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Abstract. In this work, we investigate various proof systems for quantifier-free
Linear Real Arithmetic, focusing on the continuum between declarative and com-
putational styles of proof checking. We use LFSC, a high-level declarative lan-
guage for defining proof systems and proof objects for virtually any logic. One
of the distinguishing features of LFSC is its support for computational side con-
ditions on proof rules. Side conditions facilitate the design of proof systems that
reflect closely the sort of high-performance inferences made by SMT solvers. We
propose a proof translation for LRA that exploits the continuum between declar-
ative and computational proof checking, and report on our comparative experi-
mental results on generating and checking proofs using alternative strategies.

1 Introduction

Automated verification techniques increasingly rely on Satisfiability Modulo Theories
(SMT) solvers to discharge verification conditions (e.g., [5, 10, 16]). The ability for an
SMT solver to produce a proof when it reports a formula unsatisfiable has long been
recognized as valuable, and is increasingly important for applications. For verification
of safety-critical systems, for example, it is important to be able to trust (and indeed pos-
sibly certify) the results of the solver. The complexity of modern SMT solvers makes
verifying the solver itself a formidable challenge. Producing and checking a proof with
a much simpler and more trustworthy, possibly even certified, proof checker is an at-
tractive alternative. Furthermore, some applications (e.g., [6, 5]) make use of proofs
produced by SMT solvers, so even if a solver were completely trusted, there would still
be a need for proof production.

The diversity of theories and solving algorithms within SMT makes establishing
a common SMT proof format difficult, as it seems practically infeasible to design a
single set of universally suitable inference rules. To address this difficulty, previous
work introduced LFSC (“Logical Framework with Side Conditions”), a meta-language
for specifying proof systems in SMT [17], and showed how to apply it for encoding
proofs in the quantifier-free integer difference logic (QF IDL) [14] of SMT-LIB [1].
LFSC is based on the Edinburgh Logical Framework (LF), a high-level declarative lan-
guage in which it is possible to specify logics [8]. LFSC increases LF’s flexibility by
including support for computational side conditions on inference rules. These condi-
tions, expressed in a small functional programming language, enable some parts of a
proof to be established by computation. The flexibility of LFSC facilitates the design



of proof systems that reflect closely the sort of high-performance inferences made by
SMT solvers.

As with LF, with LFSC a single high-performance type checker can check proofs in
any LFSC-specified logic. The presence of side conditions in LFSC opens up a contin-
uum of possible LFSC encodings of a given inference system, from completely declar-
ative, using rules with no side conditions, at one end; to completely computational,
using a single rule with a huge side condition, at the other. Solver implementers thus
have the freedom to choose how to divide a proof system into declarative and compu-
tational parts. Such design decisions are explicitly recorded in the LFSC specification
and become part of the trusted computing base.

The advantages of tools using interactive theorem provers such as Isabelle/HOL
are well known; in particular, their trusted core contains only a base logic and a small
fixed number of proof rules. While recent work [4] has significantly improved checking
times for LCF-style proofs, the performance of these provers still lags behind C/C++
checkers carefully engineered for fast checking of very large proofs. The approach of
LFSC seeks to strike a pragmatic compromise between trustworthiness and efficiency. It
would certainly be possible to reduce the size and complexity of the trusted computing
base of the LFSC type checker by using a less optimized implementation, at the cost of
reduced performance.

In this work, we use LFSC to investigate alternative translation methods for proofs
generated for linear real arithmetic (LRA). Conventional approaches to proof generation
in SMT often involve the use of declarative rewrite steps, which as a whole, represent a
trace of the arithmetic inferences applied by the prover. While this level of granularity
makes the design of a proof system straightforward, it does present practical concerns,
such as overall proof size. For LRA, it is widely known that a certificate of unsatisfia-
bility for a system of inequations can be concisely represented as a set of coefficients
which, when multiplied by the inequations and summed together give an trivially in-
consistent inequation (for instance, one of the form c ≤ 0 for some positive constant c).
Depending on the decision procedure used, determining these coefficients a posteriori
can be a non-trivial task. We describe a generalized proof translation in which these
coefficients are efficiently computed from declarative trace-style proofs, making use
of LFSC as a meta-framework for defining proof rules involving computational side
conditions.

Contributions. We present a novel translation from the declarative style proofs produced
by the Cvc3 SMT solver [2] to an alternative, coefficient-based proof system, taking
advantage of LFSC’s side conditions. First we provide an LFSC formalization of Cvc3’s
proof system for the quantifier-free fragment of Linear Real Arithmetic (QF LRA) [1],
and instrument Cvc3 to produce proofs in LFSC format. That formalization mainly uses
declarative rules with no side conditions, many of which represent explicit rewrite steps.
Then we provide a translation to LFSC proofs that use novel, coefficient-based proof
rules relying on side conditions. In our experimental evaluation, the translated proofs of
arithmetic lemmas (valid disjunctions of literals) are on average 5.3 times more compact
and 2.3 times faster to check than the original Cvc3 proofs.

Paper outline. We begin with a brief introduction to LFSC. In Section 3, we describe
abstractly the LFSC LRA calculus, as well as Cvc3’s, in terms of textbook logic rules.



Then we explain how proofs in the native format of Cvc3 are translated in LFSC format,
and subsequently converted to coefficient-based proofs. We include a formal definition
of the translation applied to a subset of Cvc3 proof rules. In Section 4, we provide com-
parative experimental results on generating and checking LFSC proofs using various
translations. Finally, we conclude with a few notes on further work.

2 LF with Side Conditions

LFSC extends the Edinburgh LF with support for computational side conditions. LF
has been used extensively as a metalanguage for encoding deductive systems including
logics, semantics of programming languages, as well as many other applications [9, 3,
12]. LF is a type-theoretic language, where proof systems are encoded as signatures,
collections typing declarations. Each proof rule is encoded as a constant symbol, whose
type represents the inference allowed by the rule. For example, the following transitivity
rule for equality

t1 = t2 t2 = t3
t1 = t3

eq trans

can be encoded in LF (using the prefix syntax of LFSC) as

eq_trans : (! t1 term (! t2 term (! t3 term
(! u1 (pf (= t1 t2)) (! u2 (pf (= t2 t3))
(pf (= t1 t3)))))))

where ! represents LF’s Π binder, for the dependent function space. The encoded rule
can be understood intuitively as saying: “for any terms t1, t2 and t3, and any proofs u1

and u2 of t1 = t2 and t2 = t3 respectively, eq trans constructs a proof of t1 = t3.”
Pure LF is not suitable for encoding large proofs from SMT solvers, due to the

computational nature of many SMT inferences. For example, consider trying to prove
the following seemingly immediate statement:

(t1 + (t2 + (. . .+ tn) . . .))− ((ti1 + (ti2 + (. . .+ tin
) . . .) = 0 (1)

where ti1 . . . tin
is a permutation of the terms t1, . . . , tn. A purely declarative proof

would (seem to) require sorting the terms using associativity and commutativity of bi-
nary +, thus requiringΩ(n log n) applications of proof rules encoding those properties.
To circumvent this problem, LFSC allows rules with side conditions expressed as com-
putational checks written in a strongly typed first-order language with a simple form of
ML-style pattern matching.

When checking the application of an inference rule with a side condition, the LFSC
checker computes actual parameters for the side condition and executes its code. If the
side condition fails, either because it is not satisfied or because of an exception caused
by a pattern-matching failure, the LFSC checker rejects the application of the rule.
Thus, statement (1) could be proven using a single LFSC inference rule of the form:

eq_zero : (! t term
(! sc (ˆ (simplify t) 0)
(pf (t = 0))))



where simplify is the name of a separately defined function in the side condi-
tion language that takes an arithmetic term and returns a normal form for it. The ex-
pression (ˆ (simplify t) 0) defines the side condition of the eq zero rule,
with the condition succeeding iff the expression (simplify t) evaluates to 0. The
simplify function might have a definition like the following (where tt and ff de-
note constructors for boolean true and false respectively):

(program simplify ((t term)) term
(match (normalize t)
((poly c l)
(match (is_zero l)
(tt c)
(ff fail)))))

where normalize and is zero are auxiliary functions defined similarly. Here, poly-
nomials are represented as (inductive data type) values of the form (poly c l) where
c is the constant part of the polynomial and l is the rest. This side condition will first
convert term t to a polynomial, and then attempt to simplify the non-constant part of
the result to zero. If successful, it will return the constant part c of the polynomial.

The eq zero rule is a simple example of the opposite end of the LFSC spectrum,
i.e., fully computational proof checking. Many of the proof inferences described in the
rest of the paper fall somewhere in-between declarative and computational, with terms
being normalized to polynomials and side condition functions performing mostly oper-
ations over such polynomials. These functions are comparable in size and complexity
to the function simplify above.

Proof Checking. LFSC proofs are checked using a high-performance LFSC type checker,
developed (in around 5kloc of C++) by Reynolds and Stump [14]. The checker takes as
input a signature and a proof in that signature to be checked. The signatures discussed
in this paper contain about 60 lines of side condition code, for a total of less than 2 kilo-
bytes. As a whole, this code is similar in structural complexity to the implementation of
a merge sort of key/value pairs in LISP.

As described in [14], the LFSC checker compiles side-condition code to C++, for
higher performance. Moreover, it performs incremental checking, interleaving parsing
and type checking. This allows it to parse and type check large proofs, without needing
to build first an abstract syntax tree in memory for the whole proof. These two opti-
mizations each lead to significant reductions in running time (on the order of 5x) and
memory usage.

While LFSC is rather general and fairly stable, it is still under active development
and may occasionally require the addition of new features for better support. With this
work, a few new features were added to the LFSC language and type checker: (i) support
for arbitrary-precision rational arithmetic; (ii) local definitions via a let construct; and
(iii) a primitive compare function imposing a total ordering on LFSC variables, which
enables sorting in the side condition language.



3 Proof Generation and Checking for LRA

We formalize the quantifier-free fragment of LRA in an LFSC proof system (or calcu-
lus), which we call L here. Proofs in the L calculus are generated from proofs produced
by Cvc3 in its own calculus. Since Cvc3’s proof-generation facility is deeply embedded
in the system’s code, a translation module was added to Cvc3 that traverses the internal
data structure storing the proof, and produces an LFSC proof from it.

Roughly speaking, Cvc3’s proofs have a two-tiered structure, typical of solvers
based on the DPLL(T ) architecture [13], with a propositional skeleton filled with sev-
eral theory-specific subproofs. The proof’s conclusion is reached by means of propo-
sitional or purely equational inferences applied to a set of input formulas and a set of
theory lemmas. The latter are disjunctions of arithmetic atoms deduced from no as-
sumptions, mostly using proof rules specific to the theory in question—the theory of
real arithmetic in this case.

We implemented two different translations from Cvc3 proofs, described below, dif-
fering in how close they are to the original proof. We will refer to these as the literal
and the liberal translation, and name them Lit and Lib, respectively.

Literal translation. In Lit, a trace-style LFSC proof is produced directly from Cvc3’s
proof, using whenever possible declarative L rules that mirror the corresponding
Cvc3 rules, and resorting toL-specific rules involving side conditions only for those
few Cvc3 rules that cannot be checked by simple pattern matching (but require, for
instance, to verify that a certain expression in the Cvc3 rule is the canonical version
of another). The set of rules used in this translation is in effect a subcalculus of L.
We will refer to it as the C calculus.

Liberal translation. In Lib, the Cvc3 proof is used as a guide to produce a compact
coefficient-based proof that relies on rules with side conditions. The use of side
conditions enables compaction that is otherwise infeasible due to the declarative
nature of the Cvc3 rules. In Lib, the subproofs of all theory lemmas are systemat-
ically converted to more compact proofs that use L-specific rules. The rest of the
Cvc3 proof—which does not involve LRA-specific reasoning—is translated in the
same way as in the literal translation.

We also experimented with a third translation, a more aggressive version of Lib,
which also tries to compact portions of the Cvc3 proof that rely on general equality
reasoning. This translation uses an adaptive strategy to switch from L-specific equality
rules to C equality rules and back, making heuristic decisions on when it is worth-
while to do so. Although not discussed further here, experiments on this translation
are included in a companion report [15], showing mixed results for different classes of
benchmarks.

The proof translation times for the Lit and the Lib translations are roughly the same.
However, the size of a proof produced with the liberal translation is often considerably
smaller than the size of the corresponding proof generated with the literal translation.
The compression is achieved to a great extent thanks to L proof rules that work with
normalized polynomial atoms, atoms of the form

c1 · x1 + . . .+ cn · xn + cn+1 ∼ 0



ϕ1 ⇔ ϕ2 ϕ2 ⇔ ϕ3

ϕ1 ⇔ ϕ3
iff trans

ϕ1 ϕ1 ⇔ ϕ2

ϕ2
iff mp

t1 = t2 t3 = t4
t1 ∼ t3 ⇔ t2 ∼ t4

congr 1 t1 = t2 t2 = t3
t1 = t3

eq trans

t1 = t2 t3 = t4
t1 ./ t3 = t2 ./ t4

congr 2 t1 = t2
t2 = t1

eq symm

t1 > t2 t2 > t3
t1 > t3

gt trans
t1 > t2 t2 > t1

⊥
gt acyc

{0 � c}
(0 ∼ c)⇔ ⊥

const pred 1
t1 ∼ t2 ⇔ 0 ∼ t2 − t1

right minus left

{t′ canonical form of t}
t = t′

canon {c non-zero}
t1 = t2 ⇔ c · t1 = c · t2

mult eqn

t1 > t2 ⇔ t2 < t1
flip ineq

t1 ∼ t2 ⇔ t1 + t3 ∼ t2 + t3
plus pred

Fig. 1. Some of Cvc3’s proof rules for QF LRA. The letters ϕ, t and c respectively denote arith-
metic formulas, terms and (concrete) constants, while ./ denotes one of +,−, · .

where each ci is a rational constant, each xi is a real variable, and ∼ is one of the
operators =, >,≥. These rules take normalized atoms as premises and produce only
normalized atoms as their conclusion. The computation of these atoms is delegated to
the rule’s side condition, which will perform arithmetic operations on polynomials, each
producing a normal form for the conclusion atom.

The rest of this section provides an abstract overview of the C and L calculi, and de-
scribes the liberal translation from Cvc3 proofs to LFSC proofs in L. For convenience,
thanks to the literal translation, we will identify Cvc3 native proofs with LFSC proofs
in C, and define the liberal translation formally as a mapping from C-proofs to L-proofs.
Full details on the two calculi, the translations and their correctness can be found in the
companion report [15].

The C calculus. In essence, the C calculus is a natural deduction-style version of a
suitable fragment of the sequent-style calculus used by Cvc3.1 Proofs in C derive a
quantifier-free LRA formula ϕ from a set Γ of premises, all of which are also quantifier-
free LRA formulas. A sample of C rules directly corresponding to Cvc3’s rules is pro-
vided in Figure 1.2 The rules are fairly standard and self-explanatory, with the possi-
ble exception of canon, which asserts an equality between a term t and its equivalent
canonical form produced by Cvc3’s canonizer module.

As a whole, the Cvc3-corresponding rules are used to represent a trace of the rea-
soning used by Cvc3’s decision procedure for QF LRA. This procedure relies heavily

1 The entire Cvc3 calculus is a lot bigger because Cvc3 supports a much larger logic than
QF LRA.

2 To ease formatting, some rules may have a different name from the corresponding rules in
Cvc3.



p = 0

(c · p)↓ = 0
lra mult c=

p > 0 {c > 0}
(c · p)↓ > 0

lra mult c>

p1 = 0 p2 ∼ 0

(p1 + p2)↓ ∼ 0
lra add=∼

p1 ∼ 0 p2 = 0

(p1 − p2)↓ ∼ 0
lra sub∼=

{c ∼ 0}
c ∼ 0

lra axiom∼
p ∼ 0 {p � 0}

⊥ lra contra∼

p ≥ 0 p′ ≥ 0 {p + p′ = 0}
p = 0

lra≥≥to=

Fig. 2. Some of the polynomial rules of L. The letter p denotes polynomials.

on small-step rewrites of terms and formulas, many of which are explicitly recorded
as applications of proof rules by Cvc3’s proof generation process. This enables a proof
checker to examine a fine-grained, verbatim account of the operations used in deducing
a particular formula.

Although the C calculus itself is quite general, all Cvc3 proofs for QF LRA are
refutations, that is, they prove the unsatisfiable formula⊥ from a subset of the formulas
whose joint satisfiability Cvc3 was asked to check.

The L calculus. The L calculus is a proper superset of C. For the purposes of opti-
mization, the liberal translation uses proof rules to convert arithmetic terms (used in C)
to polynomials. A further set of rules operate only on polynomial atoms and are used
by the liberal translation to generate proofs of LRA theory lemmas. A sample of these
rules is provided in Figure 2. To ease formatting, side conditions are written together
with the premises, but enclosed in braces. Although side conditions use the same syn-
tax used in the sequents, they should be read as a mathematical notation. For example,
p = 0 in a premise denotes an atomic formula whose left-hand side is an arbitrary poly-
nomial and whose right-hand side is the 0 polynomial; in contrast, the side condition
{p+p′ = 0}, say, denotes the result of checking whether the expression p+p′ evaluates
to 0 in the polynomial ringQ[X], whereQ is the field of rational numbers andX the set
of all variables (or “free constants” in SMT-LIB parlance). An expression of the form
e↓ denotes the result of normalizing the polynomial expression e. The normalization is
actually done in the rule’s side condition, which is however left implicit here to keep
the notation uncluttered.

3.1 From Cvc3 proofs to L proofs

As mentioned earlier, the literal translation essentially rewrites a Cvc3 proof in LFSC
format, resulting in a proof in C. Here we will focus only on the approach used by the
liberal translation, which produces substantially different and more compact proofs for
theory lemmas in the L calculus.

Theory lemmas in Cvc3 are derived by proving a contradiction from a set of theory
atoms, for instance, {2x = 2y, y = x + 5}. Given a proof of ⊥ from assumptions
ϕ1, . . . , ϕn, Cvc3 will produce the lemma ¬ϕ1 ∨ . . . ∨ ¬ϕn. Such proofs rely on a



variety of rules, including rewrite axioms of the form ψ1 ⇔ ψ2 and standard rules for
natural deduction.

In contrast, our theory lemma proofs in the L calculus amount to determining a list
of rational coefficients that when multiplied by the asserted atomic formulas, allow one
to produce an inconsistent polynomial atom cp ∼ 0, for some constant polynomial cp.
For example, multiplying 2x = 2y and y = x + 5 respectively by the coefficients − 1

2
and 1, adding the resulting equations together, and normalizing gives us the atom 5 = 0.
The goal of the translation is to determine these coefficients, and subsequently compute
the necessary multiplications and summations on polynomials using computational side
conditions. As we will see, these coefficients are computed directly and efficiently from
the Cvc3 proof.

3.2 The liberal translation Lib

In the following, we give a formal abstract definition of our translation Lib for a subset3

of C proof rules, starting with a formal definition of proof in the L calculus (which,
recall, includes all the proof rules of C).

Definition 1 (Proof). A proof P is either an individual formula or a triple consisting
(recursively) of (i) a possibly empty set of proofs, the immediate subproofs of P , (ii) the
name of a rule in L, and (iii) a formula, the conclusion of P . We say that a proof P is a
well-formed proof of ϕ from Γ , and write P : Γ ` ϕ, where Γ is a set of formulas and
ϕ a formula iff

1. P has the form ϕ with ϕ ∈ Γ , or
2. P has the form ({P1, . . . Pn}, r, ϕ) and

(a) Pi : Γi ` ϕi for some ϕi and Γi, for each i,
(b) applying r to ϕ1 . . . ϕn produces ϕ,
(c) all formulas in Γi \ Γ are local assumptions of r, for each i.

Similarly, a C-proof is a proof of the form above where instead r is a rule of C.

The purpose of proof checking is to verify that a given proof (in the sense above) is
a well-formed proof.4 We will write proofs P of the second form graphically as follows,
where P1 . . . Pn are the direct subproofs of P :

P1 : Γ1 ` ϕ1 · · · Pn : Γn ` ϕn

P : Γ ` ϕ r

When convenient, we will omit rule names and annotations (Pi :) for unnamed sub-
proofs. Also, we will write P : ϕ as shorthand for P : Γ ` ϕ when Γ is understood or
not important.

To each conclusion ϕ of a C proof (e.g., 2x + y = 2y) we associate a unique
polynomial atom p ∼ 0 logically equivalent to ϕ, i.e., satisfied by the same variable

3 See [15] for details of Lib applied to all proof rules.
4 At the concrete, LFSC level, this translates into checking that the term encoding a proof is

well-typed in the signature encoding the calculus.



assignments that satisfyϕ (e.g., (2x−y)↓ = 0). We will denote such logical equivalence
by writing p ∼ 0 ≡ ϕ (with ≡ not to be confused with the object syntax ⇔ used for
double implication).

Let P be the set of all proofs. In [15], we define a set Plra ⊆ P of theory reasoning
C-proofs and a total proof-translation function T : Plra → P from such proofs to L
proofs, where applications of rules in C are translated to applications of corresponding
rules for polynomial atoms in L. The liberal translation Lib implements an extension
of the operator T , relying on an extension of the invariant below to proofs involving
inequalities, as well as logical symbols such as⇒, ¬ and ⊥. For space constraints, we
limit our discussion here to proofs involving equality atoms and double implications
between such atoms.

Invariant 1 For all proofs P ∈ Plra the following holds.

(a) If P : Γ ` t = s, then (i) T (P ) : Γ ` p = 0 and (ii) (p = 0) ≡ (t = s).

(b) If P : Γ ` t1 = s1 ⇔ t2 = s2, then (i) T (P ) : Γ ` (c · p1 − p2)↓ = 0 for some
non-zero constant c, (ii) (p1 = 0) ≡ (t1 = s1), and (iii) (p2 = 0) ≡ (t2 = s2).

Thanks to Invariant 1, all translated proofs T (P ) are at least as strong as the original
proof P (see [15] for a proof).

Proposition 1. If P : Γ ` ϕ and T (P ) : Γ ` p ∼ 0, then p ∼ 0 entails ϕ.

The T operator is defined by structural induction on proofs from Plra. To give a
general idea of this definition, we present here three subcases of T ’s definition and
show how they preserve Invariant 1.

(iff trans) Let P be a proof of the form:

P1 : t1 = s1 ⇔ t2 = s2 P2 : t2 = s2 ⇔ t3 = s3
P : t1 = s1 ⇔ t3 = s3

iff trans

By assumption of Invariant 1(b) for P1, we have that T (P1) : (c1 · p1 − p2)↓ = 0
for some non-zero c1, where (p1 = 0) ≡ (t1 = s1), and (p2 = 0) ≡ (t2 = s2).
Similarly for P2, we have that T (P2) : (c2 · p2− p3)↓ = 0 for some non-zero c2, where
(p3 = 0) ≡ (t3 = s3). The translated proof T (P ) is:

T (P1) : (c1 · p1 − p2)↓ = 0
(c2 · (c1 · p1 − p2))↓ = 0

lra mult c=
T (P2) : (c2 · p2 − p3)↓ = 0

T (P ) : (c2 · (c1 · p1 − p2) + (c2 · p2 − p3))↓ = 0
lra add==

Invariant 1(b) holds for P . Note that (c2 · (c1 · p1 − p2) + (c2 · p2 − p3))↓ = ((c2 · c1) ·
p1 − p3)↓. This gives us property (i) of Invariant 1(b), noting that c2 · c1 is non-zero
since c1 and c2 are both non-zero. Properties (ii) and (iii) hold by assumption.

(iff symm) Let be P a proof of the form:

P1 : t1 = s1 ⇔ t2 = s2
P : t2 = s2 ⇔ t1 = s1

iff symm



By assumption of Invariant 1(b) for P1, we have that T (P1) : (c·p1−p2)↓ = 0 for some
non-zero c, where (p1 = 0) ≡ (t1 = s1), and (p2 = 0) ≡ (t2 = s2). The translated
proof T (P ) is:

T (P1) : (c · p1 − p2)↓ = 0

T (P ) : (− 1
c · (c · p1 − p2))↓ = 0

lra mult c=

To see that Invariant 1(b) holds for P , note that (− 1
c · (c · p1 − p2))↓ = ( 1

c · p2 − p1)↓,
giving us property (i). Properties (ii) and (iii) hold by assumption.

(iff mp) Let be P a proof of the form:

P1 : t1 = s1 P2 : t1 = s1 ⇔ t2 = s2
P : t2 = s2

iff mp

By assumption of Invariant 1(a) for P1, we have that T (P1) : p1 = 0 and (p1 = 0) ≡
(t1 = s1). By assumption of Invariant 1(b) for P2, we have that T (P2) : (c ·p1−p2)↓ =
0 for some non-zero c, where (p2 = 0) ≡ (t2 = s2). The translated proof T (P ) is:

T (P1) : p1 = 0
(c · p1)↓ = 0

lra mult c=
T (P2) : (c · p1 − p2)↓ = 0

T (P ) : (c · p1 − (c · p1 − p2))↓ = 0
lra sub==

It can be shown that Invariant 1(a) holds for P , by noting that (c·p1−(c·p1−p2))↓ = p2.
This gives us property (i), and property (ii) holds by assumption.

Example 1 (Proof Translation). Figure 3 shows, in part, a subproof P of a refutation in
C from a set of premises that includes 2x = 2y and y = x + 5. In the given fragment,
which uses rules from Figure 1, one application of iff mp, followed by one application
of eq trans and another application of iff mp, yields the contradictory term equation
5 = 0.

The bottom part of the figure illustrates the correspondence between the conclusion
of each shown subproof of P and its associated equivalent polynomial atom. For each
proof node, a polynomial inference suffices to prove that atom. As demonstrated in this
example, rewrite axioms can be replaced by the trivial identity 0 = 0, logical modus
ponens can be replaced by a subtraction of polynomials (with possible multiplication
by a constant), and transitivity for equality can be replaced by polynomial addition.

The translated proof T (P ) is given in Figure 4. As a last step in the translation, we
cut all portions of the original proof that do not contribute to deriving the conclusion
of T (P ), such as as P6 in Figure 3 for instance. Although the example here is simple,
P6 may be in general a highly non-trivial subproof, which when cut, can account for a
significant reduction in overall proof size. ut



P1 : 2x = 2y P2 : 2x = 2y ⇔ x = y

P3 : x = y P4 : y = x + 5

P5 : x = x + 5

...
P6 : x = x + 5⇔ 5 = 0

P : 5 = 0

(2x− 2y)↓ = 0 0 = 0

( 1
2
· (2x− 2y)− 0)↓ = 0 (y − (x + 5))↓ = 0

( 1
2
· (2x− 2y)− 0 + y − (x + 5))↓ = 0

...
0 = 0

(−1 · ( 1
2
· (2x− 2y)− 0 + y − (x + 5))− 0)↓ = 0

Fig. 3. A proof using only C rules, as generated by Cvc3, followed by corresponding polynomial
inferences.

T (P1) : 2x− 2y = 0

T (P3) : x− y = 0 T (P4) : −x + y − 5 = 0

T (P ) : 5 = 0

Fig. 4. Translation of the proof P from Figure 3.

4 Experimental Results

To evaluate the various translations experimentally, we looked at all the QF LRA and
QF RDL unsatisfiable benchmarks from SMT-LIB Version 1.2.5 Our results contain no
comparisons with other proof checkers besides LFSC here, although previous work [14]
has shown that for other logics, LFSC is highly competitive with other SMT proof
checkers such as Fx7 [11]. A potential candidate for this work was a former system
developed by Ge and Barrett that used the HOL Light prover as a proof checker for
Cvc3 [7]. Unfortunately, that system, which was never tested on QF LRA benchmarks
and was not kept in sync with the latest developments of Cvc3, currently breaks on
most of these benchmarks. While we expect that it could be fixed, the required amount
of effort is beyond the scope of this work.

We ran our experiments on a Linux machine with two 2.67GHz 4-core Xeon pro-
cessors and 8GB of RAM. We will discuss benchmarks for which Cvc3 could generate
a proof within a timeout of 900 seconds, that is, 161 of the 317 unsatisfiable QF LRA
benchmarks, and 40 of the 113 unsatisfiable QF RDL benchmarks.

We collected runtimes for the following four main configurations of Cvc3.

cvc: Default, solving benchmarks but with no proof generation.
cvcpf: Solving with proof generation in Cvc3’s native format.
lit: Solving with proof generation and literal translation to LFSC.
lib: Solving with proof generation and liberal translation to LFSC.

We also ran a fifth configuration, litNT, for the purpose of isolating the non-theory
component of proof sizes and checking times. This configuration trusts all theory lem-

5 Each of these benchmarks consists of an unsatisfiable quantifier-free LRA formula. QF RDL
is a sublogic of QF LRA.



!"#$%&'()
Class ! "#" "#"$% &'( &') &'(*+ "#"$% &'( &') &'(*+ &'( &') &'(*+ +,
"-."/0&12 1 0.1 0.2 0.3 0.2 0.2 0.3 0.5 0.1 0.1 0.1 0.0 0.03 79%
"-."/013& 1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 48%
"&4"/5678"- 18 11.7 21.0 21.8 21.7 21.5 9.1 14.8 13.0 12.7 2.6 2.3 2.3 17%
926):18.1 19 4.0 7.5 8.6 7.8 6.8 8.5 13.9 7.7 6.8 2.5 1.6 1.2 46%
$:16:'( 8 16.6 26.6 26.3 26.3 25.7 3.9 5.1 3.6 3.4 0.8 0.7 0.6 36%
62& 31 1584.8 3130.5 3254.3 3239.8 3285.9 718.6 537.1 472.2 452.1 275.6 269.0 262.0 6%
6"-.3:&'89 8 281.8 322.0 322.9 322.1 321.1 18.4 25.1 17.8 18.3 3.7 2.9 2.6 37%
6$'3.1 35 10.2 16.7 17.4 17.4 16.8 10.1 12.7 11.1 10.8 2.3 2.4 2.0 15%
(9" 21 31.5 54.8 55.9 55.4 54.3 21.0 22.7 16.9 16.6 4.2 3.4 3.1 16%
+; 1 17.6 29.4 29.3 29.0 29.1 1.3 2.7 2.7 2.7 0.4 0.4 0.4 0%
((256(21(:$ 25 29.7 65.9 68.4 68.5 67.9 38.8 43.6 43.2 42.9 5.4 5.6 5.3 3%
:21( 9 1074.2 1387.4 1391.2 1434.7 1379.1 118.9 102.4 76.6 72.2 42.7 37.0 34.5 13%
<'834<1.2& 24 20.6 40.6 41.6 41.7 41.4 20.7 22.1 21.9 21.7 2.8 2.9 2.9 3%
Total 201 3082.9 5102.6 5238.0 5264.6 5249.7 969.4 802.8 686.9 660.2 343.2 328.1 316.8 8%

Solve + (Pf Gen) + (Pf Conv) (sec) Proof Size (MB) Pf Check Time (sec)

Table 1. Cumulative results, grouped by benchmark class. Column 2 gives the numbers of bench-
marks in each class. Columns 3 through 8 give Cvc3’s (aggregate) runtime for each of the five
configurations. Columns 9 through 13 show the proof sizes for each of the 5 proof-producing
configurations. Columns 14 through 17 show LFSC proof checking times. The last column gives
the percentage of proof nodes found beneath theory lemmas in Cvc3’s native proofs.

mas treating them like premises, but otherwise behaves like lit (and so also like Lib
which differs from Lit only on theory lemmas). Comparisons with litNT are useful be-
cause the liberal translation works solely by compacting the theory-specific portion of a
proof. Hence, their effectiveness is expected to be correlated with the amount of theory
content of a proof. We measure that as the percentage of nodes in a Cvc3 proof belong-
ing to the (sub)proof of a theory lemma. For this data set, the average theory content is
very low, about 8.3%.

Table 1 shows a summary of our results for various classes of benchmarks.6 As
can be seen there, Cvc3’s solving times are on average 1.65 times faster than solving
with native proof generation. The translation to LFSC proofs adds additional overhead,
which is however less than 3% on average for all translations.

The scatter plots in Figure 5 are helpful in comparing proof sizes for the various
configurations.7 The first plot compares proofs in Cvc3 native format against their lit-
eral translation Lit. Notice that, except for a couple of outliers, Lit suffers only a small
constant overhead which we believe is due to structural differences between the Cvc3
and the LFSC proof languages.

The second plot shows that the liberal translation Lib introduces constant compres-
sion factors over the literal translation. A number of benchmarks in our test set do not
benefit from the Lib translation. Such benchmarks are not heavily dependent on the-
ory reasoning, having a theory content of less than 2%. In contrast, for benchmarks
with higher theory content, Lib is effective at proof compression. Over the set of all
benchmarks with enough theory content, quantified as 10% or more, Lib compresses

6 Detailed results are available at http://clc.cs.uiowa.edu/CPP11 .
7 These plots show only the data for proof sizes less than or equal to 5MB. The general trends

shown by these plots are preserved with the addition of larger benchmarks.



Fig. 5. Comparing proof sizes.

Fig. 6. Solving times vs. proof checking times. Values are on log-log scale.

proof sizes an average of 24%—i.e, a Lib proof on average uses 24% less space than
its corresponding Lit proof. When focusing on theory lemma subproofs, by subtracting
proofs sizes in litNT from both lit and lib, the average compression goes up signifi-
cantly, to 81.3%; that is to say, after compaction, theory lemma subproofs are a factor
of 5.3 smaller than in the original proof.

Interestingly, in all plots the compression factor is not the same for all benchmarks,
although an analysis of the individual results shows that benchmarks in the same SMT-
LIB family tend to have the same compression factor.

We compared the proof checking times of Lit vs. Lib, using the LFSC checker. Per-
haps unsurprisingly, the scatter plot (not shown here) is very similar to the correspond-
ing one in Figure 5. Over benchmarks with enough theory content, checking Lib proofs
is on average 1.14 times faster than checking the corresponding Lit proofs. Looking
just at proofs of theory lemmas, this time by subtracting the checking times of litNT,
reveals that proof checking times are 2.33 times faster for Lib than for Lit.

It is generally expected that proof checking should be substantially faster than proof
generation or even just solving. This is generally the case for both Lit and Lib when
proof checking using compiled side conditions. Compared against Cvc3’s solving times



alone, LFSC proof checking times are 8.98 times faster with Lit proofs, and 9.4 times
faster with Lib proofs. A more detailed comparison (given on a logarithmic scale) can
be seen in Figure 6.

5 Conclusion and Further Work

We have investigated alternative proof systems for quantifier-free Linear Real Arith-
metic in the LFSC framework. Proofs in these systems were produced by translating in
LFSC proofs generated by the Cvc3 SMT solver. The flexibility of LFSC enabled us
to consider, without modification to LFSC itself, two translations differing in their de-
gree of faithfulness to native Cvc3 proofs and compaction of arithmetic reasoning steps.
We have demonstrated that the second of these translations is effective in compressing
trace-style proofs for LRA into proofs given by a set of coefficients and computational
inferences, leading to faster proof checking times. In addition, our experiments demon-
strate that our approach to proof checking scales well. For benchmarks taking more
than 30 seconds to solve, Lit proof checking times were approximately 11 times faster
than solving times on average.

We plan to integrate native LFSC proof generation ability into CVC3’s successor,
CVC4, with support for other logics beyond QF LRA. For LRA, this will include use of
the L calculus as the LFSC signature for checking proofs produced by CVC4’s simplex
procedure. The use of a simplex procedure will allow coefficients for certain proofs
fragments to be extracted directly from the solver. We are also investigating other ap-
plications of the LFSC meta-framework, including using the LFSC checker to generate
Craig interpolants in selected theories by type inference over proofs in these theories.

We also plan to encourage the SMT community to consider adopting LFSC as a
common format, by making available a public release of the LFSC toolset, which will
provide an intuitive high-level interface for specifying proof systems that hides the con-
crete syntax of LFSC, as well as an API for generating proofs.
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A C Proof Rules

The following is a representative list of rules in the C calculus. The letters c and t,
possibly with subscripts, denote rational constants and arithmetic terms, respectively.

A.1 Core Rules

v ∨ ϕ1 ¬v ∨ ϕ2

ϕ1 ∨ ϕ2
bool res

[ϕ1 ∧ . . . ∧ ϕn]....
⊥

¬ϕ1 ∨ . . .¬ ∨ ϕn
learned clause

A.2 Rewrite Axioms

{0 � c}
(0 ∼ c)⇔ ⊥

const pred1

{0 ∼ c}
(0 ∼ c)⇔ >

const pred2

{c positive}
t1 < t2 ⇔ c · t1 < c · t2

mult ineqn
{c non-zero}

t1 = t2 ⇔ c · t1 = c · t2
mult eqn

t1 ∼ t2 ⇔ 0 ∼ t2 − t1
right minus left

t1 ∼ t2 ⇔ t1 + t3 ∼ t2 + t3
plus pred

t1 > t2 ⇔ t2 < t1
flip ineq ¬(t1 < t2)⇔ t1 ≥ t2

negated ineq

{c1 < c2}
0 < c1 + t⇒ 0 < c2 + t

weaker ineq

A.3 Propositional Rules

ϕ1 ⇔ ϕ2 ϕ2 ⇔ ϕ3

ϕ1 ⇔ ϕ3
iff trans

ϕ1 ϕ1 ⇔ ϕ2

ϕ2
iff mp

ϕ1 ⇔ ϕ2

ϕ2 ⇔ ϕ1
iff symm ϕ⇔ ϕ iff refl

ϕ1 ⇒ ϕ2 ϕ2 ⇒ ϕ3

ϕ1 ⇒ ϕ3
impl trans

ϕ1 ϕ1 ⇒ ϕ2

ϕ2
impl mp

A.4 Equality Rules

t1 = t1
refl

t1 = t2 t3 = t4
t1 ∼ t3 ⇔ t2 ∼ t4

congr 1
t1 = t2 t2 = t3

t1 = t3
eq trans

t1 = t2 t3 = t4
t1 ./ t3 = t2 ./ t4

congr 2
t1 = t2
t2 = t1

eq symm



A.5 Theory Rules

t1 < t2 t2 < t3
t1 < t3

gt trans t1 ≥ t2 t1 ≤ t2
t1 = t2

gt antisym

t1 < t2 t3 < t4
t1 + t3 < t2 + t4

add inequalities −t = (−1) · t uminus to mult

(t1 − t2) = t1 + (−1 · t2)
minus to plus

{t′ canonical form of t}
t = t′

canon

A.6 CNF Conversion Rules

(ϕ1 ⇒ ϕ2) ∨ ϕ1
CNF imp 0

(ϕ1 ⇒ ϕ2) ∨ ¬ϕ2
CNF imp 1

¬(ϕ1 ⇒ ϕ2) ∨ ¬ϕ1 ∨ ϕ2
CNF imp 2

(ϕ1 ⇔ ϕ2) ∨ ϕ1 ∨ ϕ2
CNF iff 0 (ϕ1 ⇔ ϕ2) ∨ ¬ϕ1 ∨ ¬ϕ2

CNF iff 1

¬(ϕ1 ⇔ ϕ2) ∨ ¬ϕ1 ∨ ϕ2
CNF iff 2 ¬(ϕ1 ⇔ ϕ2) ∨ ϕ1 ∨ ϕ2

CNF iff 3

¬(ϕ1 ∧ . . . ∧ ϕn) ∨ ϕi
CNF and mid (ϕ1 ∧ . . . ∧ ϕn) ∨ ¬ϕ1 ∨ . . . ∨ ¬ϕn

CNF and final

(ϕ1 ∨ . . . ∨ ϕn) ∨ ¬ϕi
CNF or mid ¬(ϕ1 ∨ . . . ∨ ϕn) ∨ ϕ1 ∨ . . . ∨ ϕn

CNF or final

¬ite(φ, ϕ1, ϕ2) ∨ φ ∨ ϕ2
CNFITE 0

ite(φ, ϕ1, ϕ2) ∨ φ ∨ ¬ϕ2
CNFITE 1

ite(φ, ϕ1, ϕ2) ∨ ¬φ ∨ ¬ϕ1
CNFITE 2 ¬ite(φ, ϕ1, ϕ2) ∨ ¬φ ∨ ϕ1

CNFITE 3

ite(φ, ϕ1, ϕ2) ∨ φ ∨ ¬ϕ1 ∨ ¬ϕ2
CNFITE 4 ¬ite(φ, ϕ1, ϕ2) ∨ ϕ1 ∨ ϕ2

CNFITE 5

B L Specific Proof Rules

In the proof rules below, the expression p↓ denotes the result of normalizing the poly-
nomial expression p. The normalization is done by the rules side condition, which is
however left implicit here to keep the notation uncluttered.



B.1 Axioms

0 = 0 lra axiom=
{c > 0}
c > 0 lra axiom>

{c ≥ 0}
c ≥ 0 lra axiom≥

{c 6= 0}
c 6= 0

lra axiom6=

B.2 Equality Deduction Rule

p ≥ 0 p′ ≥ 0 {p+ p′ = 0}
p = 0 lra≥≥to=

B.3 Contradiction Rules

p = 0 {p 6= 0}
⊥ lra contra=

p > 0 {p 6> 0}
⊥ lra contra>

p ≥ 0 {p < 0}
⊥ lra contra≥

p 6= 0 {p = 0}
⊥ lra contra6=

B.4 Multiplication Rules

p = 0
(c · p)↓ = 0

lra mult c=
p > 0 {c > 0}

(c · p)↓ > 0
lra mult c>

p ≥ 0 {c ≥ 0}
(c · p)↓ ≥ 0

lra mult c≥
p 6= 0 {c 6= 0}

(c · p)↓ 6= 0
lra mult c 6=

B.5 Addition Rules

p1 = 0 p2 = 0
(p1 + p2)↓ = 0

lra add==
p1 > 0 p2 > 0
(p1 + p2)↓ > 0

lra add>>

p1 ≥ 0 p2 ≥ 0
(p1 + p2)↓ ≥ 0

lra add≥≥
p1 = 0 p2 > 0
(p1 + p2)↓ > 0

lra add=>

p1 = 0 p2 ≥ 0
(p1 + p2)↓ ≥ 0

lra add=≥
p1 > 0 p2 ≥ 0
(p1 + p2)↓ > 0

lra add>≥

p1 = 0 p2 6= 0
(p1 + p2)↓ 6= 0

lra add=6=



B.6 Subtraction Rules

p1 = 0 p2 = 0
(p1 − p2)↓ = 0

lra sub==
p1 > 0 p2 = 0
(p1 − p2)↓ > 0

lra sub>=

p1 ≥ 0 p2 = 0
(p1 − p2)↓ ≥ 0

lra sub≥=
p1 6= 0 p2 = 0
(p1 − p2)↓ 6= 0

lra sub6==

B.7 Term Normalization Rules

In the rules below ct and cp denote the same rational constant, in one case considered
of term type and in the other as of polynomial type (similarly for the variables vt and
vp).

ct = cp
poly norm const

t1 = p1 t2 = p2

t1 + t2 = (p1 + p2)↓
poly norm+

vt = vp
poly norm var

t1 = p1 t2 = p2

t1 − t2 = (p1 − p2)↓
poly norm−

t = p

ct · t = (cp · p)↓
poly normc·

t = p

t · ct = (p · cp)↓
poly norm·c

B.8 Equation Normalization Rules

t1 = t2 t1 − t2 = p

p = 0 poly norm=

t1 6= t2 t2 − t1 = p

p 6= 0
poly norm 6=

t1 > t2 t1 − t2 = p

p > 0 poly norm>
t1 < t2 t2 − t1 = p

p > 0 poly norm<

t1 ≥ t2 t1 − t2 = p

p ≥ 0
poly norm≥

t1 ≤ t2 t2 − t1 = p

p ≥ 0
poly norm≤


