Approaches for Synthesis Conjectures in an SMT Solver

Andrew Reynolds
École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
{firstname.lastname}@epfl.ch

Abstract. This report describes several approaches for handling synthesis conjectures within an Satisfiability Modulo Theories (SMT) solver. We describe approaches that primarily focus on determining the unsatisfiability of the negated form of synthesis conjectures using new techniques for quantifier instantiation.

1 Synthesis in an SMT solver

A synthesis conjecture states there exists a function \(f \) for which some universal property \(P \) holds. In other words, a conjecture of this form can be stated as:

\[
\exists f. \forall i. P(f, i)
\]

(1)

where \(f \) is a function to synthesize, and \(P \) states the property that \(f \) must satisfy for all \(i \). In this report, we examine approaches for handling conjectures of this form within the core of a Satisfiability Modulo Theories (SMT) solver [2].

For determining the satisfiability of the formula (1), an SMT solver may treat \(f \) as an uninterpreted function, and find an interpretation for \(f \) for which \(\forall i. P(f, i) \) is satisfied for all \(i \). Notice this task poses multiple challenges to the SMT solver. First, the solver must construct a stream of candidate interpretations for \(f \) based on its partial model, which by default gives no guarantee that an interpretation will eventually be discovered that satisfies this (or other) quantified formulas. Moreover, the solver must be extended with methods for determining when universally quantified formulas are satisfied. In fact, showing that a universally quantified formula is satisfied for all \(i \) often is accomplished by showing that its negation under the candidate interpretation of \(f \) is unsatisfiable [10], which itself reduces to a ground satisfiability query. An alternative line of research in the domain of software verification has explored specialized techniques for establishing the satisfiability of quantified horn clauses [4–6] which has had success for handling clauses in several theories.

More traditional designs of SMT solvers for handling quantified formulas have focused on instantiation-based methods that consider ground instances of quantified formulas until a refutation is found at the ground level [9]. While such techniques are incomplete in general, it has been shown they are quite effective in practice for finding proofs of unsatisfiability [8, 15]. Arguably, doing so is more natural for an SMT solver and poses fewer complications than establishing the satisfiability of quantified formulas. For this reason, we advocate approaches for synthesis that instead establish the unsatisfiability of the negation of the aforementioned conjecture:

\[
\forall f. \exists i. \neg P(f, i)
\]

(2)
This seemingly poses another challenge to the SMT solver, namely, the outermost quantification is second-order, as it quantifies over functions \(f \), which no SMT solver to our knowledge directly supports. However, this report presents two techniques for common cases of such conjectures that avoid the need for second-order quantification. We will first examine the case of syntax-guided synthesis, where our problem additionally takes as input a syntax defining the space of possible solutions. A recent line of research has targetted such problems \([1]\), since they are noted to be of practical interest in various applications.

1.1 Syntax-Guided Synthesis

Consider a negated synthesis conjecture of the form \(\forall f. \exists i. \neg P(f, i) \). If our space of solutions for \(f \) is restricted to some syntax (that is, a signature of symbols that can be used to construct \(f \)), we may consider \(f \) to be a variable \(g \) of sort \(S \), where \(S \) is an algebraic datatype whose constructors represent the programs that may be used in solutions for \(f \). In this report, the notions of syntax specifications and datatypes will be used interchangeably. Consider the following, which we use as a running example.

Example 1. Consider the following property for which a function \(f : \text{Int} \times \text{Int} \to \text{Int} \) must satisfy, namely that \(f \) computes the maximum of two input integers \(x \) and \(y \):

\[
P_0 := \lambda f x y. f(x, y) \geq x \land f(x, y) \geq y \land (f(x, y) \approx x \lor f(x, y) \approx y)
\]

Say our solutions for \(f \) are restricted to a syntax \(S \), which we may represent as the following inductive datatypes:

\[
S := 0 | 1 | x | y | S_1 + S_2 | S_1 - S_2 | \text{ite}(C_1, S_1, S_2)
\]

\[
C := S_1 \leq S_2 | S_1 \approx S_2 | C_1 \land C_2 | C_1 \lor C_2 | \neg C_1
\]

This defines a term signature that includes variables \(x, y \), and theory symbols with builtin interpretations known by the SMT solver, where terms of sort \(S \) refer to those of sort \(\text{Int} \) and terms of sort \(C \) refer to those of sort \(\text{Bool} \)

To state properties of terms in this syntax, we introduce an uninterpreted function for each datatype, which we refer to its *evaluation operator*. Let \(e_S \) be a function of sort \(S \times \text{Int} \times \text{Int} \to \text{Int} \) and \(e_C \) be a function of sort \(C \times \text{Int} \times \text{Int} \to \text{Bool} \), and \(A_S \cup A_C \) be the axiomatization of these functions respectively, containing:

\[
\forall x y. e_S(0, x, y) \approx 0 \\
\forall x y. e_S(1, x, y) \approx 1 \\
\forall x y. e_S(x, y) \approx x \\
\forall x y. e_S(x, y) \approx y \\
\forall x y. e_S(x + y, y) \approx (e_S(x, y) \leq e_S(y, y)) \\
\forall x y. e_S(x - y, y) \approx (e_S(x, y) \geq e_S(y, y)) \\
\forall x y. e_S(\text{ite}(c_1, s_1, s_2), x, y) \approx \text{ite}(e_C(c_1, x, y), e_S(s_1, x, y), e_S(s_2, x, y)) \\
\forall x y. e_C(c_1, x, y) \approx \neg e_C(c_1, x, y)
\]

\(1 \) It is important to note that the symbols shown in the definition of \(S \) and \(C \) denote datatype constructors, and are not to be confused with the builtin theory operators they correspond to. This will be unambiguous from the context in which we use these symbols.
These evaluation operators define an interpreter for programs (terms of sort S and C) given inputs x and y. The interpretation of a term $e_S(g, x, y)$ can be determined for any constant $g, x,$ and y using quantifier instantiation, where the number of instantiations required for doing so is (at most) the term size of g.

With these operators, our property P_0 can be restated as:

$$P := \lambda gxy. e_S(g, x, y) \geq x \land e_S(g, x, y) \geq y \land (e_S(g, x, y) \approx x \lor e_S(g, x, y) \approx y)$$

When asked whether there exists an f that satisfies this specification P, we invoke the SMT solver to determine the satisfiability of $A_S \cup A_C \cup \forall g. \exists xy. \neg P(g, x, y)$, where our background theory is the combination of linear arithmetic, datatypes, and uninterpreted functions. Notice that instantiating the latter quantified formula with $\text{ite}(x \leq y, y, x)$ for g gives us $\exists xy. \neg P(\text{ite}(x \leq y, y, x), x, y)$. The solver will determine this is unsatisfiable using the ground decision procedures in combination with quantifier instantiation for unfolding the evaluation of concrete programs for inputs. We claim this suffices to show that $\text{ite}(x \leq y, y, x)$ is a solution to the synthesis conjecture.

In remains to show how the SMT solver discovers that our quantified formula should be instantiated with $\text{ite}(x \leq y, y, x)$. Heuristic quantifier instantiation techniques, e.g. E-matching, are based around instantiating quantified formulas using terms already occurring in an input. Clearly, since we are asking the solver to find an instantiation that represents a synthesized a term we have yet to see, these heuristics are likely ineffective for this purpose. Our preliminary experiments confirm that heuristic instantiation techniques used by most modern SMT solvers are ineffective even for simple conjectures of the form mentioned in this document. Instead, we present a specialized technique, which we refer to as counterexample-guided quantifier instantiation, which can be used as an technique by the SMT solver to quickly converge on the instantiation that falsifies the synthesis conjecture. The technique follows a popular scheme for synthesis known as counterexample-guided inductive synthesis, which has been implemented in various systems such as Sketch [17].

Counterexample-Guided Quantifier Instantiation. Say we are given a negated synthesis conjecture $\psi := \forall g. \exists i. \neg P(g, i)$, where g has sort S, and an axiomization A defining how terms of sort S evaluate. To determine the satisfiability of $A \cup \psi$ in some background theory T, as with common approaches to SMT solving [14], our approach maintains a set of ground clauses F (which in our case is initially empty). Additionally, our approach makes use of two components:

- A fresh constant e of sort S, the current candidate solution for g, and
- A fresh predicate G, whose interpretation corresponds to possibility that g has a solution.

Our procedure terminates either when F is unsatisfiable, in which case we have found a solution, or when all models of F interpret G as false, in which case we have shown that no solution exists. It consists of two alternating steps, stated in the following:
1. If \(F \) has a model \(M \) such that \(M(G) = \top \), add \(\neg P(M(e), k) \) to \(F \) for fresh \(k \) and go to step 2. Otherwise, answer "no solution".
2. If \(F \) has a model \(M' \), add \(G \Rightarrow P(e, M'(k)) \) to \(F \) and repeat step 1. Otherwise, answer "\(M(e) \) is a solution".

The above procedure, which we call counterexample-guided quantifier instantiation, has been implemented in the SMT solver CVC4 [2]. Let us revisit the example of finding a function that computes the maximum of two integers \(x \) and \(y \). One run of the steps of the above procedure are as follows (as computed by CVC4):

<table>
<thead>
<tr>
<th>Step</th>
<th>Model</th>
<th>Added Clause</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{e \mapsto x, \ldots}</td>
<td>\neg P(x, x_1, y_1)</td>
</tr>
<tr>
<td>2</td>
<td>{x_1 \mapsto 0, y_1 \mapsto 1, \ldots}</td>
<td>G \Rightarrow P(e, 0, 1)</td>
</tr>
<tr>
<td>1</td>
<td>{e \mapsto y, \ldots}</td>
<td>\neg P(y, x_2, y_2)</td>
</tr>
<tr>
<td>2</td>
<td>{x_2 \mapsto 1, y_2 \mapsto 0, \ldots}</td>
<td>G \Rightarrow P(e, 1, 0)</td>
</tr>
<tr>
<td>1</td>
<td>{e \mapsto 1, \ldots}</td>
<td>\neg P(1, x_3, y_3)</td>
</tr>
<tr>
<td>2</td>
<td>{x_3 \mapsto 2, y_3 \mapsto 0, \ldots}</td>
<td>G \Rightarrow P(e, 2, 0)</td>
</tr>
<tr>
<td>1</td>
<td>{e \mapsto x + y, \ldots}</td>
<td>\neg P(x + y, x_4, y_4)</td>
</tr>
<tr>
<td>2</td>
<td>{x_4 \mapsto 1, y_4 \mapsto 1, \ldots}</td>
<td>G \Rightarrow P(e, 1, 1)</td>
</tr>
<tr>
<td>1</td>
<td>{e \mapsto \text{ite}(x \leq 1, 1, x), \ldots}</td>
<td>\neg P(\text{ite}(x \leq 1, 1, x), x_5, y_5)</td>
</tr>
<tr>
<td>2</td>
<td>{x_5 \mapsto 1, y_5 \mapsto 2, \ldots}</td>
<td>G \Rightarrow P(e, 1, 2)</td>
</tr>
<tr>
<td>1</td>
<td>{e \mapsto \text{ite}(x \leq y, y, x), \ldots}</td>
<td>\neg P(\text{ite}(x \leq y, y, x), x_6, y_6)</td>
</tr>
</tbody>
</table>

In this run, notice that each model found for \(e \) satisfies all values of counterexamples found for previous candidates. After the sixth iteration of step 1, the procedure finds the candidate \(\text{ite}(x \leq y, y, x) \), for which no counterexample exists, indicating that the procedure has found a solution for the synthesis conjecture. At the moment, this problem can be solved in \(\sim 5 \) seconds in the latest development version of CVC4.

Fairness. In our preliminary experience, a necessary technique for limiting the candidate programs is to consider smaller programs before larger ones. Adapting techniques for finding finite models of minimal size [13], we use a strategy that searches for programs of size 1 only after we have exhausted the search for programs of size 0. This can be accomplished in the DPLL(T) framework by introducing a splitting lemma of the form \(\{\text{size}(e) \leq 0 \lor \neg \text{size}(e) \leq 0\} \), and asserting \(\neg \text{size}(e) \leq 0 \) as the first decision literal, where \(\text{size} \) is a function mapping a datatype term to its term size (an integer corresponding to the number of non-nullary constructor applications in a term). We do the same for \(\text{size}(e) \leq 1 \) if and when \(\neg \text{size}(e) \leq 0 \) becomes asserted. The decision procedure for inductive datatypes in CVC4 [3] has been extended in our implementation to handle constraints involving \(\text{size} \).

We state the following claims about our procedure here.

Claim. Using the aforementioned fairness strategy, the procedure mentioned in this section has the following properties:
1. (Solution Soundness) When it answers “f is a solution”, then $\forall i. P(f, i)$ holds.
2. (Refutation Soundness) When it answers “no solution”, then $\forall i. P(f, i)$ does not hold for any f, and
3. (Solution Completeness) If the satisfiability problem for $P(e, k)$ is decidable, and there exists an f such that $\forall i. P(f, i)$ holds, it answers “g is a solution” for some g.

1.2 General Synthesis for Single-Invocation Properties

Consider the case where no syntax is provided as input, and we are asked to find a function f of sort $S_1 \times \ldots \times S_n \rightarrow S_r$ satisfying some universal property $\forall i. P(f, i)$, where all instances of f occur as the term $f(i)$. We refer to such P as a single-invocation property. Approaches for axiomatizations over such properties have been studied in [11]. We may rephrase synthesis conjectures for a single-invocation property P as:

$$\forall i. \exists g. Q(g, i)$$

where g is a variable of sort S_r. In contrast to the conjecture in [1], notice that the quantification on the function to synthesize has been pushed downwards. Finding a model for this formula amounts to finding a skolem function of sort $S_1 \times \ldots \times S_n \rightarrow S_r$ for g. This section describes a general approach for determining the satisfiability of formulas of this form.

If $Q(g, i)$ resides in a particular fragment of first-order logic, say linear arithmetic, then determining the satisfiability of the above constraint can be accomplished using a method for quantifier elimination [7, 13]. Such cases have been examined in the context of software synthesis [12]. Alternatively, we may again explore an instantiation-based approach for establishing the unsatisfiability of the negated form of this conjecture:

$$\exists i. \forall g. \neg Q(g, i)$$

The existence of a finite set of ground instantiations to show the formula (4) is unsatisfiable suffices to show the existence of a solution to our conjecture. Moreover, when this is the case, solutions for g may be constructed due to the following observation:

Remark 1. Say that $\neg Q(t_1, k), \ldots, \neg Q(t_n, k) \models T \bot$ for fresh constants k. Then, $\ell := \lambda k. \ite(Q(t_1, k), t_1, \ldots, \ite(Q(t_{n-1}, k), t_{n-1}, t_n) \ldots)$ is a solution for g in $\forall i. \exists g. Q(g, i)$.

Proof: Given an arbitrary set of ground terms u of the same sort as i and model \mathcal{M}, we show that $\mathcal{M} \models Q(\ell(u), u)$. Let σ be the substitution $\{k \mapsto u\}$. Consider the case that $\mathcal{M} \models Q(t_i, \sigma, u)$ for some (least) $i \in \{1, \ldots, n-1\}$. Then, $\mathcal{M}(\ell(u)) = t_i \sigma$, and thus $\mathcal{M} \models Q(\ell(u), u)$. If no such i exists, then $\mathcal{M} \models \neg Q(t_i, \sigma, u)$ for all $i = 1, \ldots, n-1$, and $\mathcal{M}(\ell(u)) = t_n \sigma$. By our assumption and since k is fresh, we have that $\neg Q(t_1 \sigma, u), \ldots, \neg Q(t_{n-1} \sigma, u) \models T Q(t_n \sigma, u)$, which is $Q(\ell(u), u)$. \blacksquare

Example 2. Let us revisit the example of a function computing the max of its inputs x and y. In the absence of syntactic restrictions, this can be phrased as the following, where g, x, and y are variables of sort Int:

$$Q := \lambda g. x, g \geq y \geq y \land (g \approx x \lor g \approx y)$$
Our negated synthesis conjecture is then \(\exists xy. \forall g. \neg Q(g, x, y) \), which after skolemization is \(\forall g. \neg Q(g, k_1, k_2) \) for fresh constants \(k_1 \) and \(k_2 \). When asked to determine the satisﬁability of \(\forall g. \neg Q(g, k_1, k_2) \), the SMT solver may, for instance, instantiate this formula with \(k_1 \) and \(k_2 \) for \(g \), giving us \(\neg Q(k_1, k_1, k_2) \) and \(\neg Q(k_2, k_1, k_2) \) which together are unsatisfiable in the theory of linear arithmetic. By the aforementioned remark, this tells us that \(\lambda k_1 k_2. \) \(\text{ite}(Q(k_1, k_1, k_2), k_1, k_2) \) is a solution for \(g \), which is \(\lambda k_1 k_2. \) \(\text{ite}(k_1 \geq k_1 \land k_1 \geq k_2 \land (k_1 \approx k_1 \lor k_1 \approx k_2), k_1, k_2) \) and simpliﬁes to \(\lambda k_1 k_2. \) \(\text{ite}(k_1 \geq k_2, k_1, k_2) \). \(\square \)

I t remains to be shown how the solver determines the instantiations \(k_1 \) and \(k_2 \) for \(g \) in \(\forall g. \neg Q(g, k_1, k_2) \). The procedure described in the previous section can be modiﬁed as follows. We again maintain current set of clauses \(F \), and introduce a fresh constant \(e \) of the same sort as \(g \), and guard predicate \(G \). To begin, skolemize the outermost quantiﬁer of our conjecture, giving us the constraint \(\forall g. \neg Q(g, k) \) for fresh \(k \), and add the clause \(G \Rightarrow Q(e, k) \) to \(F \). Our approach then consists of iterations of the following step, where we write \(L(t_1, \ldots, t_n) \) as shorthand for \(\lambda k. \) \(\text{ite}(Q(t_1, k), t_1, \ldots \text{ite}(Q(t_{n-1}, k), t_{n-1}, t_n) \ldots) \):

1. If \(\neg Q(t_1, k), \ldots, \neg Q(t_n, k) \subset F \) is unsat, answer “\(L(t_1, \ldots, t_n) \) is a solution”. If \(F \) has a model \(M \) such that \(M(G) = \top \), add \(\neg Q(t, k) \) to \(F \) for some term \(t \) where \(M(t) = M(e) \), and repeat. Otherwise, answer “no solution”.

The construction of term \(t \) in this loop intentionally underspeciﬁed. A naïve choice for \(t \) is the constant in our signature whose interpretation in a standard model is \(M(e) \). This choice amounts to testing whether points in the range of the function satisfy the speciﬁcation. More sophisticated choices for \(t \) are a subject of current work.

1.3 Syntax-Guided Synthesis for Single-Invocation Properties

Consider the case when both (1) our syntax \(S \) for solutions contains the constructor \(\text{ite} : C \times S \times S \rightarrow S \) for some inductive datatype \(C \), and (2) the property we wish to synthesize is single-invocation and can be expressed as a term of sort \(C \). For instance, the property from Example 1 can be phrased as:

\[
R := \lambda g k_1 k_2. e_{C}(g \geq x \land (g \geq y \land (g \approx x \lor g \approx y)), k_1, k_2)
\]

(6)

where \(g \) has sort \(S \) and \(k_1 \) and \(k_2 \) have sort \(\text{Int} \). The method in Section 1.2 is applicable to the conjecture \(\exists xy. \forall g. \neg R(g, x, y) \) since it emits solutions meeting our syntactic requirements. This has the advantage over the approach in Section 1.1 in that it only needs to synthesize the outputs of a solution, and not conditions in \(\text{ite} \)-terms. Our implementation in CVC4 is capable of handling conjectures of this form, where we limit our choice of \(t \) in the procedure described in the previous section to be the constant term \(M(e) \). Assuming \(k_1 \) and \(k_2 \) are skolem constants for \(x \) and \(y \), the run for this example is the following:
Model	Choice of t	Added Clause
{$e \mapsto x, \ldots$} | x | $\neg R(x, k_1, k_2)$
{$e \mapsto y, \ldots$} | y | $\neg R(y, k_2, k_2)$
none | |

This indicates that, for instance, $\text{ite}(x \geq x \land (x \geq y \land (x \approx x \lor x \approx y)), x, y)$ is a solution for g, which subsequently could be simplified to $\text{ite}(x \geq y, x, y)$. Notice the method described in this section terminates after two iterations (in <.05 seconds) as opposed to the method mentioned in Section [11] which terminated after six iterations, leading to a tenfold decrease in runtime for this example.

References

