of equality.
Then, it discards any new candidate rewrite rule if it is already in C(S).

5 Evaluation

We now discuss our experience with the proposed workflow, evaluate different configura-
tions, and show their impact on benchmarks. We ran experiments on a cluster equipped
with Intel E5-2637 v4 CPUs running Ubuntu 16.04. All jobs used one core and 8 GB
RAM unless otherwise indicated.

5.1 Experience

We implemented our framework for enumerating rewrite rules in CVC4, a state-of-the-art
SMT solver. We used four grammars (Section 5.2), over strings (using the semantics
of the latest draft of the SMT-LIB standard [32]), bit-vectors, and Booleans, as inputs
to our framework. The grammar determines the operators and the number and types of
different subterms that can be matched by the generated rewrites. To generate rewrites to
accelerate the search for a particular SyGuS problem, we can simply use the grammar
provided by the problem. To generate more general rewrites, it is helpful to divide the
problem into rewrites for function symbols and rewrites for predicate symbols, as each
of these formulations will use a different return type for f , the function to synthesize. We
typically picked a small number of arguments for f , using types that we are interested
in. In practice, we found two arguments to be sufficient to generate a large number of
interesting rewrites for complex types. Rewrites with more variables on the left side
are rarer than rewrites with fewer because they are more general. Thus, increasing the
number of arguments is often not helpful and results in extra overhead.



8 A. Nötzli et al.

(synth-fun f ((x String)
(y String) (z Int)) String (
(Start String (x y "A" "B" ""
(str.++ Start Start)
(str.replace Start Start Start)
(str.at Start ie) (int.to.str ie)
(str.substr Start ie ie)))
(ie Int (0 1 z (+ ie ie) (- ie ie)
(str.len Start) (str.to.int Start)
(str.indexof Start Start ie)))))

(synth-fun f ((s (BitVec 4))
(t (BitVec 4))) (BitVec 4) (
(Start (BitVec 4) (
s t #x0
(bvneg Start) (bvnot Start)
(bvadd Start Start) (bvmul Start Start)
(bvand Start Start) (bvor Start Start)
(bvlshr Start Start)
(bvshl kStart Start)))))

Fig. 2: Examples of grammars used in our workflow: strterm (left), bvterm4 (right).

Guided by the candidates generated using these grammars, we wrote approximately
5,300 lines of source code to implement the new rewrite rules. We refer to this imple-
mentation as the extended rewriter (ext), which can be optionally enabled. The rewrites
implemented in ext are a superset of the rewrites in the default rewriter (std). Our imple-
mentation is public [3]. We implemented approximately 80 classes of string rewrites with
a focus on eliminating expensive operators, e.g. contains(replace(x, y, z), z)  
contains(x, y) ∨ contains(x, z), where replace(x, y, z) denotes the string ob-
tained by replacing the first occurrence (if any) of the string y in x by z. A less intuitive
example is replace(x, replace(x, y, x), x) x. To see why this holds, assume that
the inner replace returns a string other than x (otherwise it holds trivially). In that
case, the returned string must be longer than x, so the outer replacement does nothing.
We implemented roughly 30 classes of bit-vector rewrites, including x + 1  −∼x,
x − (x & y)  x & ∼ y, and x & ∼x  0 where ∼ and & are respectively bitwise
negation and conjunction. Note that our workflow suggests bit-vector rewrites for fixed
bit-widths, so the developer has to establish which rewrites hold for all bit-widths. For
Booleans, we implemented several classes of rewrite rules for negation normal form,
commutative argument sorting, equality chain normalization, and constraint propagation.

By design, our framework does not generalize the candidate rewrite rules. We
found instead that the framework naturally suggests candidates that can be seen as
instances of the same generalized rule. This allows the developer to devise rules over
conditions that are not easily expressible as logical formulas. For example, consider
the candidates: x ++ "A" ≈ "AA"  x ≈ "A", x ++ "A" ≈ "A"  x ≈ "",
and "BBB" ≈ x ++ "B" ++ y  "BB" ≈ x ++ y. These suggest that if one side
of an equality is just a repetition of a single character, one can drop any number of
occurrences of it from both sides. The condition and conclusion of such rules are more
easily understood operationally than as logical formulas.

5.2 Evaluating Internal Metrics of our Workflow

We now address the following questions about the effectiveness of our workflow:

– How does the number of unique terms scale with the number of grammar terms?
– How do rewriters affect term redundancy and enumeration performance?
– What is the accuracy and performance of different equivalence checks?
– How many candidate rewrites do our filtering techniques eliminate?



Syntax-Guided Rewrite Rule Enumeration for SMT Solvers 9

none std ext

Grammar Size Terms T -Unique Red. % Time [s] Red. % Time [s] Red. % Time [s] Z3 Red. %

strterm
1 218 86 60.6% 0.18 17.3% 0.09 0.0% 0.09 21.1%∗

2 24587 4204 82.9% 22.64 49.4% 8.78 20.0% 3.57 52.5%∗

strpred
1 104 31 70.2% 0.13 34.0% 0.13 0.0% 0.07 32.6%∗

2 8726 1057 87.9% 9.32 66.5% 7.66 26.2% 2.16 68.1%∗

3 1100144 ≥53671 — t/o ≤82.5% 1154.02 ≤57.0% 376.61 —

bvterm4

1 63 22 65.1% 0.16 8.3% 0.12 0.0% 0.13 29.0%
2 2343 288 87.7% 1.03 22.0% 0.24 0.7% 0.14 58.3%
3 110583 4744 95.7% 89.84 39.3% 11.03 9.9% 3.55 76.9%
4 5865303 84048 — t/o — t/o 23.9% 242.15 —

bvterm32

1 63 22 65.1% 0.09 8.3% 0.05 0.0% 0.05 29.0%
2 2343 290 87.6% 4.53 21.4% 1.45 0.0% 0.85 58.0%
3 110583 4925 95.5% 462.47 37.0% 85.62 6.5% 51.79 —
4 5865303 ≥84229† — t/o — t/o ≤23.8% 1955.97 —

crci

1 4 3 25.0% 0.11 25.0% 0.13 0.0% 0.11 0.0%
2 32 12 62.5% 0.11 52.0% 0.12 0.0% 0.12 33.3%
3 276 44 84.1% 0.15 74.4% 0.13 0.0% 0.12 62.1%
4 2656 176 93.4% 0.38 87.5% 0.28 0.0% 0.13 81.1%
5 17920 228 98.7% 2.11 96.9% 1.05 0.0% 0.15 93.1%
6 107632 348 99.7% 15.97 99.0% 6.33 36.7% 0.24 97.8%
7 596128 396 99.9% 112.71 99.8% 31.62 68.3% 0.43 99.3%
8 2902432 396 — t/o 99.9% 124.28 71.4% 0.45 —

Table 1: Impact of different rewriters on term redundancy using grammar equivalence
checking. ∗ may be inaccurate because Z3’s rewriter is incorrect for strings (see Sec-
tion 5.3 for details). † estimate is based on the unique terms for bvterm4.

We consider four grammars: strterm and strpred for the theory of strings, bvterm for
the theory of bit-vectors, and crci for Booleans. To show the impact of bit-width, we
consider 4-bit (bvterm4) and a 32-bit (bvterm32) variant of bvterm. Figure 2 shows
strterm and bvterm4 in SyGuS syntax. A SyGuS problem specifies a function f with a
set of parameters (e.g. two strings x and y and an integer z for strterm) and a return type
(e.g. a string for strterm) to synthesize. The initial symbol of the grammar is Start and
each rule of the grammar is given by a symbol (e.g. ie in strterm) and a list of terms
(e.g. the constants 0, 1 and the functions len, str.to.int, indexof for ie). We
omit semantic constraints because we want to enumerate all terms for a given grammar.
The number of terms is infinite, so our evaluation restricts the search for candidate
rewrites by limiting the size of the enumerated terms, using a 24h timeout and a 32
GB RAM limit. The size of a term refers to the number of non-nullary symbols in it.
Our implementation provides three rewriter settings: none disables rewriting; and std
and ext are as defined in Section 5.1. For equivalence checking, we implemented the
three methods from Section 3: random sampling (random); grammar-based sampling
(grammar); and exact equivalence checking (exact).

T -Unique Solutions In Table 1, we show the number of terms (Terms) and the number
of unique terms modulo T -equivalence (T -Unique) at different sizes for each grammar.
We established the number of unique terms for the Boolean and bvterm4 grammars using
the exact equivalence checking technique. For bvterm32 and the string grammars, some
equivalence checks are challenging despite their small size, as we discuss in Section 5.3.



10 A. Nötzli et al.

For terms of size 2 from the string grammars and terms of size 3 from the bvterm32

grammar, we resolved the challenging equivalence checks in a semi-automated fashion
in some cases and manually in others. For larger term sizes, we approximated the number
of unique terms using grammar with 10,000 samples.4 Our equivalence checks do not
produce false negatives, i.e. they will not declare two terms to be different when they are
actually equivalent. Thus, grammar can be used to compute a lower bound on the actual
number of unique terms. For all grammars, the number of terms grows rapidly with
increasing size while the number of unique terms grows much slower. Thus, enumerating
terms without rewriting is increasingly inefficient as terms grow in size, indicating the
utility of aggressive rewriting in these domains. The number of unique terms differs
between the 4-bit and the 32-bit versions of bvterm at size 2, showing that some rewrite
rules are valid for smaller bit-widths only.

Rewriter Comparison To measure the impact of different rewriters, we measured the
redundancy of our rewriter configurations at different sizes for each grammar, and the
wall-clock time to enumerate and check all the solutions. We define the redundancy of a
rewriter for a set of terms S to be (n− u)/n, where n is the cardinality of {t↓ | t ∈ S}
and u is the number of T -unique terms in S. We used grammar with 1,000 samples
for the equivalence checks. As a point of reference, we include the redundancy of
Z3’s simplify command by counting the number of unique terms after applying the
command to terms generated by none. Table 1 summarizes the results. With none, the
redundancy is very high at larger sizes, whereas std keeps the redundancy much lower,
except for crci. This is because std only performs basic rewriting for Boolean terms as
CVC4 relies on a SAT solver for Boolean reasoning. Overall, std is competitive with
Z3’s rewriter, indicating that it is a decent representative of a state-of-the-art rewriter.
As expected, ext fares much better in all cases, lowering the percentage of redundant
terms by over 95% in the case of crci at size 5. This has a significant effect on the time it
takes to enumerate all solutions: ext consistently and significantly outperforms std, in
some cases by almost two orders of magnitude (crci at size 7), especially at larger sizes.
Compared to none, both std and ext perform much better.

Equivalence Check Comparison To compare the different equivalence checks, we
measured their error with respect to the set of terms enumerated by the ext rewriter,
and the wall-clock time to enumerate all the solutions. For a set of terms S, we define
the error of an equivalence check as (u − n)/u, where n is number of equivalence
classes of S induced by the check and u is the number of T -unique terms in S, where
u ≥ n. For both random and grammar, we used 1,000 samples. We summarize the
results in Table 2. For crci and bvterm4, 1,000 samples are enough to cover all possible
inputs, so there is no error in those cases and we do not report grammar. While sampling
performs similarly to exact for crci and bvterm4, for bvterm32, exact is more precise
and slightly faster for size 2. At sizes 3 and 4, exact ran out of memory. For strterm, we
found that grammar was much more effective than random, having an error that was
around 2.7 times smaller for term size 2. Similarly, grammar-based sampling was more
effective on strpred with an error that was 1.5 times smaller for term size 2. Recall that

4 For a better estimate for bvterm32, we approximate the number as u4,n + u32,n−1 − u4,n−1

where um,n is the number of unique terms for bit-width m and term size n.



Syntax-Guided Rewrite Rule Enumeration for SMT Solvers 11

no− eqc random grammar exact

Grammar Size Time Error Time Error Time Error Time
Rewrites
Filtered

Confidence
Overhead

strterm
1 0.04 0.0% 0.03 0.0% 0.09 0.0% 0.13 0.0% 111.1%
2 0.60 2.5% 3.75 0.9% 3.57 — t/o 63.8% 2.0%

strpred
1 0.03 0.0% 0.03 0.0% 0.07 0.0% 0.12 0.0% 85.7%
2 0.49 6.8% 2.09 4.4% 2.16 — t/o 59.8% 6.9%
3 59.54 ≤16.1% 380.23 ≤13.6% 376.61 — t/o 66.5% 0.6%

bvterm4

1 0.02 0.0% 0.04 0.0% 0.02 0.0% 92.3%
2 0.03 0.0% 0.06 0.0% 0.12 50.0% 85.7%
3 0.35 0.0% 3.56 0.0% 2.10 45.0% 3.1%
4 9.71 0.0% 266.09 0.0% 215.93 60.8% 2.3%

bvterm32

1 0.01 27.3% 0.04 0.0% 0.05 0.0% 0.12 0.0% 80.0%
2 0.03 62.8% 1.54 15.9% 0.85 0.0% 0.47 0.0% 16.5%
3 0.35 79.9% 69.40 40.9% 51.79 — t/o 57.8% 7.5%
4 9.06 ≤87.3% 2502.11 ≤57.3% 1955.97 — t/o 69.7% 2.9%

crci

1 0.02 0.0% 0.03 0.0% 0.02 0.0% 163.6%
2 0.02 0.0% 0.05 0.0% 0.02 0.0% 150.0%
3 0.04 0.0% 0.03 0.0% 0.03 0.0% 191.7%
4 0.05 0.0% 0.06 0.0% 0.05 0.0% 146.2%
5 0.08 0.0% 0.08 0.0% 0.12 0.0% 113.3%
6 0.10 0.0% 0.17 0.0% 0.43 0.0% 87.5%
7 0.22 0.0% 0.37 0.0% 1.58 0.0% 48.8%
8 0.21 0.0% 0.38 0.0% 1.70 0.0% 44.4%

Table 2: Comparison of different equivalence checks, the number of candidates filtered
and the overhead of checking rewrites for soundness (Section 5.4), using the ext rewriter.
For bvterm4 and crci random and grammar, are the same.

we determined the numbers of unique terms at this size manually and grammar is good
enough to discard a majority of spurious rewrites at those small sizes. As expected, exact
gets stuck and times out for strterm and strpred at sizes 2 and 3.

Impact of Filtering Table 2 also lists how many candidate rewrites the filtering techniques
in Section 4 eliminate. We used ext and exact if available and grammar otherwise.
Filtering eliminates up to 69.7% of the rules, which significantly lowers the burden on
the developer when analyzing the proposed rewrite rules.

5.3 Evaluating SMT Solvers for Equivalence Checking

In this section, we demonstrate the use of our workflow to generate small queries that
correspond to checking the equivalence of two enumerated terms to evaluate other SMT
solvers. The motivation for this is twofold. First, we are interested in how other SMT
solvers perform as equivalence checkers in our workflow. Second, we are interested in
finding queries that uncover issues in SMT solvers or serve as small but challenging
benchmarks. In contrast to random testing for SMT solvers [14, 23, 13], our approach
can be seen as a form of exhaustive testing, where all relevant queries up to a given term
size are considered.

First, we logged the candidate rewrites generated by our workflow up to a fixed
size using a basic rewriter that only evaluates operators with constant arguments. We



12 A. Nötzli et al.

Z3 Z3STR3

Grammar Result CVC4ext CVC4std Solved #w Solved #w BOOLECTOR

strterm
(1045)

unsat 1030 (666) 991 (254) 888 (348) 953 3
sat 10 9 5 93 4 28
unsolved 5 45 59 57

strpred

(835)

unsat 807 (569) 775 (297) 716 (287) 779
sat 13 13 6 32 11 17
unsolved 15 47 81 28

bvterm32

(1575)

unsat 1484 (1271) 1406 (641) 1426 (743) 1399 (766)
sat 85 85 89 89
unsolved 6 84 60 87

Table 3: Results for equivalence checking with a 300s timeout. The number of bench-
marks for each grammar is below its name. The number of responses x (y) indicates that
the solver solved x benchmarks, of which it solved y by simplification only. Incorrect
responses from solvers are given in the columns #w.

considered the grammars strterm, strpred, and bvterm32, for which equivalence check-
ing is challenging. We considered a size of bound 2 for the string grammars and 3
for bvterm32. Then, we used grammar-based sampling with 1,000 samples to compute
candidate rewrite rules, outputting for each candidate t ≈ s the (quantifier-free) satisfi-
ability query t 6≈ s. Finally, we tested CVC4 with the ext and std rewriters as well as
state-of-the-art SMT solvers for string and bit-vector domains. Specifically, we tested
Z3 [20] 4.8.1 for all grammars, Z3STR3 [12] for the string grammars and BOOLEC-
TOR [22] for the bit-vector grammar. This set of solvers includes the winners of the
QF_BV (BOOLECTOR) and BV (CVC4) divisions of SMT-COMP 2018 [1].

Table 3 summarizes the results. For each grammar and solver, we give the number of
unsatisfiable, satisfiable, and unsolved responses. We additionally provide the number
of unsatisfiable responses for which a solver did not require any SAT decisions, i.e., it
solved the benchmark with rewriting only.

For benchmarks from the string grammars, we found that Z3 and Z3STR3 generated
125 and 45 incorrect “sat” responses respectively.5 For 122 and 44 of these cases
respectively, CVC4ext answered “unsat”. For the other 3 cases, CVC4ext produced a
different model that was accepted by all solvers. Additionally, we found that Z3STR3
gave 3 confirmable incorrect “unsat” responses.6 We filed these cases as bug reports and
the developers confirmed that reasons for the incorrect responses include the existence
of unsound rewrites. As expected, CVC4ext significantly outperforms the other solvers
because the ext rewriter is highly specialized for this domain. CVC4ext solves a total
of 1,235 instances using rewriting alone, which is 684 instances more than CVC4std.
Even on instances that CVC4ext’s rewriter does not solve directly, it aids solving. This
is illustrated by CVC4ext solving 96.8% whereas CVC4std solving only 92.2% of the
string benchmarks that neither of them solved by rewriting alone.

5 The solver answered “sat”, but produced a model that did not satisfy the constraints.
6 The solver answered “unsat”, but accepted a model generated by CVC4ext.



Syntax-Guided Rewrite Rule Enumeration for SMT Solvers 13

For bvterm32, we found no incorrect answers. Again, CVC4ext outperforms the
other solvers due to the fact that its rewriter was trained for this grammar. Among
the other solvers, BOOLECTOR solved the most benchmarks using simplification alone.
Surprisingly, it solved 27 fewer unsatisfiable benchmarks than Z3, the second best
performer. This can be primarily attributed to the fact that BOOLECTOR currently does not
rewrite x ·−y and−(x ·y) to the same term. As a result, it could not prove the disequality
x · −y 6≈ −(x · y) within 300s. Two variants of (s · s)>>(s<<s) 6≈ s · (s>>(s<<s))
were challenging for all solvers, which confirms that our workflow can be used to find
small, challenging queries.

5.4 Improving Confidence in the Rewriter

The soundness of rewriters is of utmost importance because an unsound rewriter often
implies that the overall SMT solver is unsound. A rewriter is unsound if there exists
a pair of T -disequivalent terms t and s such that t↓ = s↓. To accommodate the rapid
development of rewrite rules in our workflow in Figure 1, CVC4 supports an optional
mode that attempts to detect unsoundness in its rewriter. When this mode is enabled, for
each term t enumerated in Step 2, we use grammar to test the equivalence of t and t↓.
In particular, this technique discovers points where t and t↓ have different values. This
functionality has been critical for discovering subtle bugs in the implementation of new
rules. It even caught previously existing bugs in CVC4’s rewriter. For instance, an older
version of CVC4 implemented replace(x, x, y) y which was incompatible with the
(now outdated) semantics of replace (if the second argument was empty, the operation
would leave the first argument unchanged). Table 2, shows the overhead of running these
checks for each grammar and term size, where grammar-based sampling is used both
for computing the rewrite rules and for checking the soundness of the ext rewriter. For
example, adding checks that ensure that no unsound rewrites are produced for terms up
to size 3 in the bvterm32 grammar has a 7.5% overhead. As term size increases and the
enumeration rate decreases, the relative overhead tends to becomes smaller. Overall, this
option leads to a noticeable, but not prohibitively large, slowdown in the workflow.

5.5 Impact of Rewrites on Solving

Finally, we evaluate the impact of the extended rewrites on CVC4’s solving performance
on SyGuS and SMT problems. Figure 3 summarizes the results.

Impact on SyGuS Problems The Boolean and the string problems in our evaluation
are from SyGuS-COMP 2018 [2]. Their grammars are similar to the ones we used
in our workflow. We distinguish between two types of bit-vector (BV) benchmarks:
programming-by-examples (PBE) benchmarks where the constraints are input-output
pairs and benchmarks with arbitrary non-PBE constraints. We make this distinction
because for PBE problems, CVC4 can rely on input examples to decide term equivalence
(the function to synthesize can return arbitrary values for the domain outside of the input
examples). For the non-PBE benchmarks, we use the benchmarks from the general track
of SyGuS-COMP, from work on synthesizing invertibility conditions (IC) for bit-vector



14 A. Nötzli et al.

Benchmark Set # std ext S%

Strings 108 73 88 1.81×
BV (non-PBE) 361 236 238 1.02×
B IC 160 131 130 0.76×
B CegisT 79 41 41 1.09×
B General 122 64 67 1.73×

BV (PBE) 803 774 773 1.11×
Boolean 214 153 159 1.83×

Logic Result std ext S%

QF SLIA
(25421)

unsat 3803 3823 0.46×
sat 20887 20950 1.87×

BV
(5751)

unsat 4969 4974 1.12×
sat 536 542 1.41×

10 1 100 101 102

std
10 1

100

101

102

ex
t

QF_SLIA

Fig. 3: Impact of ext on SyGuS (top left) and SMT (bottom left and right) solving. They
ran with a 3600s and 300s timeouts respectively. Best results are in bold. The scatter
plot is logarithmic. “S%” is the speedup of ext over std on commonly solved problems.

operators [24], and invariant synthesis [4]. The PBE bit-vector benchmarks [19, 5] are
from the 2013 ICFP programming competition. Their grammars vary significantly.

The top table in Figure 3 lists the number of solved instances within a 3600s timeout
for ext and std and the speedup of ext over std on commonly solved benchmarks. With
ext, CVC4 solves more benchmarks on all benchmark sets except IC and the PBE bit-
vector problems. We experienced a significant speedup on the commonly solved instances
from the Boolean benchmarks, the SyGuS-COMP general track bit-vector benchmarks,
and the string benchmarks. The IC grammars are focused on bit-vector comparisons,
which our grammar bvterm lacks. Thus, the new rewrites do not significantly reduce the
redundancy for that set. On the PBE bit-vector problems, ext is slightly faster overall
and solves a problem that std does not solve but times out on two hard problems that std
solves, which is likely due to the rewrites affecting CVC4’s search heuristic.

Impact on SMT Problems We evaluated the impact of ext on quantifier-free string
benchmarks (QF_SLIA) from the symbolic execution of Python programs [28] and
found that ext has a significant positive impact. While ext is faster than std on commonly
solved satisfiable benchmarks, it is slower on unsatisfiable ones due to three outliers.
The scatter plot in Figure 3 shows that for benchmarks that take more than one second,
there is a trend towards shorter solving times with ext.

For benchmarks in the quantified bit-vector logic (BV) of SMT-LIB [10], the extended
rewriter improves the overall performance by solving 11 additional instances as shown
in the bottom table in Figure 3.

For quantifier-free bit-vector (QF_BV) problems, naively using all new bit-vector
rules from ext resulted in fewer solved instances. This is due to the fact that ext performs
aggressive rewriting to eliminate as much redundancy as possible, which is helpful in
enumerative SyGuS. For QF_BV solving, however, it is important to consider the effects
of a rewrite at the word-level and the bit-level. Rewrites at the word-level can destroy
common structures between different terms at the bit-level, which may increase the size
of the formula at the bit-level while decreasing it at the word level. Rewrites that eliminate



Syntax-Guided Rewrite Rule Enumeration for SMT Solvers 15

redundancy at the cost of introducing expensive operators (e.g., multipliers) may also
harm performance. We evaluated each bit-vector rewrite in ext w.r.t. solving QF_BV
problems. We generalized one family involving bitwise operators over concatenations
that e.g. rewrites x & (0 ◦ y) to 0 ◦ (x[m− 1 : 0] & y), where x has bit-width n and y
has bit-widthm for somem < n. These resulted in a net gain of 41 solved instances over
40,102 QF_BV benchmarks with 1,089 timeouts, a 3.8% improvement in the success
rate of CVC4 on this set. This suggests that developing a library of rewrite rules and
selectively enabling some can be beneficial in this domain.

6 Related Work

A number of techniques have been proposed for automatically generating rewrite rules
for bit-vectors. SWAPPER [31] is an automatic formula simplifier generator based
on machine learning and program synthesis techniques. In the context of symbolic
execution, Romanoe et al. [29] propose an approach that learns rewrite rules to simplify
expressions before sending them to an SMT solver. In contrast, our approach targets the
SMT solver developer and is not limited to rewrites expressible in a restricted language.
A related approach was explored by Hansen [18], which generates all the terms that fit a
grammar and finds equivalent pairs that can the be used by the developer to implement
new rules. In contrast to our work, the candidate rules are not filtered, and the grammar
is hard-coded and only considers bit-vector operations. Nadel [21] proposed generating
bit-vector rewrite rules in SMT solvers at runtime for a given problem. Syntax-guided
synthesis was used by Niemetz et al. [24] to synthesize conditions that characterize when
bit-vector constraints have solutions. Rewrite rules in SMT solvers—especially the ones
for the theories of bit-vectors and Booleans—bear similarities with local optimizations
in compilers [8, 15]. Finally, caching counterexamples as we do in our exact equivalence
check is similar to techniques used in symbolic execution engines, e.g. KLEE [16], and
superoptimizers, e.g. STOKE [30].

7 Conclusion

We have presented a syntax-guided paradigm for developing rewriters for SMT solvers. In
ongoing work, we are exploring an automated analysis of how likely particular rewrites
are to help solving constraints, which we found was the most tedious aspect of our
current workflow. Furthermore, we plan to adapt existing techniques for automatically
constructing grammars from a set of problems to use them as inputs to our approach. In
the shorter term, we plan to use the existing framework to identify useful rewrite rules
for emerging SMT domains, notably the theory of floating-point arithmetic, for which
developing a rewriter is notoriously difficult.

Acknowledgements This material is based upon work partially supported by the Na-
tional Science Foundation (Award No. 1656926), the Office of Naval Research (Con-
tract No. 68335-17-C-0558), and DARPA (N66001-18-C-4012, FA8650-18-2-7854 and
FA8650-18-2-7861).



16 A. Nötzli et al.

References

1. SMT-COMP 2018. http://smtcomp.sourceforge.net/2018/ (2018)
2. SyGuS-COMP 2018. http://sygus.seas.upenn.edu/SyGuS-COMP2018.html

(2018)
3. CVC4 sat2019 branch. https://github.com/4tXJ7f/CVC4/tree/sat2019

(2019)
4. Abate, A., David, C., Kesseli, P., Kroening, D., Polgreen, E.: Counterexample guided inductive

synthesis modulo theories. In: Chockler, H., Weissenbacher, G. (eds.) Computer Aided
Verification - 30th International Conference, CAV 2018, Held as Part of the Federated Logic
Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part I. Lecture Notes
in Computer Science, vol. 10981, pp. 270–288. Springer (2018), https://doi.org/10.
1007/978-3-319-96145-3_15

5. Akiba, T., Imajo, K., Iwami, H., Iwata, Y., Kataoka, T., Takahashi, N., Moskal, M., Swamy,
N.: Calibrating research in program synthesis using 72,000 hours of programmer time. MSR,
Redmond, WA, USA, Tech. Rep (2013)

6. Alur, R., Bodı́k, R., Juniwal, G., Martin, M.M.K., Raghothaman, M., Seshia, S.A., Singh, R.,
Solar-Lezama, A., Torlak, E., Udupa, A.: Syntax-guided synthesis. In: Formal Methods in
Computer-Aided Design, FMCAD 2013, Portland, OR, USA, October 20-23, 2013. pp. 1–8.
IEEE (2013), http://ieeexplore.ieee.org/document/6679385/

7. Alur, R., Radhakrishna, A., Udupa, A.: Scaling enumerative program synthesis via divide
and conquer. In: Legay, A., Margaria, T. (eds.) Tools and Algorithms for the Construction
and Analysis of Systems - 23rd International Conference, TACAS 2017, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala,
Sweden, April 22-29, 2017, Proceedings, Part I. Lecture Notes in Computer Science, vol.
10205, pp. 319–336 (2017), https://doi.org/10.1007/978-3-662-54577-5_
18

8. Bansal, S., Aiken, A.: Automatic generation of peephole superoptimizers. In: Shen, J.P.,
Martonosi, M. (eds.) Proceedings of the 12th International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS 2006, San Jose,
CA, USA, October 21-25, 2006. pp. 394–403. ACM (2006), http://doi.acm.org/10.
1145/1168857.1168906

9. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanovic, D., King, T., Reynolds, A.,
Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) Computer Aided Verification -
23rd International Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings.
Lecture Notes in Computer Science, vol. 6806, pp. 171–177. Springer (2011), https:
//doi.org/10.1007/978-3-642-22110-1_14

10. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library (SMT-LIB).
www.SMT-LIB.org (2016)

11. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version 2.6. Tech. rep., Depart-
ment of Computer Science, The University of Iowa (2017), available at www.SMT-LIB.org

12. Berzish, M., Ganesh, V., Zheng, Y.: Z3str3: A string solver with theory-aware heuristics. In:
2017 Formal Methods in Computer Aided Design, FMCAD 2017, Vienna, Austria, October 2-
6, 2017. pp. 55–59 (2017), https://doi.org/10.23919/FMCAD.2017.8102241

13. Blotsky, D., Mora, F., Berzish, M., Zheng, Y., Kabir, I., Ganesh, V.: Stringfuzz: A fuzzer
for string solvers. In: Computer Aided Verification - 30th International Conference, CAV
2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July
14-17, 2018, Proceedings, Part II. pp. 45–51 (2018), https://doi.org/10.1007/
978-3-319-96142-2_6

http://smtcomp.sourceforge.net/2018/
http://sygus.seas.upenn.edu/SyGuS-COMP2018.html
https://github.com/4tXJ7f/CVC4/tree/sat2019
https://doi.org/10.1007/978-3-319-96145-3_15
https://doi.org/10.1007/978-3-319-96145-3_15
http://ieeexplore.ieee.org/document/6679385/
https://doi.org/10.1007/978-3-662-54577-5_18
https://doi.org/10.1007/978-3-662-54577-5_18
http://doi.acm.org/10.1145/1168857.1168906
http://doi.acm.org/10.1145/1168857.1168906
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.23919/FMCAD.2017.8102241
https://doi.org/10.1007/978-3-319-96142-2_6
https://doi.org/10.1007/978-3-319-96142-2_6


Syntax-Guided Rewrite Rule Enumeration for SMT Solvers 17

14. Brummayer, R., Biere, A.: Fuzzing and Delta-Debugging SMT Solvers. In: Proceedings of the
7th International Workshop on Satisfiability Modulo Theories (SMT’09). p. 5. ACM (2009)

15. Buchwald, S.: Optgen: A generator for local optimizations. In: Franke, B. (ed.) Compiler
Construction - 24th International Conference, CC 2015, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18,
2015. Proceedings. Lecture Notes in Computer Science, vol. 9031, pp. 171–189. Springer
(2015), https://doi.org/10.1007/978-3-662-46663-6_9

16. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: unassisted and automatic generation of high-
coverage tests for complex systems programs. In: Draves, R., van Renesse, R. (eds.) 8th
USENIX Symposium on Operating Systems Design and Implementation, OSDI 2008, Decem-
ber 8-10, 2008, San Diego, California, USA, Proceedings. pp. 209–224. USENIX Associa-
tion (2008), http://www.usenix.org/events/osdi08/tech/full_papers/
cadar/cadar.pdf

17. Ganesh, V., Minnes, M., Solar-Lezama, A., Rinard, M.C.: Word equations with length
constraints: What’s decidable? In: Biere, A., Nahir, A., Vos, T.E.J. (eds.) Hardware and
Software: Verification and Testing - 8th International Haifa Verification Conference, HVC
2012, Haifa, Israel, November 6-8, 2012. Revised Selected Papers. Lecture Notes in Com-
puter Science, vol. 7857, pp. 209–226. Springer (2012), https://doi.org/10.1007/
978-3-642-39611-3_21

18. Hansen, T.: A constraint solver and its application to machine code test generation. Ph.D.
thesis, University of Melbourne, Australia (2012), http://hdl.handle.net/11343/
37952

19. Jr., H.S.W.: Hacker’s Delight, Second Edition. Pearson Education (2013), http://www.
hackersdelight.org/

20. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: Tools and Algorithms for the
Construction and Analysis of Systems, 14th International Conference, TACAS 2008, Held as
Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2008,
Budapest, Hungary, March 29-April 6, 2008. Proceedings. pp. 337–340 (2008), https:
//doi.org/10.1007/978-3-540-78800-3_24

21. Nadel, A.: Bit-vector rewriting with automatic rule generation. In: Computer Aided Veri-
fication - 26th International Conference, CAV 2014, Held as Part of the Vienna Summer
of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings. pp. 663–679 (2014),
https://doi.org/10.1007/978-3-319-08867-9_44

22. Niemetz, A., Preiner, M., Biere, A.: Boolector 2.0 system description. Journal on Satisfiability,
Boolean Modeling and Computation 9, 53–58 (2014 (published 2015))

23. Niemetz, A., Preiner, M., Biere, A.: Model-Based API Testing for SMT Solvers. In: Brain, M.,
Hadarean, L. (eds.) Proceedings of the 15th International Workshop on Satisfiability Modulo
Theories, SMT 2017), affiliated with the 29th International Conference on Computer Aided
Verification, CAV 2017, Heidelberg, Germany, July 24-28, 2017. p. 10 pages (2017)

24. Niemetz, A., Preiner, M., Reynolds, A., Barrett, C., Tinelli, C.: Solving quantified bit-vectors
using invertibility conditions. In: Chockler, H., Weissenbacher, G. (eds.) Computer Aided
Verification - 30th International Conference, CAV 2018, Held as Part of the Federated Logic
Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part II. Lecture Notes
in Computer Science, vol. 10982, pp. 236–255. Springer (2018), https://doi.org/10.
1007/978-3-319-96142-2_16

25. Reynolds, A., Barbosa, H., , Nötzil, A., Barrett, C., Tinelli, C.: CVC4Sy: Smart and fast term
enumeration for syntax-guided synthesis. In: Dilig, I., Tasiran, S. (eds.) Computer Aided
Verification (CAV) - 31st International Conference. (Accepted for publication). Lecture Notes
in Computer Science, Springer (2019)

https://doi.org/10.1007/978-3-662-46663-6_9
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
https://doi.org/10.1007/978-3-642-39611-3_21
https://doi.org/10.1007/978-3-642-39611-3_21
http://hdl.handle.net/11343/37952
http://hdl.handle.net/11343/37952
http://www.hackersdelight.org/
http://www.hackersdelight.org/
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-08867-9_44
https://doi.org/10.1007/978-3-319-96142-2_16
https://doi.org/10.1007/978-3-319-96142-2_16


18 A. Nötzli et al.

26. Reynolds, A., Deters, M., Kuncak, V., Tinelli, C., Barrett, C.W.: Counterexample-guided quan-
tifier instantiation for synthesis in SMT. In: Kroening, D., Pasareanu, C.S. (eds.) Computer
Aided Verification - 27th International Conference, CAV 2015, San Francisco, CA, USA, July
18-24, 2015, Proceedings, Part II. Lecture Notes in Computer Science, vol. 9207, pp. 198–216.
Springer (2015), https://doi.org/10.1007/978-3-319-21668-3_12

27. Reynolds, A., Tinelli, C.: Sygus techniques in the core of an SMT solver. In: Proceedings
Sixth Workshop on Synthesis, SYNT@CAV 2017, Heidelberg, Germany, 22nd July 2017. pp.
81–96 (2017), https://doi.org/10.4204/EPTCS.260.8

28. Reynolds, A., Woo, M., Barrett, C., Brumley, D., Liang, T., Tinelli, C.: Scaling up
DPLL(T) string solvers using context-dependent simplification. In: Majumdar, R., Kun-
cak, V. (eds.) Computer Aided Verification - 29th International Conference, CAV 2017,
Heidelberg, Germany, July 24-28, 2017, Proceedings, Part II. Lecture Notes in Computer
Science, vol. 10427, pp. 453–474. Springer (2017), https://doi.org/10.1007/
978-3-319-63390-9_24

29. Romano, A., Engler, D.R.: Expression reduction from programs in a symbolic binary executor.
In: Bartocci, E., Ramakrishnan, C.R. (eds.) Model Checking Software - 20th International
Symposium, SPIN 2013, Stony Brook, NY, USA, July 8-9, 2013. Proceedings. Lecture Notes
in Computer Science, vol. 7976, pp. 301–319. Springer (2013), https://doi.org/10.
1007/978-3-642-39176-7_19

30. Schkufza, E., Sharma, R., Aiken, A.: Stochastic superoptimization. In: Sarkar, V., Bodı́k, R.
(eds.) Architectural Support for Programming Languages and Operating Systems, ASPLOS
’13, Houston, TX, USA - March 16 - 20, 2013. pp. 305–316. ACM (2013), http://doi.
acm.org/10.1145/2451116.2451150

31. Singh, R., Solar-Lezama, A.: SWAPPER: A framework for automatic generation of formula
simplifiers based on conditional rewrite rules. In: Piskac, R., Talupur, M. (eds.) 2016 Formal
Methods in Computer-Aided Design, FMCAD 2016, Mountain View, CA, USA, October
3-6, 2016. pp. 185–192. IEEE (2016), https://doi.org/10.1109/FMCAD.2016.
7886678

32. Tinelli, C., Barrett, C., Fontaine, P.: Unicode Strings (Draft 1.0). http://smtlib.cs.
uiowa.edu/theories-UnicodeStrings.shtml (2018)

33. Udupa, A., Raghavan, A., Deshmukh, J.V., Mador-Haim, S., Martin, M.M.K., Alur, R.: TRAN-
SIT: specifying protocols with concolic snippets. In: ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI ’13, Seattle, WA, USA, June 16-19,
2013. pp. 287–296 (2013), http://doi.acm.org/10.1145/2462156.2462174

https://doi.org/10.1007/978-3-319-21668-3_12
https://doi.org/10.4204/EPTCS.260.8
https://doi.org/10.1007/978-3-319-63390-9_24
https://doi.org/10.1007/978-3-319-63390-9_24
https://doi.org/10.1007/978-3-642-39176-7_19
https://doi.org/10.1007/978-3-642-39176-7_19
http://doi.acm.org/10.1145/2451116.2451150
http://doi.acm.org/10.1145/2451116.2451150
https://doi.org/10.1109/FMCAD.2016.7886678
https://doi.org/10.1109/FMCAD.2016.7886678
http://smtlib.cs.uiowa.edu/theories-UnicodeStrings.shtml
http://smtlib.cs.uiowa.edu/theories-UnicodeStrings.shtml
http://doi.acm.org/10.1145/2462156.2462174

	Syntax-Guided Rewrite Rule Enumeration  for SMT Solvers

