Recent Advances in Instantiation-
Based Techniques and their
Implementation in CVC4

Andrew Reynolds
July 2, 2016

L

i

The UNIVERSITY
OF lowA

Outline

*CVC4
* SMT solver architecture
...and how it extends to V reasoning via quantifier instantiation:
V. Y[x]=>y[t]

* Recent strategies for quantifier instantiation in CVC4:
* E-matching, conflict-based, model-based, counterexample-guided

* Challenges, future work

CVCA4: Past and Present Team Members

Clark Barrett (NYU)
Cesare Tinelli (U lowa)
Morgan Deters (NYU)

Kshitij Bansal (Google)
Francois Bobot (CEA)
Chris Conway (Google)

Liana Hadarean (Mentor Graphics)
Dejan Jovanovic (SRI)
Tim King (Google)

Tianyi Liang (Two Sigma)
Andrew Reynolds (U lowa)
Nestan Tsiskaridze (U lowa)
Martin Brain (U Oxford)
Guy Katz (Stanford)

Paul Meng (U lowa)

CVC4: Past and Present Support
Google MOAW

FEDERALE DE LAUSANNE

L
m
‘ THE UNIVERSITY

NYU OF lowa

CVC4 is Expressive and Featureful

* Boolean combinations of theory constraints
* UF, Arrays
* Linear real/integer arithmetic
* Bitvectors
e (Co)inductive datatypes
* Strings
e Sets with Cardinality

e Mixed constraints over all built-in theories
e Quantifiers V
* Models, proofs, unsat cores

CVC4 is Expressive and Featureful

* Boolean combinations of theory constraints
* UF, Arrays
* Linear real/integer arithmetic
* Bitvectors
e (Co)inductive datatypes
* Strings
e Sets with Cardinality

e Mixed constraints over all built-in theories

e Quantifiers V — Focus of this talk

* Models, proofs, unsat cores

Approaches for Satisfiability of ¥ in Tools

* First order theorem provers focus on V reasoning
...but have been extended in the past decade to theory reasoning

* SMT solvers focus mostly on ground theory reasoning
...but have been extended in the past decade to V reasoning

Approaches for Satisfiability of ¥ in Tools

* First order theorem provers focus on V reasoning
...but have been extended in the past decade to theory reasoning:
* Vampire, E, SPASS, iProver

* First-order resolution + superposition [Robinson 65, Nieuwenhuis/Rubio 99]
* AVATAR in Vampire [Voronkov 14, Reger et al 15]
* Some instantiation-based [Ganzinger/Korovin 03]

* SMT solvers focus mostly on ground theory reasoning
...but have been extended in the past decade to V reasoning

Approaches for Satisfiability of ¥ in Tools

* First order theorem provers focus on V reasoning
...but have been extended in the past decade to theory reasoning:
* Vampire, E, SPASS, iProver

* First-order resolution + superposition [Robinson 65, Nieuwenhuis/Rubio 99]
* AVATAR in Vampire [Voronkov 14, Reger et al 15]
* Some instantiation-based [Ganzinger/Korovin 03]

* SMT solvers focus mostly on ground theory reasoning

...but have been extended in the past decade to V reasoning:
e Z3, CVC4, VeriT, Alt-Ergo
* Some superposition-based [deMoura et al 09]
* Mostly instantiation-based [Detlefs et al 03, deMoura et al 07, Ge et al 09, ...]

Approaches for Satisfiability of ¥ in Tools

* First order theorem provers focus on V reasoning
...but have been extended in the past decade to theory reasoning:
* Vampire, E, SPASS, iProver

* First-order resolution + superposition [Robinson 65, Nieuwenhuis/Rubio 99]
* AVATAR in Vampire [Voronkov 14, Reger et al 15]
* Some instantiation-based [Ganzinger/Korovin 03]

* SMT solvers focus mostly on ground theory reasoning

...but have been extended in the past decade to V reasoning:
e Z3, CVC4, VeriT, Alt-Ergo
* Some superposition-based [deMoura et al 09]
* Mostly instantiation-based [Detlefs et al 03, deMoura et al 07, Ge et al 09, ...]

Quantified Formulas in DPLL(T): Basics

(P(a) vI(b)=a+l)
(—Vx.P(x) vVy.=P(y) VR(Y))
(Vx.f (x)=g(x)+h(x) v=R(a))

—> Given the above input

Quantified Formulas in DPLL(T): Basics
(P (a) v ENISNEES)

(—Vx.P(x) vVy.=P(y) VR(V))
(Vx.f(x)=g(x)+h(x) v=P(a))

* Consider the propositional abstraction of the formula

* Atoms may encapsulate quantified formulas with Boolean structure
* Eg. Vy.—=P(y) VR(y)

Quantified Formulas in DPLL(T): Basics
(PR v I)

(— C

* Find propositional satisfying assighnment via off-the-shelf SAT solver

Quantified Formulas in DPLL(T): Basics

g_v

(—

(

—> True
—> True
— false

A
B
C

* Find propositional satisfying assignment via off-the-shelf SAT solver

Quantified Formulas in DPLL(T): Basics

(P(a) v ENEISEHT)

(2Vx.P(x) v¥y. =P (y) VR(Y))
(Vx.f(x)=g(x)+h(x) v—=P(a))

P(a) — true My.=P(y) VR(y) | — true
_ — true Vx.f(x)=g(x)+h (x) — true

Vx.P(x) — false

—> Consider original atoms

Quantified Formulas in DPLL(T): Basics
(P (a) v ENBYSEH)

(-Vx.P(x) vVy.=P(y) VR(V))
(Vx.f(x)=g(x)+h(x) v—=P(a))

SAT Solver

P(a),[B, —Vx.P (x),Vx.f(x)=g(x)+h(x),Vy.=P(y) VR(y)

J

Y

M

—> Propositional assighment can be seen as a set of T-literals M
 Must check if M is T-satisfiable

Quantified Formulas in DPLL(T): Basics

P(a)

(P(a) v ENEISEHT)

(2Vx.P(x) v¥y. =P (y) VR(Y))
(Vx.f(x)=g(x)+h(x) v—=P(a))

SAT Solver

—

/ —Vx.P(x)
‘ Vx. £ (x) =g (x) +h (x)

Vy.=P(y) VR(y)

LIA-Solver Quantifiers Module

—> Distribute ground literals to T-solvers,V literals to quantifiers module

Quantified Formulas in DPLL(T): Basics

M\

(P& v

— (aVx. P()
(Vx.f(

SAT Solver

Quantifiers Module

~
~
\5-

—> These solvers may choose to add conflicts/lemmas to clause set

DPLL(T,+..+T)+Quantifiers: Overview

T-Clauses F

SAT
Solver

..when Fis
propositionally
unsatisfiable

[Nieuwenhuis/Oliveras/Tinelli 06]

Satisfying
Assignment
M

n

Q

Conflicts, lemmas

Quantifiers Module = -

—> Each of these components may:
 Report Mis T-unsatisfiable by reporting conflict clauses

* Report lemmas if they are unsure

DPLL(T,+..+T)+Quantifiers: Overview

T-Clauses F

SAT
Solver

..when Fis
propositionally
unsatisfiable

[Nieuwenhuis/Oliveras/Tinelli 06]

Satisfying
Assignment
M

T,-solver

T -solver

Quantifiers Module

..when Mis
T,+..+T -satisfiable

= If no component adds a lemma, then it must be the case
that M is T +...+T -satisfiable

In this talk: DPLL(T)+Quantifiers, simplified

T-Clauses F
Satisfying
Assignment Theory
— @Ground Solver
SAT Solver M solver(s)

Quantifiers
Module

= For purposes of this talk, partition M into quantifier-free part E, and set of V formulas Q

In this talk: DPLL(T)+Quantifiers, simplified

T-Clauses F «

___________________ Conflicts, lemmas

~

Satisfying :
Assignment Theory ,'
SAT Solver M solver(s)

E is T-satisfiable

Quantifiers
Module

— Theory solvers determine whether E is T-(un)satisfiable

In this talk: DPLL(T)+Quantifiers, simplified

T-Clauses F' =

Satisfying
Assignment Theory
SAT Solver M solver(s)

Quantifiers -
Module

EWQ is T-satisfiable

= If E is T-satisfiable, quantifiers module may be invoked

In this talk: DPLL(T)+Quantifiers, simplified

T-Clauses F' =

Satisfying
Assignment Theory
SAT Solver M solver(s)

Quantifiers
Module

EWQ is T-satisfiable

= Will discuss how the quantifiers module is implemented

DPLL(T)+Quantifiers, further simplified

T-clauses F

Ground

Solver

-_— e o e o
=== e
—_—
—
—

ground literals E
Y formulas Q

—
—
~~

Quantifiers
Module

j * |Inputs:

e Set of ground T-literals E
e Set of V formulas Q

* Qutputs:
e “EUQ is T-satisfiable”, or
= Fis T-satisfiable
e Set of lemmas toaddto F

DPLL(T)+Quantifiers, further simplified

T-clauses F' «

Ground

Solver

— e -
-_—__—————
—
—
—
—
—
—
—_—

ground literals E

Y formulas Q

* Recurrent Questions:
* Which lemmas do we add?

e How do we know EUQ is T-satisfiable?

e When do we invoke it?

Quantifiers
Module

J * |Inputs:

e Set of ground T-literals E
e Set of V formulas Q

* Qutputs:
e “EUQ is T-satisfiable”, or
= Fis T-satisfiable
e Set of lemmas toaddto F

Quantifier Instantiation

P(a),P(b)
f (b)>a+l

Vx.P(x)

Quantifiers

Module

Quantifier Instantiation

3
0

P(a),P(b)
f (b)>a+l

Vx.P(x)

Quantifiers L&

Module T

Vx.P(x) = P (
Vx.P(x) = P (

ow

* Universal quantification handled by Instantiation
e Choose ground term(s) t, lemma(s) say Vx.P (x) implies P (a)
—>May be applied ad infinitum, forx - a, b, ¢, d, ..

» Selection of instances is the core challenge

Quantifiers Module : Recurrent Question

 Which instances do we add?
* E-matching [Detlefs et al 03]
e Conflict-based quantifier instantiation [Reynolds et al FMCAD14]
* Model-based quantifier instantiation [Ge,de Moura cAV09]
* Counterexample-guided quantifier instantiation [Reynolds et al CAV15]

Techniques for Qua

F, ..

Ground
Solver

Instances of ¥V in Q

ntifier Instantiation: Overview

Satisfying
assignment

E,Q

Quantifiers Module

s

Conflict-Based

E-matching

CE-Guided

Model Based

i

Generally,
used for quantifiers with UF

f

Generally,
used for quantifiers w/o UF

l EWQ is T-satisfiable

Techniques for Qua

F, ..

Ground
Solver

Instances of V in Q

Satisfying
assignment

E,Q

ntifier Instantiation: Overview

Quantifiers Module

s

Conflict-Based

E-matching

Model Based

\
|

Generally,
used for quantifiers with UF

|

Generally,
used for quantifiers w/o UF

— Will describe details of each of these strategies

l EWQ is T-satisfiable

E-matching

* Introduced in Nelson’s Phd Thesis [nelson 80]
* Implemented in early SMT solvers, e.g. Simplify [Detlefs et al 03]

* Most widely used and successful technique for quantifiers in SMT

e Software verification
e Boogie/Dafny, Leon, SPARK, Why3

* Automated Theorem Proving
* Sledgehammer

* Variants implemented in numerous solvers:
e /3 [deMoura et al 07], CVC3 [Ge et al 07], CVC4, Princess [Ruemmer 12], VeriT, AIt-Ergo

E-matching
P(a)
—P (b)
E{ R(C)
—R (a)
S (e)

Vx.P(x) VR (x)

E-matching

[
[

E-matching

P(a)
—P (b)
R (c)
—R (a)
S (e)

Conflict-Based

E-matching

Model Based

Vx.P(x) VR (x)

Conflict-Based

| ConflictBased

E-matching
P(a)
—P (b)
E % R(c)
—R (a)
S (e)

Q{ Vx.P(x) VR (x)

\)
|

Pattern

= Idea: choose instances based on pattern matching

E-matching

Vx.P(x) VR (X)

\ }
|

Pattern

return
———

Conflict-Based

E-matching

Model Based

(Vx.P(x) VR(x))=P(a)VR (a)

E-matching

—P (b)

E{ R(c)
—R(a)

S (e)

| ConfecBased

| Emaching

5 (a) | VodelBased
(Vx.P(x) VR(x))=>P(a) VR(a)

return

— = —

Q{ Vx.P(x) VR(x)

\ J
|

Pattern

Conflict-Based

E-matching: Functions, Equality E—

Model Based

Conflict-Based

E-matching: Functions, Equality e

Model Based

= In E-matching, Pattern matching takes into account equalities in E

E-matching: Functions, Equality

P(a, c)
E:{ f (b)=a

Q{ Vxy.P(f(x),y) =9 (x)=y

K /
|

Pattern

Conflict-Based

E-matching

Model Based

Conflict-Based

E-matching: Functions, Equality E—

Model Based

P(a,c)
E{ f (b)=a

Q{ Vxy.P(£(x),y) =g (x)=y

P(a ,c)

Conflict-Based

E-matching: Functions, Equality B

Model Based

CeD

)

G

E{ P(a,c)
f (b)=a @P(a,
\

f
Congruence closure of E

d

Q{ Vxy.P(£(x),y) =9 (x)=y

P(a ,c)

Conflict-Based

E-matching: Functions, Equality B

Model Based

CeD

G

E{ P(a,c)
f (b)=a @P(a,

d

Q{ Vxy.P(£(x),y) =9 (x)=y

P(£(b),c) _ EimpliesP(a,c)<P(f(b),c)

Conflict-Based

Model Based

E-matching: Functions, Equality T ey
| VodelBased

f (b)=a

E]{ P(a,c)

Q{ Vxy.P(£(x),y) =9 (x)=y

P(£(b),c)

E-matching: Intuition

e Say E-matching returns the instance (Vx.¥Y = Y{x—>t})
=> Why is this instance useful?

E-matching: Intuition

e Say E-matching returns the instance (Vx.Y¥Y = Y{x—>t})
=> Why is this instance useful?
* We are interested in satisfiability of ELQ

E-matching: Intuition

e Say E-matching returns the instance (Vx.Y¥Y = Y{x—>t})
=> Why is this instance useful?

* We are interested in satisfiability of EUQ

* Assume pattern p is a subterm of ¥, e.g. Vx . ¥[p]

E-matching: Intuition

e Say E-matching returns the instance (Vx.Y¥Y = Y{x—>t})
=> Why is this instance useful?
* We are interested in satisfiability of EUQ
* Assume pattern p is a subterm of ¥, e.g. Vx . ¥[p]
* E-matching finds a ground term g from E, where g=p{x—t}is implied by E

E-matching: Intuition

e Say E-matching returns the instance (Vx.Y¥Y = Y{x—>t})
=> Why is this instance useful?
* We are interested in satisfiability of EUQ
* Assume pattern p is a subterm of ¥, e.g. Vx . ¥[p]
* E-matching finds a ground term g from E, where g=p{x—t}is implied by E
* Thus: W[g]isimplied by EU{Y¥[p] {x—>t}}

E-matching: Intuition

e Say E-matching returns the instance (Vx.Y¥Y = Y{x—>t})
=> Why is this instance useful?
* We are interested in satisfiability of EUQ
* Assume pattern p is a subterm of ¥, e.g. Vx . ¥[p]
* E-matching finds a ground term g from E, where g=p{x—t}is implied by E

* Thus: Y[g]isimplied by EU{¥Y[p] {x—>t}}
= In other words, from Q, we learn information WY[g] about a term g from E

E-matching: Intuition

e Say E-matching returns the instance (Vx.Y¥Y = Y{x—>t})
=> Why is this instance useful?
* We are interested in satisfiability of EUQ
* Assume pattern p is a subterm of ¥, e.g. Vx . ¥[p]
* E-matching finds a ground term g from E, where g=p{x—t}is implied by E

* Thus: Y[g]isimplied by EU {¥Y[p] {x—>t}}
—>In other words, from Q, we learn information WY[g] about a term g from E

Learn P (a,c) =g (b) =c as a result of

{P(a,c),f(b)=alu{P(£f(b), c)=g(b)=c}
\ J \ J

Y p
v
E with new instance

E-matching: Challenges

* E-matching has no standard way of selecting patterns

* E-matching generates too many instances
* Many instances may overload the ground solver

* E-matching is incomplete
* |t may be non-terminating

* When it terminates, we generally cannot answer “E\UQ is T-satisfiable”

* Although for some fragments+variants, we may guarantee (termination << model)
* Decision Procedures via Triggers [Dross et al 13]
* Local Theory Extensions [Bansal et al 15]

— Typically are established by a separate pencil-and-paper proof

E-matching: Pattern Selection T ey

* In practice, pattern selection can is done either by:

* The user, via annotations, e.g. (! .. :pattern ((P x)))
e The SMT solver itself

* Recurrent questions:
* Which terms be we permit as patterns? Typically, applications of UF:
e Use f (x,vy) butnot x+v for Vxvy. f (x, v)=x+vy

 What if multiple patterns exist? Typically use all available patterns:
e Use both P (x) andR (x) for Vx.P (x) VR (x)

 What if no appropriate term contains all variables? May use “multi-patterns”:
* {R(x,y) ,R(y,z)}forVxyz. (R(x,y)AR(y,2))=>R(x,2z)

e Pattern selections may impact performance significantly [Leino et al 16]

E-matching: Pattern Selection T ey

* In practice, pattern selection can is done either by:

* The user, via annotations, e.g. (! .. :pattern ((P x)))
e The SMT solver itself

* Recurrent questions:
* Which terms be we permit as patterns? Typically, applications of UF:
e Use f (x,vy) butnot x+v for Vxvy. f (x, v)=x+vy

 What if multiple patterns exist? Typically use all available patterns:
e Use both P (x) andR (x) for Vx.P (x) VR (x)

 What if no appropriate term contains all variables? May use “multi-patterns”:
* {R(x,y) ,R(y,z)}forVxyz. (R(x,y)AR(y,2))=>R(x,2z)

e Pattern selections may impact performance significantly [Leino et al 16]

 ...and may share similarities with literal selection heuristics in ATP, a la [Reger et al 16]?

Conflict-Based

E-matching: Too Many Instances e

Ground Model Based

Solver

E-matching

 Typical problems in applications:
* F contains 1000s of clauses

Conflict-Based

E-matching: Too Many Instances

E-matching

Ground
Solver
| J
H 1
\ Y J
~1000 E-matching
\ J
[
~100

 Typical problems in applications:
* F contains 1000s of clauses
e Satisfying assignments contain 1000s of terms in E, 100s of ¥V in Q

Conflict-Based

E-matching: Too Many Instances ¢ matching

Model Based

Ground
Solver

[
I_\

~100

* Typical problems in applications:
e [contains 1000s of clauses
e Satisfying assignments contain 1000s of terms in E, 100s of ¥V in Q
 Leadsto 100s

Conflict-Based

E-matching: Too Many Instances

E-matching

Model Based

Ground
Solver

~100
* Typical problems in applications:
* F contains 1000s of clauses

e Satisfying assignments contain 1000s of termsin E, 100s of ¥V in Q
e Leads to 100s, 1000s

Conflict-Based

E-matching: Too Many Instances

E-matching

Sl o
Solver
~1ooooo Y
~10000
~1oo

* Typical problems in applications:
* F contains 1000s of clauses

e Satisfying assignments contain 1000s of termsin E, 100s of ¥V in Q
e Leads to 100s, 1000s, 10000s of instances

E-matching: Too Many Instances T ey

~ OVERLOADED
F,oE F

~100000 } ~1oooo

}

"’100

—> Ground solver is overloaded, loop becomes slow,
...solver times out

E-matching: Too Many Instances

Instances cvc3 cvcd z3
% i % i %
1-10 1464 13.49% | 1007 8.87% 1321 11.43%
10-100 | 1755 16.17% |1853 16.31% | 2554 22.11%
100-1000 | 3816 35.16% |[3680 32.40% |4553 39.41%
1000-10k | 1893 17.44% | 2468 21.73% | 1779 15.40%
10k-100k | 1162 10.71% | 1414 12.45% 823 7.12%
100k-1M | 560 5.16% 607 5.34% 376 3.25%
1M-10M | 193 1.78% 330 2.91% M
>10M 10 0.09% 0 0.00% |1 81 0.07%

e Evaluation on 33032 SMTLIB, TPTP, Isabelle benchmarks

* E-matching often requires many instances

E-matching

(for 8 of benchmarks z3 solves,
its E-matching procedure adds
more than 10M instances)

(Above, 16.6% required >10k, max 19.5M by z3 on a software verification benchmark from TPTP)

Conflict-Based

E-matching: Incompleteness p——

Model Based

B { empty

Vx.P(x)
Q{ Vx.=P (x)

—> E-matching is an incomplete procedure

Conflict-Based

E-matching: Incompleteness —

Model Based

No
- Instances
Found

B { empty

return

Vx.P(x)
Q{ Vx.=P (x)

= If E-matching produces no instances,
this does not guarantee E_/Q is T-satisfiable

E-matching: Summary

* Using matching ground terms from E against patterns in Q:
- From Q, learn constraints about ground terms g from E

E-matching: Summary

* Using matching ground terms from E against patterns in Q:
- From Q, learn constraints about ground terms g from E

* Challenges
* What can we do when there too many instances to add?

* What can we do when there are no instances to add, problem is “sat”?

E-matching: Summary

* Using matching ground terms from E against patterns in Q:
- From Q, learn constraints about ground terms g from E

* Challenges
* What can we do when there too many instances to add?
—=>Use conflict-based instantiation [Reynolds/Tinelli/deMoura FMCAD14]

* What can we do when there are no instances to add, problem is “sat”?
—=Use model-based instantiation [Ge/deMoura CAV09]

Conflict-Based Instantiation

* Implemented in solvers:
* CVC4 [Reynolds et al 14], recently in VeriT [Barbosa16]

* Basic idea:
1. Try to find a “conflicting” instance such that EUW{x—>t} implies L

(by contrast, E-matching does not distinguish such instances)
2. If one such instance can be found, return that instance only

(and do not run E-matching)

= Leads to fewer instances, improved ability of ground solver to answer “unsat”

Conflict-Based Instantiation

P(a),—P(b)
P(c),—R(a)
R(d),—R(e)

R (c)

-1

Conflict-Based

E-matching

Model Based

Vx.P(x) VR (X)

Conflict-Based Instantiation

=
2

P(a)
P(c)
R (d)
R

-1

/_'P(
r_'R(
r_'R(
(c)

)
)
)

Conflict-Based

E-matching

Model Based

Vx.P(x

) VR(x

)

XXX

9 tu U O
i

A~ A~ A~ A~ A~
N S’ S’ S’ SN

< < < <K KL

)X

o W W
X
< << <<

X

XXX X
Uiy
' 0 U U T
™ W W

O
O

—> E-matching would produce {x—a}, {x—b}, {x—>c}, {x—>d}, {x—e}

gel
)
(%)
©
(e}
S
2
=
c
o
O

Conflict-Based Instantiation

P e e U U U

S S’ S S S

P e e U U U

S S’ S’ S’ S

P e U U s

P e U U e e U

N SN’ SN’ S’ S

A~ NS S o~ A~

SN S’ S’ S’ SN

N S’ S’ S SN

Q© o
AN~
- rro
)))R
T O T [
A A
[
,|<|\
Fr]

AN N N N N

N N N S S

P e U

N S S S S

P e U e e s

N N N S S

P e U e e U

N S’ S’ S S

,,,,,

,,,,,

gel
)
(%)
©
(e}
S
2
=
c
o
O

Conflict-Based Instantiation

P e e U U U

S S’ S S S

P e e U U U

S S’ S’ S’ S

P e U U s

P e U U e e U

N SN’ SN’ S’ S

A~ NS S o~ A~

SN S’ S’ S’ SN

N S’ S’ S SN

QT o
Ao~
T T T o
)))R
8 oo T
AL A
]
,|<|\
[

By E, we know P (a) < T

AN N N N N

N N N S S

T
(
(
(
(

P U U e U e s

N SN’ S S S

P e U e e U

N S’ S’ S S

,,,,,

,,,,,

P e e U U U

S S’ S S S

gel
)
(%)
©
(e}
S
2
=
c
o
O

P e e U U U

S S’ S’ S’ S

P e U U s

P e U U e e U

N SN’ SN’ S’ S

))))) n
EICICICICH IS
YR VR VRN TR Y -
X O
X X X X x|
>> > > > 2 e
(((((— Q 0 T O
A m X ox oo
- = > > > >
@) p Q U T o
-l—U mT((((
aVRNa VR e VAW
O O
® emm— f__________
4+
- C
© G T203T 0
1y o N
- WVVVVV
— ~ ©.Q O T O
a (((((
O e A
Q
) ~ ~ ~ X 2 333ada
a bae Rr IIIII
- = = U 0 K KR
af AN~ > | O
_ [[[O NN
t O Xn
= © O T [n | O
fl—l N S’ S .
O] >
@,)
Ed Ol

T EE B R o I iy
2 8L oo o
m Yox X —
= > > > > > @
n)))))
S CRCICRCHO ~
Ao l.h.w
I Y
HROX N X 2
XYoo oo £
> > > > > .. w
REEEE Y S
YR VR VRN TR Y -
. ©
XX X X x| B
>> > > > 2 e
(((((— Q 0O T O
A e S = =
A o XYoo
- = > > > >
O + 0T O
a m Ll __D__I_D__I_D__l_
— :m
(- e~ o~~~ —~
(O ®©882cye
1y o M
- WVVVVV
— —~ ©.Q O T O
a (((((
w e Ay
N ~ ~ ~ X 2 3d33ada
a bae Rmu IIIII
bt [B K] E]
af A~ > | O
| [I T O T
t O VA n
= © O T [n, | O
fl—l N S’ S .
O] >
@)
,|<|\ ,|<|\
Ed Ol

gel
)
(%)
©
(e}
S
2
=
c
o
O

Conflict-Based Instantiation

P e e U U U

S S’ S S S

P e e U U U

S S’ S’ S’ S

P e U U s

P e U U e e U

N SN’ SN’ S’ S

A~ NS S o~ A~

SN S’ S’ S’ SN

N S’ S’ S SN

Q© o
AN~
- rro
)))R
T O T [
A A
[
,|<|\
Fr]

— Consider what we learn from these instances:

P e U e U U e

N SN’ S’ S S

P e U e e U

N S’ S S S

,,,,,

,,,,,

P e e U U U

S S’ S S S

©
()]
s
& N oo —]
= > > > > > @
n)))))
S CRCICRCHO ~
Aoy ln.w
fonnn Y
HROX N X 2
XYoo oo £
> > > > > . O
REEEE Y S
YR VR VRN TR Y -
X O
X X X X x|
>> > > > 2 o
(((((= T O
A e S— S
A & X
- = > >
@) p Q 0T o
.U mT((((
© o o E
— :m
(- O o~ o~~~ —
(O o reeee
1y o N
- WVVVVV
o —~ ©.Q O T O
a (((((
w e A
) ~ ~ ~ X 2 3333 a
a bae Rr IIIII
- = = U 0 K KA
af A~ S | O
! [[© | '»
-+ G Xn
fl—l SN S’ .
O [>
@)
,|<|\ JL
Ed Ol

gel
)
(%)
©
(e}
S
2
=
c
o
O

Conflict-Based Instantiation

P e e U U U

S S’ S S S

P e e U U U

S S’ S’ S’ S

P e U U s

P e U U e e U

N SN’ SN’ S’ S

A~ NS S o~ A~

SN S’ S’ S’ SN

N S’ S’ S SN

Q© o
Ao~
- rro
~ o~ ~ X
T OO0 [
VRTINS
ﬁ
,|<|\
]

— Consider what we learn from these instances:

We knowR(d) =T

AN AN N N N

N N S S S

P e U e e U

T Q O T O
oomoA A
O aaaa

gel
)
(%)
©
(e}
S
2
=
c
o
O

Conflict-Based Instantiation

P e e U U U

S S’ S S S

P e e U U U

S S’ S’ S’ S

P e U U s

P e U U e e U

N SN’ SN’ S’ S

A~ NS S o~ A~

SN S’ S’ S’ SN

N S’ S’ S SN

9C
AFEN Al s A
ﬁﬁ_./w
)))R
T O T [
TN a VI
[
,|<|\
[]

— Consider what we learn from these instances:

I_
o
M
=
@
C
=
)
=
N Ay

AN AN N N N

N N S S S

P e U e e U

T Q O T O
oomoA A
O aaaa

- IR 1 -
2 8L o7T 9
m Yoy ooy —
= > > > > > @
n)))))
S CRCICRCHO ~
TR VRe Ve VR o
T >
HX N XX Z
XYoo oo £
> > > > > L O
REEER Y S
YR a VRN o VRN a VI Y -
. ©
X XX X x| P
PErrE 2
t Q
O
n <
O p Q)
* c— T(I_T/.\
4 &
e @ Ny
-m ﬂ Ll Ll Ll Ll Ll
-+ c
n | R e T T T
(O ®© 882cy
1y o NN
- WVVVVV
o = © Q O T O
a (((((
w R I = « Y VI a PR Vi ¥
N —~ ~ ~ X2 33daa
a bae Rr NN N N N
— = = Q I KA
_ [[[O _'®
t /II(Xn
fl—l SN—" S S .
O] >
@)
,|<|\ ,|<|\
] @)

P e e U U U

S S’ S S S

P e e U U U

gel
)
(%)
©
(e}
S
2
=
c
o
O

S S’ S’ S’ S

P e U U s

P e U U e e U

N SN’ SN’ S’ S

))))) n
CRCECICHCH S
YR a VRN o VRN a VI Y -
. ©
XX X X x|
PrErE 2
t Q
N
- b
O s o))
* c— T(I_T/.\
4+ &
e @ Ny
-m ﬂ____:____
-+ c
n | R e e e e
(O o reeee
1y o N
- WVVVVV
o = © Q O T O
a (((((
w R I = o VR VI o VR a VYo ¥
N ~ =~ ~ X2 dadada
a bae Rr NN N N N
— = = Q I KA
af AN~ > | O
_ [[[©O I '»;
t O Xn
= © O T [n, | O
fl—l SN—" S S .
®)] o
O —
] @)

Conflict-Based Instantiation

P(a)
P(c)
R (d)
R

-1

, —P (D)
r_'R()
r_'R()

(c)

Vx.P(x

) VR(x)

Conflict-Based
1
1

g v 0 g ™
X

X

XX

X

}XooX

VNS VR SRS RPN
XXX

< < < <K KL

O QO O W

o O /™ O ™
< < < K KL
VR VI SRS RPN

O Q0 T w

TN

0
0

— Consider what we learn from these instances:

E,Q,P(a) vR(a)
E,Q,P(b) vR(b)
E,Q,P(c) VR(c)
E,Q,P(d) vR(d)
E,Q,P(e) VR (e)

T

>} P(c

P (e)

) VR (c) is a conflicting
instance for (E,Q) !

Conflict-Based Instantiation

P(a),—P(b)

—P (c),—=R(a)

R(d),—R(e)
—R (cC)

Vx.P(x) VR (x)

Conflict-

based
Instantiation

Conflict-Based
|
|

» (Vx.P(x) VR(x))=P(c) VR(c)

— Consider what we learn from these instances:

a) g T
b) EF R(b
c) F L
d) g T
e) E P(e

)

)

I

Since P (c) VR (c)
suffices to derive L,
return only this instance

Conflict-Based Instantiation

* Why are conflicts important?
* As with the ground case, they prune the search space of DPLL(T)

* Given a conflicting instance for (E, Q) is added to the clause set F
* Solver is forced to choose a new sat assignment (E’ , Q')

e S

Conflicting
instance
found,

Backtrack

l l

E,Q0 .. E',Q’ .. E”, Q" ..

Conflict-Based Instantiation: EUF

Conflict-Based

E-matching

Model Based

Conflict-Based Instantiation: EUF

g(b)=a, f(a)=a,
I h(f(a))=d,h(b)=c

Q{ Vx.f(g(x))=h(f(x))

= Consider the instance Vx.f (g (x))=h (f (x))=f (g(b))=h(f (b))
* Is this conflicting for (E, Q) ?

Conflict-Based

Conflict-Based Instantiation: EUF

E-matching

Model Based

L
Q 0 O

0 g (b)=a, f(a)
h(f(a))=d,h(b)

Q{ Vx.f(g(x))=h(f(x))

E,Q,f(g(b))=h(f(b)) fe £(g(b))=h(£f (b))

Conflict-Based Instantiation: EUF

@@HD
M Coeono o Camnie@)

Consider the equivalence classes of E

Conflict-Based Instantiation: EUF

g(b)=a, f(a)=a,
I h(f(a))=d,h(b)=c

@=fD
H Ceno o Canie@)
f g

h

AN Y\
a b a d c
\ J

|
Build partial definitions for functions in terms of representatives

E,Q,f(g(b))=h(f(b)) k; £(g(b))=h(f (b))

Q{ Vx.f(g(x))=h(f(x))

Conflict-Based

Conflict-Based Instantiation: EUF

E-matching

Model Based

L
Q 0 O

g(b)=a, f(a)
E{ h(f(a))=d,h(b) <

Q{ V. £ (g (%)) <h (£ (x)) .

E,Q,f(g(b))=h(f(b)) e £(g(b))=h(£f (b))

U@ III

Conflict-Based

Conflict-Based Instantiation: EUF

E-matching

Model Based

L
Q 0 O

g(b)=a, f(a)
E{ h(f(a))=d,h(b) <

Q{ V. £ (g (%)) <h (£ (x)) .

E,Q,f(g(b))=h(f(b)) e f(g(b))=h(b)

U@ III

Conflict-Based Instantiation: EUF

azc, £ (b)=b,
g(b)=a, f(a)=a,
E{ h(f(a))=d,h(b)=c <
Q{ Vx.f (g (x))

E,0Q,f (g

o .

Conflict-Based

E-matching

Model Based

U@ III

Conflict-Based

Conflict-Based Instantiation: EUF

E-matching

Model Based

g(b)=a, f(a)=a,
E{ h(f(a))=d,h(b)=c <

Q{ V. £ (g (%)) <h (£ (x)) .

E,Q,f(g())=h(f(b)) e £(a)= c

U@ III

Conflict-Based Instantiation: EUF

azc, £ (b)=b,

g(b)=a, f(a)=a,

E h(f(a))=d,h(b)=c

Q{ Vx.f(g(x))=h(f(x))
E,Q, f((b))=h(f(b))|=E

_a=g

Conflict-Based

E-matching

Model Based

Ué III

Conflict-Based Instantiation: EUF

azc, £ (b)=b,

g(b)=a, f(a)=a,

E h(f(a))=d,h(b)=c

Q{ Vx.f(g(x))=h(f(x))
E,Q, f((b))=h(f(b))|=E

_a=g

Conflict-Based

E-matching

Model Based

Ué III

Conflict-Based

Conflict-Based Instantiation: EUF

E-matching

Model Based

a¥c, f (b)=b,
g(b)=a,f(a)=a
E{ h(f(a))=d,h(b)=c <

Q{ V. £ (g (%)) <h (£ (x)) .

E,Q,f(g(b))=h(£f(b)) [1 From E, we know a#c

U@ III

Conflict-Based
|

Conflict-Based Instantiation: EUF

azc, £ (b)=b,
g(b)=a, f(a)=a, _ _
E{ h(f (a))=d,h (b)=c @(b)‘fD

f g

h

AP 7

a b a d C

f (g(b))=h(f (b)) isaconflicting
1 } instance for (E, Q) !

Conflict-Based Instantiation: EUF

..., (b)=Db,
E{ g(b)=a, f(a)=a,
h(f(a))=d,h(b)=c

Q{ Vx.f(g(x))=h(f(x))

—> Consider the same example, but where we don’t know a#c
 Istheinstance £ (g (b))=h (£ (b)) still useful?

Conflict-Based Instantiation: EUF

..., f(b)=b,
g(b)=a, f(a)=a,
h(f(a))=d,h(b)=c
Vx.f(g(x))=h(f(x))

Conflict-Based

E-matching

Model Based

_a=g

U@ III

Build partial defmltlons

Conflict-Based
|

Conflict-Based Instantiation: EUF

If(b):br
g(b)=a, f(a)=a, _ _
E{ h(f (a))=d,h (b)=c @(b)‘fD

h

AP 7

a b a d C

f g

E,Q,ft(g(b))=h(f (b)) |=E f(g(b))=h(f (b)) } Check entailment

Conflict-Based Instantiation: EUF

..., f(b)=Db,
g(b)=a, f(a)=a,

E{ h(f(a))=d,h (b)=c <

Q{ Vx.f (g (x))

E,0Q,f (g

o .

Conflict-Based

E-matching

Model Based

Ué III

Conflict-Based Instantiation: EUF

..., £(b)=b,
g (b)=a, f(a)=a, () —
E{ h(f (a))=d,h (b)=c 50 @(b)‘fD

f g

h

AP 7

a b a d C

Q{ Vx.f(g(x))=h(f(x))

Instance is not conflicting,
but propagates an equality

E,Q,f(g(b))=h(£f (b)) Fe a=c} between two existing terms in E

Conflict-Based Instantiation: EUF

..., £(b)=b,
g(b)=a, f(a)=a, _ _
E{ h(f (a))=d,h (b)=c @(b)‘fD

i g

h
adL 7N
a b a d c
f(g(b)=h(f(b)) isa
propagating instance for (E, Q)
E,Q,f(g(b))=h(f (b)) fe a=c} — These are also useful

Q{ Vx.f(g(x))=h(f(x))

Conflict-Based

Conflict-Based Instantiation

Given:

* Set of ground T-literals E
* Quantified formulas Q

e Conflict-based instantiation:

1. If there exists a conflicting instance Y{x—t }
e Returns {Vx.¥ =¥Y{x—>t}}only

2. If there exists propagating instance(s), V. {x—t, }for i=1, ., n
* Returns {Vx.¥, = ¥ {x—>t,}, .., x¥ =Y {x>t_ } }only

3. Otherwise:
e Returns “unknown” (and the quantifiers module will resort to E-matching)

cvcd+ci

Conflict-Based Instantiation: Impact

le+7

let6 F

le+5

le+4d

1000

100 f

10

Conflict-Based
|
|

* Using conflict-based
instantiation (cve4+ci),
require an order of magnitude
fewer instances for showing
“UNSAT” wrt E-matching alone

+ ++

10 100 1000 1le+4 1le+5 1le+6 le+7
ovica

_ (taken from [Reynolds et al FMCAD14], evaluation
Reported number of instances. On SMTLIB, TPTP, Isabelle benchmarks)

Conflict-Based Instantiation: Impact Lo

e Conflicting instances found on ~75% of rounds (IR)

e Configuration cvc4d+ci:
 Calls E-matching 1.5x fewer times overall
* As a result, returns 5x fewer instantiations

E-matching Conflict Inst. Propagating Inst.

IR % IR # Inst % IR # Inst % IR # Inst

TPTP cved 71,634 100.0 878,957,688
cved+ci 208,970 20.3 150.351.384 76.4 159.696 3.3 415,772

[sabelle cved 6.969 100.0 119.008.834
cved+cl 21,756 224 28.196.846 64.0 13,932 13.6 130,864

SMT-LIB cved 14,032 100.0 60,650,746
cved+ci 58,003 20.0 32,305,788 71.6 41.531 8.4 51,454

Conflict-Based

Conflict-Based Instantiation: Impact

* CVC4 with conflicting instances cvcd+ci

* Solves the most benchmarks for TPTP and Isabelle
* Requires almost an order of magnitude fewer instantiations

= A number of hard benchmarks can be solved without resorting to E-matching at all

TPTP Isabelle SMT-LIB
Solved Inst Solved Inst Solved Inst
cve3 5,245 627.0M 3,827 186.9M 3,407 42.3M
73 6,269 613.5M 3,506 67.0M 3,983 6.4M
cved 6.100 879.0M 3,858 119.0M 3,680 60.7M
cved+ci 4,082 28.2M 3,747 | 32.4M

Conflict-Based Instantiation: Challenges

* How do we find conflicting instances?

* |[dea: construct instances via a stronger version of matching

* Intuition: for Vx.P (x) v QO (x), will only match P (x) where P (t) <1
(For technical details, see [Reynolds et al FMICAD2014])

* What about conflicts involving multiple quantified formulas?
 What if our quantified formulas that contain theory symbols?

Model-based Instantiation

* Implemented in solvers:

e /3 [Ge et al CAV09], CVvC4 [Reynolds et al CADE13]

e Basic idea:

1. Build interpretation M for all uninterpreted functions in the signature
2. If this interpretation satisfies all formulas in Q, answer “sat”
e e.g. interpretation fM=Ax .1 satisfies Vx. f (x) >0

= Ability to answer “sat”

Conflict-Based

Model-based Instantiation

—P(a), P(b), =R(b), —=R(c)
Vx.P(x) VR (x)

E-matching

Model-Based

—P (a)

P (b)

E{ —R (b)
—R (¢C)

Q{ Vx.P(x) VR(x)

Model-based Instantiation

|

Q O O v

i

|
ZORNPS B Vv

E-matching

—P (a) ’

Vi.P (1) VR (3)

Conflict-Based
|

Vx.P(x) VR (x)

M

{

\

J

|

Build interpretation M of predicates
* This interpretation must satisfy E

Model-based Instantiation

I
79N> S RAV v
Aaoown

Vx.P(x) VR (x)

E-matching

—P (a) ’

Vi.P (1) VR (3)

Conflict-Based
|

M

{

\

J

|

Build interpretation M of predicates
* This interpretation must satisfy E
* Missing values may be filled in arbitrarily

[Sl
Model-based Instantiation "

—|P(a), P(b), —|R(b), _IR(C) I —
Vi B (x) VR ()

|

P S e

M-

o O o

[
—
ERE

i

@

Q{ Vx.P(x) VR (x)

—> Does M satisfy Q?
* Check (un)satisfiability of: 3x.— (PM(x) vRM (x))

]
Co oo

i

|
ZORNPS B Vv

Model-based Instantiation "

—|P(a), P(b), —|R(b), _IR(C) I —
Vi B (x) VR ()

Vx.P(x) VR (x)

M-

Check: dx .= (PM(x) VRM (x))

Model-based Instantiation

1
79N> S RAV v
Aaoown

i

—-P(a), P(b), —R(b),
Vx.P(x) VR (x)

—lR(C)

Vx.P(x) VR (x)

Conflict-Based
|
|

Model-Based

M-

Check: = (PM (k) VRM (k))

— Skolemize

Model-based Instantiation

]
ao oo

i

|
ZORNPS B Vv

Vx.P(x) VR (x)

—P (a) ’

P(b), —R(b), —R(c)
Vx.P(x) VR (x)

M

Conflict-Based
|
|

Model-Based

{

Check: — (ite(k=a,l,ite(k=b,T,T)))V
ite(k=b,Ll,ite(k=c,L,1))))

— Substitute

Model-based Instantiation

—P (a) ’

P(b), —R(b),
Vx.P(x) VR (x)

—lR(C)

|

M

Q O O v

i

|
ZORNPS B Vv

Vx.P(x) VR (x)

Check: — (k#a v 1)

Conflict-Based
|
|

Model-Based

{

= Simplify

Model-based Instantiation

]
Co oo

i

|
ZORNPS B Vv

Vx.P(x) VR (x)

—-P(a), P(b), —R(b),
Vx.P(x) VR (x)

—lR(C)

Conflict-Based
|
|

Model-Based

M-

Check: k=a

= Simplify

1
79N> S RAV v
Aaoown

i

Vx.P(x) VR (%)

Model-based Instantiation "

—|P(a), P(b), —|R(b), _IR(C) I —
Vi B (x) VR ()

M-

Check: k=a

—> Satisfiable! There are values k for which M does not satisfy O

Model-based Instantiation

Ground
Solver

—P (a)

P (b)
—R (b)
—R (C)

Vx.P(x) VR (x)

Conflict-Based

E-matching

—-P(a), P(b), =R(b), —R(c)

—l Vx.P(x) VR (x) Model-Based

e Wk . P (x) VR(x))=P (a) VR (a)

— Add one instance
for one such value of k

Check: k=a for which M did satisfy O

Model-based Instantiation

—P (a)

P (b)
—R (b)
—R (C)

—P (a) ’

P(b), —R(b), —R(c)
Vx.P(x) VR (x)

- (Vx.P(x) VR(x))VP(a)VR(a)

Vx.P(x) VR (x)

Conflict-Based

E-matching

Model-Based

Model-based Instantiation

2
3

Conflict-Based

E-matching

| e

Ground

—P(a), P(b), —R(b), —R(c)
Vx.P(x) VR (x)
—(Vx.P(x) VR(x))VP(a)VR(a)
- (Vx.P(x) VR(x))VP(c)VR(c)

Model-Based

Solver
—P (a)
P (b)
—R (b)
—R (c)
R (a)

Vx.P(x) VR (x)

Repeat as necessary
= “Model refinement loop”

Conflict-Based

Model-based Instantiation

E-matching
—-P(a), P(b), =R(b), —R(c)
Vx.P(x) VR(x) Model-Based
—(Vx.P(x) VR(x))VvP(a)VR(a)
—(Vx.P(x) VR(x))VP(c)VR(c)
—|P(a)
, P (b)
E™ 4R (b)
_IR(C)
R (a)
P(c)
Q//
Vx.P(x) VR (x)

Model-based Instantiation

E//{
Q//{

Conflict-Based
|
|

Model-Based

|

M/I {

i

i
AV VRS ROV IV
Q O O w

N N S S S S

Q

e N T T T T

@

Vx.P(x) VR (x)

Check: dx .= (PM" (x) VRM” (%))

Model-based Instantiation

E//{
Q//{

Conflict-Based
|
|

Model-Based

|

M/I {

]
U WY
A aocoo

Vx.P(x) VR (x)

Check: k=a A k#a

Model-based Instantiation

E//{
Q//{

Conflict-Based
|

E-matching

|
Model-Based

|

M/I {

i

i
AV VRS ROV IV

Q Y Q OO0 w

Vx.P(x) VR (x)

Check: k=a A k#a

—> Unsatisfiable, there are no values k for which M "’ does not satisfy O

Model-based Instantiation

Conflict-Based
|

|
Model-Based

—|P(a) Y74
E™ —Rr (b)
—lR(C)
R(a)
P(c)
144
Q { Vx.P(x) VR (x)

, model M”

Finite Model Finding in CVC4

|
Model-Based

UM={a,b, Cy d}
—P (a)
P (b) M PMe | .
E{ —R (b) .
—R(c) RY"<=. ..
R (a) -
P(c)

Q { Vx:U.P(x)VR(x)

In CVC4, model-based Instantiation used for
improving scalability of FMF

Finite Model Finding in CVC4

M
vP (a) vk (a)
vP (b) VR (b)
VvP (e) VR (¢)
vP (d) vR (4d)

via exhaustive instantiation

Conflict-Based

E-matching

Model-Based

uM={a,b, c,d}

Finite Model Finding in CVC4

..vP(a)VvR (a)

..vVP(c)VR (c)

HJ

via model-based instantiation

Conflict-Based

E-matching

Model-Based

uM={a,b, c,d}

Model-based Instantiation: Impact

1E+10
1E+09
100000000
10000000
1000000
100000
10000
1000

100

10

1

1 100 200 300 400 500 600 700 800 900 1000 1100 1200
e 1203 satisfiable benchmarks from the TPTP library

* Graph shows # instances required by exhaustive instantiation
e Eg. Vxyz:U.P(x,vy,z),if |U|=4, requires 43=64 instances

Conflict-Based

E-matching

Model-Based

Model-based Instantiation: Impact

1E+10
1E+09
100000000
10000000
1000000
100000
10000
1000

100

10

1

1 100 200 300 400 500 600 700 800 900 1000 1100 1200

* CVC4 Finite Model Finding + Exhaustive instantiation
* Scales only up to ~150k instances with a 30 sec timeout

Conflict-Based

E-matching

Model-Based

Model-based Instantiation: Impact

1E+10
1E+09
100000000
10000000
1000000
100000
10000
1000

100

10

1

1 100 200 300 400 500 600 700 800 900 1000 1100 1200

Conflict-Based

E-matching

Model-Based

* CVC4 Finite Model Finding + Model-Based instantiation [Reynolds et al CADE13]
» Scales to >2 billion instances with a 30 sec timeout, only adds fraction of possible instances

E-matching, Conflict-Based, Model-based:

 Common thread: satisfiability of V + UF + theories is hard!

* E-matching:
* Pattern selection, matching modulo theories

e Conflict-based:

* Matching is incomplete, entailment tests are expensive

* Model-based:

* Models are complex, interpreted domains (e.g. Int) may be infinite

E-matching, Conflict-Based, Model-based:

 Common thread: satisfiability of V + UF + theories is hard!

* E-matching:
* Pattern selection, matching modulo theories

e Conflict-based:

* Matching is incomplete, entailment tests are expensive

* Model-based:

* Models are complex, interpreted domains (e.g. Int) may be infinite

—> But reasoning about V + pure theories isn’t as bad:

e C(Classic V-elimination algorithms are decision procedures for V in:
* LRA [Ferrante+Rackoff 79, Loos+Wiespfenning 93] , LIA [Cooper 72], datatypes, ...

E-matching, Conflict-Based, Model-based:

 Common thread: satisfiability of V + UF + theories is hard!
* E-matching:
* Pattern selection, matching modulo theories

e Conflict-based:

* Matching is incomplete, entailment tests are expensive

* Model-based:

* Models are complex, interpreted domains (e.g. Int) may be infinite

—> But reasoning about V + pure theories isn’t as bad:

e C(Classic V-elimination algorithms are decision procedures for V in:
* LRA [Ferrante+Rackoff 79, Loos+Wiespfenning 93] , LIA [Cooper 72], datatypes, ...

* Can classic V-elimination algorithms be leveraged in an DPLL(T) context?
* Yes: [Monniaux 2010, Bjorner 2012, Komuravelli et al 2014, Reynolds et al 2015, Bjorner/Janota 2016]

Technigues for Quantifier Instantiation

Instances of ¥V in Q

F, .. Quantifiers Module

Conflict-Based

E-matching CE-Guided

Ground

[

1

Satisfying Model Based
SO IVe r assignment
F , Q | \ Y)
Generally, Generally,
used for quantifiers with UF used for quantifiers w/o UF

l EWQ is T-satisfiable

Technigues for Quantifier Instantiation

F, ..

Ground
Solver

— Classic V-elimination algorit

Instances of V in Q

Satisfying
assignment

E,Q

Quantifiers Module

Conflict-Based

\ E-matching

i

Model Based

\

/

|

A decision procedure
for V in LIA, LRA, ...

nms can be cast as

counterexample-guided instantiation procedures

l EWQ is T-satisfiable

Counterexample-Guided Instantiation

* Variants implemented in number of tools:

* Z3 [Bjorner 2012, Bjorner/Janota 2016]

* Tools using Z3 as backend: SPACER [Komuravelli et al 2014] UFO [Fedyukovich et al 2016]
* Yices [Dutertre 2015]

* CV(CA [Reynolds et al 2015]

* High-level idea:

* Quantifier elimination (e.g. for LIA) says: 3x.y[x] < y[t,] v ..vy[t] for finite n

Counterexample-Guided Instantiation

* Variants implemented in number of tools:

* Z3 [Bjorner 2012, Bjorner/Janota 2016]

* Tools using Z3 as backend: SPACER [Komuravelli et al 2014] UFO [Fedyukovich et al 2016]
* Yices [Dutertre 2015]

* CV(CA [Reynolds et al 2015]

* High-level idea:
* Quantifier elimination (e.g. for LIA) says: Vx.—y[x] © —y[t,] A .. A—=y[t_] for finite n

(consider the dual)

Counterexample-Guided Instantiation

* Variants implemented in number of tools:
* Z3 [Bjorner 2012, Bjorner/Janota 2016]
* Tools using Z3 as backend: SPACER [Komuravelli et al 2014] UFO [Fedyukovich et al 2016]
* Yices [Dutertre 2015]
* CV(CA [Reynolds et al 2015]

* High-level idea:
* Quantifier elimination (e.g. for LIA) says: Vx.—y[x] < —y[t,] A .. A—y[t_] for finite n

 Enumerate these instances lazily, via a counterexample-guided loop, that is:
* Terminating: enumerate at most n instances
* Efficient in practice: typically terminates after m<<n instances

Counterexample-Guided Instantiation

—> Consider V in the theory of linear integer arithmetic LIA:
dabc. (a=b+5 A VX. (x>a Vv x<bvx-c<3))

Counterexample-Guided Instantiation

Ground | a=b+5 }
Solver Vx. (x>a v x<b v x-c<3) E

—> Consider V in the theory of linear integer arithmetic LIA:
%. (a=b+5 A Vx. (x>a Vv x<bVv x-c<3))

Outermost existentials a, b, c are treated as free constants

Counterexample-Guided Instantiation

Ground :
Solver

a=p+5

E

CE-Guided

Vx.

a=b+5
(x>a Vv x<b Vv x-c<3)

Vx.

(x>a Vv x<b Vv x-c<3)

- F

Counterexample-Guided Instantiation

Ground | 2=b+5 }
Solver Vx. (x>a Vv x<bvx-c<3) F

F { a=p+5
ﬂ CE-Guided
Instantiation
Q{ V' x >a Vv x<b Vv x-c<3)

. (x

—> Use counterexample-guided instantiation

Counterexample-Guided Instantiation

Ground

CE-Guided

Solver

o a=b+5 ﬁ
Q{ Vx. (x>aVv x<b Vv x-c<3)

Vx.

a=b+5
(x>a Vv x<b Vv x-c<3)

CE-Guided

Instantiation

l

Check dk.— (k>a vk<b v k-c<3)

—>With respect to model-based instantiation:
 Similar: check satisfiability of 3k . — (k>a v k<b v k-c<3)

- F

Counterexample-Guided Instantiation

Ground a=hbts
e Vx. (x>a Vv x<bVv x-c<3) F
Solver C = (k<a A k>b A k>c+3)

F { a=p+5
ﬁ CE-Guided
Instantiation
Q { Vx. (x>aVv x<b Vv x-c<3)

—>With respect to model-based instantiation:
 Similar: check satisfiability of 3k . — (k>a v k<b v k-c<3)
 Key difference: use the same (ground) solver for F and counterexample k for Q

Counterexample-Guided Instantiation

CE-Guided

Ground |}
Solver

a=b+5

Vx. (x>avVv x<bvx-c<3)
C= (k<a Ak2b A k=2c+3)

CE-Guided
Instantiation

Counterexample-Guided Instantiation

a=b+5
Vx. (x>avVv x<bvx-c<3)

C is a fresh Boolean variable:
“A counterexample k exists for Vx. (x>a v x<b v x-c<3)”

Counterexample-Guided Instantiation

Ground a=b+5, o« ooy
. Vx. (x>avx<b,t/ xX—-C<3)]:T'

C= (k<an ka;l/\ k=>c+3)

Solver

/-
-7 Instances

CE-Guided

Instantiation

e Three cases:

CE-Guided

Counterexample-Guided Instantiation

1

a=b+5, ...,

unsat y EIBUE < Vx. (x>aVv x<b Vv x-c<3) F
Solver C= (k<a A k>b A k>c+3)

CE-Guided

Instantiation

* Three cases:
1. Fis unsatisfiable —> answer “unsat”

Counterexample-Guided Instantiation

E
Q

Ground

CE-Guided

Solver

—-C,

Vx.

(x>ab

e Three cases:

Vx.
C= (k<a Ak=2b A k=2c+3)

a=b+5, ...,
(x>a v x<b v x-c<3)

CE-Guided

Instantiation

2 . Fis satisfiable, -C€E for all assignments E

= answer “sat”

B

Counterexample-Guided Instantiation

Ground

CE-Guided

V' x

Solver

E{ C,...

Q { Vx. (x>aVv x<b Vv x-c<3)

e Three cases:

a=b+5, ...,
. (x>a Vv x<bvx-c<3) F
C= (k<a Ak=2b A k=2c+3)

CE-Guided =00

Instantiation

3. Fis satisfiable, CeE for some assignment E

3

...>t>avt<bv t-c<3

—

where k¢ FV (t)

—> add an instance to F

Counterexample-Guided Instantiation

CE-Guided

-‘ Ground
unsat Solver
o { (=) C, ... N
Q { Vx. (x>aVv x<b Vv x-c<3)

* Three cases:
1. Fis unsatisfiable

V' x

a=b+5, ...,
. (x>a Vv x<bvx-c<3) F
C= (k<a Ak=2b A k=2c+3)

CE-Guided

Instantiation

2 . Fis satisfiable, =CeE for all assignments E
3. Fissatisfiable, CeE for some assighnment E

return

3

...>t>avit<bv t-c<3

I

= answer “unsat”
— answer “sat”
— add an instanceto F

Counterexample-Guided Instantiation

CE-Guided

-‘ Ground
unsat Solver
o { (=) C, ... N
Q { Vx. (x>aVv x<b Vv x-c<3)

* Three cases:
1. Fis unsatisfiable

V' x

a=b+5, ...,
. (x>a Vv x<bvx-c<3) F
C= (k<a Ak=2b A k=2c+3)

CE-Guided

Instantiation

2 . Fis satisfiable, =CeE for all assignments E
3. Fissatisfiable, CeE for some assighnment E

return

3

...>t>avt<bv t-c<3

I

= answer “unsat”
— answer “sat”

— add an instance to F
(...which t?)

CE-Guided

Counterexample-Guided Instantiation

Ground a=hbts
< Vx. (x>avVv x<bvx-c<3)
Solver C= (k<a A k>b A k>c+3)

Counterexample-Guided Instantiation

CE-Guided

Ground :
Solver

C, a=b+5,
k<a
k=b

k>c+3

Vx.

(x>a Vv x<b Vv x-c<3)

a=b+5
Vx. (x>avVv x<bvx-c<3)

—C Vv (kf£a A k=2b A k=2c+3)

Counterexample-Guided Instantiation

Ground
Solver
C,a=b+b,
k<a
k>b
k>c+3
Vx. (x>aVv x<bvx—-c<3)

CE-Guided

a=p+5
Vx. (x>avVv x<bvx-c<3)
—C Vv (kZLa A k=b A k2c+3)

aM=5

bM=0

cM=0

kM=3

J

|

Build model M for E

Counterexample-Guided Instantiation

Ground
Solver
C,a=b+b,
kb
k=c+3
Vx. (x>aVv x<bvx—-c<3)

CE-Guided

Vx.

(x>a v x<b v x-c<3)
—C Vv (kfa A k=b A k=c+3)

a=b+5

aM=5

bM=0

cM=0

kM=3

k=b

k>c+3

\

)

Take lower bounds of k in E

f

Counterexample-Guided Instantiation

Ground
Solver
C,a=b+b,
k<a
k>b
k>c+3
Vx. (x>aVv x<bvx—-c<3)

CE-Guided

a=p+5
Vx. (x>avVv x<bvx-c<3)
—C Vv (kZLa A k=b A k2c+3)

aM=5

cM=0

kM=3

k>b =
k>c+3 | =

Compute their value in M

Counterexample-Guided Instantiation

Ground
Solver
C,a=b+b,
k<a
k>b
k>c+3
Vx. (x>aVv x<bvx—-c<3)

CE-Guided

a=b+5
Vx. (x>avVv x<bvx-c<3)
—C Vv (kZLa A k=b A k2c+3)
24 =5
in M
M_
o7 =0 k>b | =
cM=q k>c+3 | =3
kM=3

Vx. (x>avx<bvVvx-c<3)=

c+3>ave+3<bve+3-c<3

\

J

|

Add instance for lower bound that is maximal in M

Counterexample-Guided Instantiation

Ground
Solver
C,a=b+b,
k<a
k>b
k>c+3
Vx. (x>aVv x<bvx—-c<3)

CE-Guided

Vx. (x>avVv x<bvx-c<3)
—C Vv (kZLa A k=b A k2c+3)

a=b+5

in M
k>b =
k>c+3 | =3
Vx. (x>avx<bvVvx-c<3)=
c+3>a v c+3<b

CE-Guided

Counterexample-Guided Instantiation

a=b+5
Ground) —Vx. (x>avx<bvx-c<3) vVc+3>avVvc+3<b
Solver Vx. (x>aVv 3<bvx-c<3)
—C Vv (k<a A/k=>b A k=>2c+3)

Counterexample-Guided Instantiation

Ground

Solver

| C,a=b+5, c+3<Db,

k<a
k>b
k>c+3

Q{ vx.

(x>a Vv x<b Vv x-c<3)

CE-Guided

a=b+5
—Vx. (x>avx<bvx-c<3) Vc+3>avVvc+3<b
Vx. (x>aVv x<bvVvx-c<3)
—C Vv (k<a A k=b A k=2c+3)

Counterexample-Guided Instantiation

Ground
Solver

| C,a=b+5, c+3<Db,

k<a
k>b
k>c+3

Q{ vx.

(x>a Vv x<b Vv x-c<3)

CE-Guided

a=b+5
—Vx. (x>avx<bvx-c<3) vc+3>av c+3<b

Vx. (x>aVv x<bvVvx-c<3)
—C Vv (k<a A k=b A k=2c+3)

J

Build model M for E

CE-Guided

Counterexample-Guided Instantiation

a=p+5
Ground —Vx. (x>aVvx<bvx-c<3) Vct+3>avVvct3<b
Solver ‘ Vx. (x>aVv x<bvVvx-c<3)
—C Vv (k<a A k=b A k=2c+3)
k<a
B k>b bM=0 k>b
B kZC+3 CM=_4 kZC+3

jelil=
Q { Vx. (x>aVv x<bvx—-c<3) Y

Take lower bounds of k in E

CE-Guided

Counterexample-Guided Instantiation

a=b+5
Ground —Vx. (x>aVvx<bvx-c<3) Vct+3>avVvct3<b
Solver ‘ Vx. (x>aVv x<bvVvx-c<3)
—C Vv (k<a A k=b A k=2c+3)

| C,a=b+5, c+3<Db, M_c
k<a in M
B - k>b k>b | =0
8 k2c+3 k>c+3 =-1

M_
Q { Vx. (x>aVv x<bvVv x-c<3) k¥=3 Y

Compute their value in M

Counterexample-Guided Instantiation

Ground
Solver

| C,a=b+5, c+3<Db,

k<a
k>b
k>c+3

Q{ vx.

(x>a Vv x<b Vv x-c<3)

a=b+5
—Vx. (x>avx<bvx-c<3) Vc+3>avVvc+3<b
Vx. (x>aVv x<bvVvx-c<3)
—C Vv (k<a A k=b A k=2c+3)

24 =5 ,
in M

pM=0 k>b | =0

CM=_4 k>2c+3 =-1

kM=3 Vx. (x>aVv x<bVvx-c<3)=
b>a vb<bvb-c<3

\ J
|

Add instance for lower bound that is maximal in M

Counterexample-Guided Instantiation

Ground
Solver

| C,a=b+5, c+3<Db,

k<a
k>b
k>c+3

Q{ vx.

(x>a Vv x<b Vv x-c<3)

a=b+5
—Vx. (x>avx<bvx-c<3) Vc+3>avVvc+3<b
Vx. (x>aVv x<bvVvx-c<3)
—C Vv (k<a A k=b A k=2c+3)

24 =5 ,
in M
pM=0 k>b | =0
CM=_4 k>2c+3 =-1
kM=3 Vx. (x>aVv x<bVvx-c<3)=
b>a vb-c<3

\ J
|

Add instance for lower bound that is maximal in M

CE-Guided

Counterexample-Guided Instantiation

a=b+5b
—Vx. (x>avx<bvx-c<3)Vvc+t3i>avct+3<b
—Vx. (x>avx<bvx-c<3) V b >avb<c+3
Vx. (x>aVv x<byVyx-c<3)
—C Vv (k<a A kZ2b/A k=2c+3)

Ground

Solver

CE-Guided

Counterexample-Guided Instantiation

a=b+5
—Vx. (x>avx<bvx-c<3)Vc+t3>avc+t3<b
—Vx. (x>avx<bvx-c<3)V b >avb<ct+3
Vx. (x>aVv x<bvx-c<3)
—C v (ka A k=2b A k=2c+3)

Ground
Solver

b a c¢+3

Counterexample-Guided Instantiation

Ground
Solver
—C
a=pb+5
c+3<a
b<c+3

Vx.

(x>a Vv x<b Vv x-c<3)

CE-Guided

a=b+5
—Vx. (x>avx<bvx-c<3)Vc+t3>avc+t3<b
—Vx. (x>avx<bvx-c<3)V b >avb<ct+3
Vx. (x>aVv x<bvx-c<3)
—C Vv (k£a A k=2b A k=2c+3)

Counterexample-Guided Instantiation

Ground
Solver
—C
a=pb+5
c+3<a
b<c+3

Vx.

(x>a Vv x<b Vv x-c<3)

CE-Guided

a=b+5
—Vx. (x>avx<bvx-c<3)VvVc+t3i>avct+3i<b

—Vx. (x>avx<bvx-c<3)V b >avb<c+3
Vx. (x>a Vv x<bvx—-c<3)
—C Vv (kZLa A k=2b A k=>2c+3)

b a c¢+3
|

| — I

Counterexample-Guided Instantiation

Ground
Solver
—C
a=pb+5
c+3<a
b<c+3

Vx.

(x>a Vv x<b Vv x-c<3)

CE-Guided

a=b+5
—Vx. (x>avx<bvx-c<3)VvVc+t3i>avct+3i<b

—Vx. (x>avx<bvx-c<3)V b >avb<c+3
Vx. (x>aVv x<bvx-c<3)
—C Vv (kfLa A k=2b A k=2c+3)

—dabc. (a=b+5 A Vx. (x>a Vv x<bvVv x-c<3))
is LIA-satisfiable

Counterexample-Guided Instantiation

e Decision procedure for ¥V in various theories:
 Linear real arithmetic (LRA)

* Maximal lower (minimal upper) bounds 1.<k, .., 1<k —>{x—>1__ 10}
e [Loos+Wiespfenning 93] ...may involve virtual terms 6,
* Interior point method: 1o <k<u., >{x—=> (1 .,~U.,) /2}

* [Ferrante+Rackoff 79]

* Linear integer arithmetic (LIA)

* Maximal lower (minimal upper) bounds (+c) 1,<k, .., 1. <k —>{x—>1__,tc}
* [Cooper 72]

* Bitvectors/finite domains
e Value instantiations F[k] — {x—>kM}

* Datatypes, ...

= Termination argument for each: enumerate at most a finite number of instances

Summary: DPLL(T)+Instantiation

T-clauses F «

Lemmas

SAT

Conflict-Based
Solver

E-matching CE-Guided

T-Decision

Model-Based
Procedures

ground literals E
Vv formulas O

Summary: DPLL(T)+Instantiation

T-clauses F «

unsat

Future Challenges

* Improve performance and precision of existing approaches
* Many engineering challenges when implementing E-matching, conflict-based instantiation

* Develop new approaches for V+UF+theories that:

* Are efficient in practice
* E-matching is efficient for V+UF, ce-guided approaches are efficient for V+ theories
* Under what conditions, and to what degree, can these techniques be combined?

e Are decision procedures for various fragments
* Extensions of Bernays-Shonfinkel
* Array Property fragments

* Local theory extensions
e Y over pure theories that emit quantifier elimination

Thanks for listening

* CVC4.
* Open source, available at http://cvc4.cs.nyu.edu/downloads/

http://cvc4.cs.nyu.edu/downloads/
http://cvc4.cs.nyu.edu/downloads/
http://cvc4.cs.nyu.edu/downloads/

