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Outline

*CVC4
* SMT solver architecture
...and how it extends to V reasoning via quantifier instantiation:
V. Y[x]=>y[t]

* Recent strategies for quantifier instantiation in CVC4:
* E-matching, conflict-based, model-based, counterexample-guided

* Challenges, future work
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CVC4 is Expressive and Featureful

* Boolean combinations of theory constraints
* UF, Arrays
* Linear real/integer arithmetic
* Bitvectors
e (Co)inductive datatypes
* Strings
e Sets with Cardinality

e Mixed constraints over all built-in theories
e Quantifiers V
* Models, proofs, unsat cores
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* Boolean combinations of theory constraints
* UF, Arrays
* Linear real/integer arithmetic
* Bitvectors
e (Co)inductive datatypes
* Strings
e Sets with Cardinality

e Mixed constraints over all built-in theories

e Quantifiers V — Focus of this talk

* Models, proofs, unsat cores
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Quantified Formulas in DPLL(T): Basics

(P(a) vI(b)=a+l)
(—Vx.P(x) vVy.=P(y) VR(Y))
(Vx.f (x)=g(x)+h(x) v=R(a))

—> Given the above input



Quantified Formulas in DPLL(T): Basics
(P (a) v ENISNEES)

(—Vx.P(x) vVy.=P(y) VR(V))
(Vx.f(x)=g(x)+h(x) v=P(a))

* Consider the propositional abstraction of the formula

* Atoms may encapsulate quantified formulas with Boolean structure
* Eg. Vy.—=P(y) VR(y)
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* Find propositional satisfying assighnment via off-the-shelf SAT solver
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Quantified Formulas in DPLL(T): Basics

(P(a) v ENEISEHT)

(2Vx.P(x) v¥y. =P (y) VR(Y))
(Vx.f(x)=g(x)+h(x) v—=P(a))

P(a) — true  My.=P(y) VR(y) | — true
_ — true Vx.f(x)=g(x)+h (x) — true

Vx.P(x) — false

—> Consider original atoms




Quantified Formulas in DPLL(T): Basics
(P (a) v ENBYSEH )

(-Vx.P(x) vVy.=P(y) VR(V))
(Vx.f(x)=g(x)+h(x) v—=P(a))

SAT Solver

P(a),[ B, —Vx.P (x),Vx.f(x)=g(x)+h(x),Vy.=P(y) VR(y)

J

Y

M

—> Propositional assighment can be seen as a set of T-literals M
 Must check if M is T-satisfiable




Quantified Formulas in DPLL(T): Basics

P(a)

(P(a) v ENEISEHT)

(2Vx.P(x) v¥y. =P (y) VR(Y))
(Vx.f(x)=g(x)+h(x) v—=P(a))

SAT Solver

—

/ —Vx.P(x)
‘ Vx. £ (x) =g (x) +h (x)

Vy.=P(y) VR(y)

LIA-Solver Quantifiers Module

—> Distribute ground literals to T-solvers,V literals to quantifiers module




Quantified Formulas in DPLL(T): Basics

M\

(P& v
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(Vx.f(

SAT Solver

Quantifiers Module
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—> These solvers may choose to add conflicts/lemmas to clause set




DPLL(T,+..+T )+Quantifiers: Overview

T-Clauses F

SAT
Solver

..when Fis
propositionally
unsatisfiable

[Nieuwenhuis/Oliveras/Tinelli 06]

Satisfying
Assignment
M

n

Q

Conflicts, lemmas

Quantifiers Module = -

—> Each of these components may:
 Report Mis T-unsatisfiable by reporting conflict clauses

* Report lemmas if they are unsure




DPLL(T,+..+T )+Quantifiers: Overview

T-Clauses F

SAT
Solver

..when Fis
propositionally
unsatisfiable

[Nieuwenhuis/Oliveras/Tinelli 06]

Satisfying
Assignment
M

T,-solver

T -solver

Quantifiers Module

..when Mis
T,+..+T -satisfiable

= If no component adds a lemma, then it must be the case
that M is T +...+T -satisfiable




In this talk: DPLL(T)+Quantifiers, simplified

T-Clauses F
Satisfying
Assignment Theory
— @Ground Solver
SAT Solver M solver(s)

Quantifiers
Module

= For purposes of this talk, partition M into quantifier-free part E, and set of V formulas Q




In this talk: DPLL(T)+Quantifiers, simplified

T-Clauses F «

___________________ Conflicts, lemmas

~

Satisfying :
Assignment Theory ,'
SAT Solver M solver(s)

E is T-satisfiable

Quantifiers
Module

— Theory solvers determine whether E is T-(un)satisfiable




In this talk: DPLL(T)+Quantifiers, simplified

T-Clauses F' =

Satisfying
Assignment Theory
SAT Solver M solver(s)

Quantifiers -
Module

EWQ is T-satisfiable

= If E is T-satisfiable, quantifiers module may be invoked




In this talk: DPLL(T)+Quantifiers, simplified

T-Clauses F' =

Satisfying
Assignment Theory
SAT Solver M solver(s)

Quantifiers
Module

EWQ is T-satisfiable

= Will discuss how the quantifiers module is implemented




DPLL(T)+Quantifiers, further simplified

T-clauses F

Ground

Solver

-_— e o e o
=== e
—_—
—
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ground literals E
Y formulas Q

—
—
~~

Quantifiers
Module

j * |Inputs:

e Set of ground T-literals E
e Set of V formulas Q

* Qutputs:
e “EUQ is T-satisfiable”, or
= Fis T-satisfiable
e Set of lemmas toaddto F




DPLL(T)+Quantifiers, further simplified

T-clauses F' «

Ground

Solver

— e -
-_—__—————
—
—
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ground literals E

Y formulas Q

* Recurrent Questions:
* Which lemmas do we add?

e How do we know EUQ is T-satisfiable?

e When do we invoke it?

Quantifiers
Module

J * |Inputs:

e Set of ground T-literals E
e Set of V formulas Q

* Qutputs:
e “EUQ is T-satisfiable”, or
= Fis T-satisfiable
e Set of lemmas toaddto F




Quantifier Instantiation

P(a),P(b)
f (b)>a+l

Vx.P(x)

Quantifiers

Module




Quantifier Instantiation

3
0

P(a),P(b)
f (b)>a+l

Vx.P(x)

Quantifiers L&

Module T

Vx.P(x) = P (
Vx.P(x) = P (

ow

* Universal quantification handled by Instantiation
e Choose ground term(s) t, lemma(s) say Vx.P (x) implies P (a)
—>May be applied ad infinitum, forx - a, b, ¢, d, ..

» Selection of instances is the core challenge




Quantifiers Module : Recurrent Question

 Which instances do we add?
* E-matching [Detlefs et al 03]
e Conflict-based quantifier instantiation [Reynolds et al FMCAD14]
* Model-based quantifier instantiation [Ge,de Moura cAV09]
* Counterexample-guided quantifier instantiation [Reynolds et al CAV15]



Techniques for Qua

F, ..

Ground
Solver

Instances of ¥V in Q

ntifier Instantiation: Overview

Satisfying
assignment

E,Q

Quantifiers Module

s

Conflict-Based

E-matching

CE-Guided

Model Based

i

Generally,
used for quantifiers with UF

f

Generally,
used for quantifiers w/o UF

l EWQ is T-satisfiable




Techniques for Qua

F, ..

Ground
Solver

Instances of V in Q

Satisfying
assignment

E,Q

ntifier Instantiation: Overview

Quantifiers Module

s

Conflict-Based

E-matching

Model Based

\
|

Generally,
used for quantifiers with UF

|

Generally,
used for quantifiers w/o UF

— Will describe details of each of these strategies

l EWQ is T-satisfiable




E-matching

* Introduced in Nelson’s Phd Thesis [nelson 80]
* Implemented in early SMT solvers, e.g. Simplify [Detlefs et al 03]

* Most widely used and successful technique for quantifiers in SMT

e Software verification
e Boogie/Dafny, Leon, SPARK, Why3

* Automated Theorem Proving
* Sledgehammer

* Variants implemented in numerous solvers:
e /3 [deMoura et al 07], CVC3 [Ge et al 07], CVC4, Princess [Ruemmer 12], VeriT, AIt-Ergo



E-matching
P(a)
—P (b)
E{ R(C)
—R (a)
S (e)

Vx.P(x) VR (x)

E-matching

[
[




E-matching

P(a)
—P (b)
R (c)
—R (a)
S (e)

Conflict-Based

E-matching

Model Based

Vx.P(x) VR (x)




Conflict-Based

| ConflictBased

E-matching
P(a)
—P (b)
E % R(c)
—R (a)
S (e)

Q{ Vx.P(x) VR (x)

\ )
|

Pattern

= Idea: choose instances based on pattern matching



E-matching

Vx.P(x) VR (X)

\ }
|

Pattern

return
———

Conflict-Based

E-matching

Model Based

(Vx.P(x) VR(x))=P(a)VR (a)




E-matching

—P (b)

E{ R(c)
—R(a)

S (e)

| ConfecBased

| Emaching

5 (a) | VodelBased
(Vx.P(x) VR(x))=>P(a) VR(a)

return

— = —

Q{ Vx.P(x) VR(x)

\ J
|

Pattern




Conflict-Based

E-matching: Functions, Equality E—

Model Based




Conflict-Based

E-matching: Functions, Equality e

Model Based

= In E-matching, Pattern matching takes into account equalities in E



E-matching: Functions, Equality

P(a, c)
E:{ f (b)=a

Q{ Vxy.P(f(x),y) =9 (x)=y

K /
|

Pattern

Conflict-Based

E-matching

Model Based




Conflict-Based

E-matching: Functions, Equality E—

Model Based

P(a,c)
E{ f (b)=a

Q{ Vxy.P(£(x),y) =g (x)=y

P(a ,c)



Conflict-Based

E-matching: Functions, Equality B

Model Based

CeD

)

G

E{ P(a,c)
f (b)=a @P(a,
\

f
Congruence closure of E

d

Q{ Vxy.P(£(x),y) =9 (x)=y

P(a ,c)



Conflict-Based

E-matching: Functions, Equality B

Model Based

CeD

G

E{ P(a,c)
f (b)=a @P(a,

d

Q{ Vxy.P(£(x),y) =9 (x)=y

P(£(b),c) _ EimpliesP(a,c)<P(f(b),c)



Conflict-Based

Model Based

E-matching: Functions, Equality T ey
| VodelBased

f (b)=a

E]{ P(a,c)

Q{ Vxy.P(£(x),y) =9 (x)=y

P(£(b),c)
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E-matching: Intuition

e Say E-matching returns the instance (Vx.Y¥Y = Y{x—>t})
=> Why is this instance useful?
* We are interested in satisfiability of EUQ
* Assume pattern p is a subterm of ¥, e.g. Vx . ¥[p]
* E-matching finds a ground term g from E, where g=p{x—t}is implied by E

* Thus: Y[g]isimplied by EU {¥Y[p] {x—>t}}
—>In other words, from Q, we learn information WY[g] about a term g from E

Learn P (a,c) =g (b) =c as a result of

{P(a,c),f(b)=alu{P(£f(b), c)=g(b)=c}
\ J \ J

Y p
v
E with new instance




E-matching: Challenges

* E-matching has no standard way of selecting patterns

* E-matching generates too many instances
* Many instances may overload the ground solver

* E-matching is incomplete
* |t may be non-terminating

* When it terminates, we generally cannot answer “E\UQ is T-satisfiable”

* Although for some fragments+variants, we may guarantee ( termination << model )
* Decision Procedures via Triggers [Dross et al 13]
* Local Theory Extensions [Bansal et al 15]

— Typically are established by a separate pencil-and-paper proof



E-matching: Pattern Selection T ey

* In practice, pattern selection can is done either by:

* The user, via annotations, e.g. (! .. :pattern ((P x)))
e The SMT solver itself

* Recurrent questions:
* Which terms be we permit as patterns? Typically, applications of UF:
e Use f (x,vy) butnot x+v for Vxvy. f (x, v)=x+vy

 What if multiple patterns exist? Typically use all available patterns:
e Use both P (x) andR (x) for Vx.P (x) VR (x)

 What if no appropriate term contains all variables? May use “multi-patterns”:
* {R(x,y) ,R(y,z)}forVxyz. (R(x,y)AR(y,2))=>R(x,2z)

e Pattern selections may impact performance significantly [Leino et al 16]
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* In practice, pattern selection can is done either by:

* The user, via annotations, e.g. (! .. :pattern ((P x)))
e The SMT solver itself

* Recurrent questions:
* Which terms be we permit as patterns? Typically, applications of UF:
e Use f (x,vy) butnot x+v for Vxvy. f (x, v)=x+vy

 What if multiple patterns exist? Typically use all available patterns:
e Use both P (x) andR (x) for Vx.P (x) VR (x)

 What if no appropriate term contains all variables? May use “multi-patterns”:
* {R(x,y) ,R(y,z)}forVxyz. (R(x,y)AR(y,2))=>R(x,2z)

e Pattern selections may impact performance significantly [Leino et al 16]

 ...and may share similarities with literal selection heuristics in ATP, a la [Reger et al 16]?
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E-matching

Ground
Solver
| J
H 1
\ Y J
~1000 E-matching
\ J
[
~100

 Typical problems in applications:
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e Satisfying assignments contain 1000s of terms in E, 100s of ¥V in Q
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E-matching: Too Many Instances ¢ matching

Model Based

Ground
Solver

[
I_\

~100

* Typical problems in applications:
e [ contains 1000s of clauses
e Satisfying assignments contain 1000s of terms in E, 100s of ¥V in Q
 Leadsto 100s



Conflict-Based

E-matching: Too Many Instances

E-matching

Model Based

Ground
Solver

~100
* Typical problems in applications:
* F contains 1000s of clauses

e Satisfying assignments contain 1000s of termsin E, 100s of ¥V in Q
e Leads to 100s, 1000s



Conflict-Based

E-matching: Too Many Instances

E-matching

Sl o
Solver
~1ooooo Y
~10000
~1oo

* Typical problems in applications:
* F contains 1000s of clauses

e Satisfying assignments contain 1000s of termsin E, 100s of ¥V in Q
e Leads to 100s, 1000s, 10000s of instances



E-matching: Too Many Instances T ey

~ OVERLOADED
F,oE F

~100000 } ~1oooo

}

"’100

—> Ground solver is overloaded, loop becomes slow,
...solver times out



E-matching: Too Many Instances

# Instances cvc3 cvcd z3
# % i % i %
1-10 1464 13.49% | 1007 8.87% 1321 11.43%
10-100 | 1755 16.17% |1853 16.31% | 2554 22.11%
100-1000 | 3816 35.16% |[3680 32.40% |4553 39.41%
1000-10k | 1893 17.44% | 2468 21.73% | 1779 15.40%
10k-100k | 1162 10.71% | 1414 12.45% 823 7.12%
100k-1M | 560 5.16% 607 5.34% 376 3.25%
1M-10M | 193 1.78% 330 2.91% M
>10M 10  0.09% 0 0.00% |1 81 0.07%

e Evaluation on 33032 SMTLIB, TPTP, Isabelle benchmarks

* E-matching often requires many instances

E-matching

(for 8 of benchmarks z3 solves,
its E-matching procedure adds
more than 10M instances)

(Above, 16.6% required >10k, max 19.5M by z3 on a software verification benchmark from TPTP)



Conflict-Based

E-matching: Incompleteness p——

Model Based

B { empty

Vx.P(x)
Q{ Vx.=P (x)

—> E-matching is an incomplete procedure



Conflict-Based

E-matching: Incompleteness —

Model Based

No
- Instances
Found

B { empty

return

Vx.P(x)
Q{ Vx.=P (x)

= If E-matching produces no instances,
this does not guarantee E_/Q is T-satisfiable
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E-matching: Summary

* Using matching ground terms from E against patterns in Q:
- From Q, learn constraints about ground terms g from E

* Challenges
* What can we do when there too many instances to add?
—=>Use conflict-based instantiation [Reynolds/Tinelli/deMoura FMCAD14]

* What can we do when there are no instances to add, problem is “sat”?
—=Use model-based instantiation [Ge/deMoura CAV09]



Conflict-Based Instantiation

* Implemented in solvers:
* CVC4 [Reynolds et al 14], recently in VeriT [Barbosa16]

* Basic idea:
1. Try to find a “conflicting” instance such that EUW{x—>t} implies L

(by contrast, E-matching does not distinguish such instances)
2. If one such instance can be found, return that instance only

(and do not run E-matching)

= Leads to fewer instances, improved ability of ground solver to answer “unsat”



Conflict-Based Instantiation

P(a),—P(b)
P(c),—R(a)
R(d),—R(e)

R (c)

-1

Conflict-Based

E-matching

Model Based

Vx.P(x) VR (X)




Conflict-Based Instantiation

=
2

P(a)
P(c)
R (d)
R
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Conflict-Based

E-matching

Model Based
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—> E-matching would produce {x—a}, {x—b}, {x—>c}, {x—>d}, {x—e}
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Conflict-Based Instantiation
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— Consider what we learn from these instances:
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Conflict-Based Instantiation
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— Consider what we learn from these instances:

We knowR(d) =T
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Conflict-Based Instantiation
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— Consider what we learn from these instances:
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Conflict-Based Instantiation

P(a)
P(c)
R (d)
R

-1

, —P (D)
r_'R( )
r_'R( )

(c)

Vx.P(x

) VR(x)

Conflict-Based
1
1

g v 0 g ™
X

X

XX

X

}XooX

VNS VR SRS RPN
XXX

< < < <K KL

O QO O W

o O /™ O ™
< < < K KL
VR VI SRS RPN

O Q0 T w

TN

0
0

— Consider what we learn from these instances:

E,Q,P(a) vR(a)
E,Q,P(b) vR(b)
E,Q,P(c) VR(c)
E,Q,P(d) vR(d)
E,Q,P(e) VR (e)

T

>} P(c

P (e)

) VR (c) is a conflicting
instance for (E,Q) !



Conflict-Based Instantiation

P(a),—P(b)

—P (c),—=R(a)

R(d),—R(e)
—R (cC)

Vx.P(x) VR (x)

Conflict-

based
Instantiation

Conflict-Based
|
|

» (Vx.P(x) VR(x))=P(c) VR(c)

— Consider what we learn from these instances:

a) g T
b) EF R(b
c) F L
d) g T
e) E P(e

)

)

I

Since P (c) VR (c)
suffices to derive L,
return only this instance




Conflict-Based Instantiation

* Why are conflicts important?
* As with the ground case, they prune the search space of DPLL(T)

* Given a conflicting instance for (E, Q) is added to the clause set F
* Solver is forced to choose a new sat assignment (E’ , Q')

e S

Conflicting
instance
found,

Backtrack

l l

E,Q0 .. E',Q’ .. E”, Q" ..




Conflict-Based Instantiation: EUF

Conflict-Based

E-matching

Model Based




Conflict-Based Instantiation: EUF

g(b)=a, f(a)=a,
I h(f(a))=d,h(b)=c

Q{ Vx.f(g(x))=h(f(x))

= Consider the instance Vx.f (g (x) )=h (f (x) )=f (g(b))=h(f (b))
* Is this conflicting for (E, Q) ?



Conflict-Based

Conflict-Based Instantiation: EUF

E-matching

Model Based

L
Q 0 O

0 g (b)=a, f(a)
h(f(a))=d,h(b)

Q{ Vx.f(g(x))=h(f(x))

E,Q,f(g(b))=h(f(b)) fe £(g(b))=h(£f (b))



Conflict-Based Instantiation: EUF

@@HD
M Coeono o Camnie@)

Consider the equivalence classes of E




Conflict-Based Instantiation: EUF

g(b)=a, f(a)=a,
I h(f(a))=d,h(b)=c

@<b>=fD
H Ceno o Canie@)
f g

h

AN Y\
a b a d c
\ J

|
Build partial definitions for functions in terms of representatives

E,Q,f(g(b))=h(f(b)) k; £(g(b))=h(f (b))

Q{ Vx.f(g(x))=h(f(x))




Conflict-Based

Conflict-Based Instantiation: EUF

E-matching

Model Based

L
Q 0 O

g(b)=a, f(a)
E{ h(f(a))=d,h(b) <

Q{ V. £ (g (%)) <h (£ (x)) .

E,Q,f(g(b))=h(f(b)) e £(g(b))=h(£f (b))

U@ III




Conflict-Based

Conflict-Based Instantiation: EUF

E-matching

Model Based

L
Q 0 O

g(b)=a, f(a)
E{ h(f(a))=d,h(b) <

Q{ V. £ (g (%)) <h (£ (x)) .

E,Q,f(g(b))=h(f(b)) e f(g(b))=h( b )

U@ III




Conflict-Based Instantiation: EUF

azc, £ (b)=b,
g(b)=a, f(a)=a,
E{ h(f(a))=d,h(b)=c <
Q{ Vx.f (g (x))

E,0Q,f (g

o .

Conflict-Based

E-matching

Model Based

U@ III




Conflict-Based

Conflict-Based Instantiation: EUF

E-matching

Model Based

g(b)=a, f(a)=a,
E{ h(f(a))=d,h(b)=c <

Q{ V. £ (g (%)) <h (£ (x)) .

E,Q,f(g())=h(f(b)) e £( a )= c

U@ III




Conflict-Based Instantiation: EUF

azc, £ (b)=b,

g(b)=a, f(a)=a,

E h(f(a))=d,h(b)=c

Q{ Vx.f(g(x))=h(f(x))
E,Q, f( (b))=h(f(b))|=E

_a=g

Conflict-Based

E-matching

Model Based

Ué III




Conflict-Based Instantiation: EUF

azc, £ (b)=b,

g(b)=a, f(a)=a,

E h(f(a))=d,h(b)=c

Q{ Vx.f(g(x))=h(f(x))
E,Q, f( (b))=h(f(b))|=E

_a=g

Conflict-Based

E-matching

Model Based

Ué III




Conflict-Based

Conflict-Based Instantiation: EUF

E-matching

Model Based

a¥c, f (b)=b,
g(b)=a,f(a)=a
E{ h(f(a))=d,h(b)=c <

Q{ V. £ (g (%)) <h (£ (x)) .

E,Q,f(g(b))=h(£f(b)) [ 1 From E, we know a#c

U@ III




Conflict-Based
|

Conflict-Based Instantiation: EUF

azc, £ (b)=b,
g(b)=a, f(a)=a, _ _
E{ h(f (a))=d,h (b)=c @(b)‘fD

f g

h

AP 7

a b a d C

f (g(b))=h(f (b)) isaconflicting
1 } instance for (E, Q) !



Conflict-Based Instantiation: EUF

..., (b)=Db,
E{ g(b)=a, f(a)=a,
h(f(a))=d,h(b)=c

Q{ Vx.f(g(x))=h(f(x))

—> Consider the same example, but where we don’t know a#c
 Istheinstance £ (g (b) )=h (£ (b)) still useful?



Conflict-Based Instantiation: EUF

..., f(b)=b,
g(b)=a, f(a)=a,
h(f(a))=d,h(b)=c
Vx.f(g(x))=h(f(x))

Conflict-Based

E-matching

Model Based

_a=g

U@ III

Build partial defmltlons



Conflict-Based
|

Conflict-Based Instantiation: EUF

If(b):br
g(b)=a, f(a)=a, _ _
E{ h(f (a))=d,h (b)=c @(b)‘fD

h

AP 7

a b a d C

f g

E,Q,ft(g(b))=h(f (b)) |=E f(g(b))=h(f (b)) } Check entailment



Conflict-Based Instantiation: EUF

..., f(b)=Db,
g(b)=a, f(a)=a,

E{ h(f(a))=d,h (b)=c <

Q{ Vx.f (g (x))

E,0Q,f (g

o .

Conflict-Based

E-matching

Model Based

Ué III




Conflict-Based Instantiation: EUF

..., £(b)=b,
g (b)=a, f(a)=a, () —
E{ h(f (a))=d,h (b)=c 50 @(b)‘fD

f g

h

AP 7

a b a d C

Q{ Vx.f(g(x))=h(f(x))

Instance is not conflicting,
but propagates an equality

E,Q,f(g(b))=h(£f (b)) Fe a=c} between two existing terms in E



Conflict-Based Instantiation: EUF

..., £(b)=b,
g(b)=a, f(a)=a, _ _
E{ h(f (a))=d,h (b)=c @(b)‘fD

i g

h
adL 7N
a b a d c
f(g(b)=h(f(b)) isa
propagating instance for (E, Q)
E,Q,f(g(b))=h(f (b)) fe a=c} — These are also useful

Q{ Vx.f(g(x))=h(f(x))




Conflict-Based

Conflict-Based Instantiation

Given:

* Set of ground T-literals E
* Quantified formulas Q

e Conflict-based instantiation:

1. If there exists a conflicting instance Y{x—t }
e Returns {Vx.¥ =¥Y{x—>t}}only

2. If there exists propagating instance(s), V. {x—t, }for i=1, ., n
* Returns {Vx.¥, = ¥ {x—>t,}, .., x¥ =Y {x>t_ } }only

3. Otherwise:
e Returns “unknown” (and the quantifiers module will resort to E-matching)



cvcd+ci

Conflict-Based Instantiation: Impact

le+7

let6 F

le+5

le+4d

1000

100 f

10

Conflict-Based
|
|

* Using conflict-based
instantiation (cve4+ci),
require an order of magnitude
fewer instances for showing
“UNSAT” wrt E-matching alone

+ ++

10 100 1000 1le+4 1le+5 1le+6 le+7
ovica

_ (taken from [Reynolds et al FMCAD14], evaluation
Reported number of instances. On SMTLIB, TPTP, Isabelle benchmarks)



Conflict-Based Instantiation: Impact Lo

e Conflicting instances found on ~75% of rounds (IR)

e Configuration cvc4d+ci:
 Calls E-matching 1.5x fewer times overall
* As a result, returns 5x fewer instantiations

E-matching Conflict Inst. Propagating Inst.

IR % IR # Inst % IR # Inst % IR # Inst

TPTP cved 71,634 100.0 878,957,688
cved+ci 208,970 20.3 150.351.384 76.4 159.696 3.3 415,772

[sabelle cved 6.969 100.0 119.008.834
cved+cl 21,756 224 28.196.846 64.0 13,932 13.6 130,864

SMT-LIB cved 14,032 100.0 60,650,746
cved+ci 58,003 20.0 32,305,788 71.6 41.531 8.4 51,454




Conflict-Based

Conflict-Based Instantiation: Impact

* CVC4 with conflicting instances cvcd+ci

* Solves the most benchmarks for TPTP and Isabelle
* Requires almost an order of magnitude fewer instantiations

= A number of hard benchmarks can be solved without resorting to E-matching at all

TPTP Isabelle SMT-LIB
Solved Inst Solved Inst Solved Inst
cve3 5,245 627.0M 3,827 186.9M 3,407 42.3M
73 6,269 613.5M 3,506 67.0M 3,983 6.4M
cved 6.100 879.0M 3,858 119.0M 3,680 60.7M
cved+ci 4,082 28.2M 3,747 | 32.4M




Conflict-Based Instantiation: Challenges

* How do we find conflicting instances?

* |[dea: construct instances via a stronger version of matching

* Intuition: for Vx.P (x) v QO (x), will only match P (x) where P (t) <1
(For technical details, see [Reynolds et al FMICAD2014])

* What about conflicts involving multiple quantified formulas?
 What if our quantified formulas that contain theory symbols?



Model-based Instantiation

* Implemented in solvers:

e /3 [Ge et al CAV09], CVvC4 [Reynolds et al CADE13]

e Basic idea:

1. Build interpretation M for all uninterpreted functions in the signature
2. If this interpretation satisfies all formulas in Q, answer “sat”
e e.g. interpretation fM=Ax .1 satisfies Vx. f (x) >0

= Ability to answer “sat”



Conflict-Based

Model-based Instantiation

—P(a), P(b), =R(b), —=R(c)
Vx.P(x) VR (x)

E-matching

Model-Based

—P (a)

P (b)

E{ —R (b)
—R (¢C)

Q{ Vx.P(x) VR(x)




Model-based Instantiation

|

Q O O v

i

|
ZORNPS B Vv

E-matching

—P (a) ’

Vi.P (1) VR (3)

Conflict-Based
|

Vx.P(x) VR (x)

M

{

\

J

|

Build interpretation M of predicates
* This interpretation must satisfy E




Model-based Instantiation

I
79N> S RAV v
Aaoown

Vx.P(x) VR (x)

E-matching

—P (a) ’

Vi.P (1) VR (3)

Conflict-Based
|

M

{

\

J

|

Build interpretation M of predicates
* This interpretation must satisfy E
* Missing values may be filled in arbitrarily




[ Sl
Model-based Instantiation "

—|P(a), P(b), —|R(b), _IR(C) I —
Vi B (x) VR ()

|

P S e

M-

o O o

[
—
ERE

i

@

Q{ Vx.P(x) VR (x)

—> Does M satisfy Q?
* Check (un)satisfiability of: 3x.— (PM(x) vRM (x))




]
Co oo

i

|
ZORNPS B Vv

Model-based Instantiation "

—|P(a), P(b), —|R(b), _IR(C) I —
Vi B (x) VR ()

Vx.P(x) VR (x)

M-

Check: dx .= (PM(x) VRM (x))



Model-based Instantiation

1
79N> S RAV v
Aaoown

i

—-P(a), P(b), —R(b),
Vx.P(x) VR (x)

—lR(C)

Vx.P(x) VR (x)

Conflict-Based
|
|

Model-Based

M-

Check: = (PM (k) VRM (k) )

— Skolemize



Model-based Instantiation

]
ao oo

i

|
ZORNPS B Vv

Vx.P(x) VR (x)

—P (a) ’

P(b), —R(b), —R(c)
Vx.P(x) VR (x)

M

Conflict-Based
|
|

Model-Based

{

Check: — (ite(k=a,l,ite(k=b,T,T)))V
ite(k=b,Ll,ite(k=c,L,1))))

— Substitute



Model-based Instantiation

—P (a) ’

P(b), —R(b),
Vx.P(x) VR (x)

—lR(C)

|

M

Q O O v

i

|
ZORNPS B Vv

Vx.P(x) VR (x)

Check: — (k#a v 1)

Conflict-Based
|
|

Model-Based

{

= Simplify



Model-based Instantiation

]
Co oo

i

|
ZORNPS B Vv

Vx.P(x) VR (x)

—-P(a), P(b), —R(b),
Vx.P(x) VR (x)

—lR(C)

Conflict-Based
|
|

Model-Based

M-

Check: k=a

= Simplify



1
79N> S RAV v
Aaoown

i

Vx.P(x) VR (%)

Model-based Instantiation "

—|P(a), P(b), —|R(b), _IR(C) I —
Vi B (x) VR ()

M-

Check: k=a

—> Satisfiable! There are values k for which M does not satisfy O



Model-based Instantiation

Ground
Solver

—P (a)

P (b)
—R (b)
—R (C)

Vx.P(x) VR (x)

Conflict-Based

E-matching

—-P(a), P(b), =R(b), —R(c)

—l Vx.P(x) VR (x) Model-Based

e Wk . P (x) VR(x))=P (a) VR (a)

— Add one instance
for one such value of k

Check: k=a for which M did satisfy O



Model-based Instantiation

—P (a)

P (b)
—R (b)
—R (C)

—P (a) ’

P(b), —R(b), —R(c)
Vx.P(x) VR (x)

- (Vx.P(x) VR(x))VP(a)VR(a)

Vx.P(x) VR (x)

Conflict-Based

E-matching

Model-Based




Model-based Instantiation

2
3

Conflict-Based

E-matching

| e

Ground

—P(a), P(b), —R(b), —R(c)
Vx.P(x) VR (x)
—(Vx.P(x) VR(x))VP(a)VR(a)
- (Vx.P(x) VR(x))VP(c)VR(c)

Model-Based

Solver
—P (a)
P (b)
—R (b)
—R (c)
R (a)

Vx.P(x) VR (x)

Repeat as necessary
= “Model refinement loop”



Conflict-Based

Model-based Instantiation

E-matching
—-P(a), P(b), =R(b), —R(c)
Vx.P(x) VR(x) Model-Based
—(Vx.P(x) VR(x))VvP(a)VR(a)
—(Vx.P(x) VR(x))VP(c)VR(c)
—|P(a)
, P (b)
E™ 4R (b)
_IR(C)
R (a)
P(c)
Q//
Vx.P(x) VR (x)




Model-based Instantiation

E//{
Q//{

Conflict-Based
|
|

Model-Based

|

M/I {

i

i
AV VRS ROV IV
Q O O w

N N S S S S

Q

e N T T T T

@

Vx.P(x) VR (x)

Check: dx .= (PM" (x) VRM” (%))



Model-based Instantiation

E//{
Q//{

Conflict-Based
|
|

Model-Based

|

M/I {

]
U WY
A aocoo

Vx.P(x) VR (x)

Check: k=a A k#a



Model-based Instantiation

E//{
Q//{

Conflict-Based
|

E-matching

|
Model-Based

|

M/I {

i

i
AV VRS ROV IV

Q Y Q OO0 w

Vx.P(x) VR (x)

Check: k=a A k#a

—> Unsatisfiable, there are no values k for which M "’ does not satisfy O



Model-based Instantiation

Conflict-Based
|

|
Model-Based

—|P(a) Y74
E™  —Rr (b)
—lR(C)
R(a)
P(c)
144
Q { Vx.P(x) VR (x)

, model M”



Finite Model Finding in CVC4

|
Model-Based

UM={a,b, Cy d}
—P (a)
P (b) M PMe | .
E{ —R (b) .
—R(c) RY"<=. ..
R (a) -
P(c)

Q { Vx:U.P(x)VR(x)

In CVC4, model-based Instantiation used for
improving scalability of FMF



Finite Model Finding in CVC4

M
vP (a) vk (a)
vP (b) VR (b)
VvP (e) VR (¢)
vP (d) vR (4d)

via exhaustive instantiation

Conflict-Based

E-matching

Model-Based

uM={a,b, c,d}




Finite Model Finding in CVC4

..vP(a)VvR (a)

..vVP(c)VR (c)

HJ

via model-based instantiation

Conflict-Based

E-matching

Model-Based

uM={a,b, c,d}




Model-based Instantiation: Impact

1E+10
1E+09
100000000
10000000
1000000
100000
10000
1000

100

10

1

1 100 200 300 400 500 600 700 800 900 1000 1100 1200
e 1203 satisfiable benchmarks from the TPTP library

* Graph shows # instances required by exhaustive instantiation
e Eg. Vxyz:U.P(x,vy,z),if |U|=4, requires 43=64 instances

Conflict-Based

E-matching

Model-Based




Model-based Instantiation: Impact

1E+10
1E+09
100000000
10000000
1000000
100000
10000
1000

100

10

1

1 100 200 300 400 500 600 700 800 900 1000 1100 1200

* CVC4 Finite Model Finding + Exhaustive instantiation
* Scales only up to ~150k instances with a 30 sec timeout

Conflict-Based

E-matching

Model-Based




Model-based Instantiation: Impact

1E+10
1E+09
100000000
10000000
1000000
100000
10000
1000

100

10

1

1 100 200 300 400 500 600 700 800 900 1000 1100 1200
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* CVC4 Finite Model Finding + Model-Based instantiation [Reynolds et al CADE13]
» Scales to >2 billion instances with a 30 sec timeout, only adds fraction of possible instances



E-matching, Conflict-Based, Model-based:

 Common thread: satisfiability of V + UF + theories is hard!

* E-matching:
* Pattern selection, matching modulo theories

e Conflict-based:

* Matching is incomplete, entailment tests are expensive

* Model-based:

* Models are complex, interpreted domains (e.g. Int) may be infinite
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—> But reasoning about V + pure theories isn’t as bad:

e C(Classic V-elimination algorithms are decision procedures for V in:
*  LRA [Ferrante+Rackoff 79, Loos+Wiespfenning 93] , LIA [Cooper 72], datatypes, ...



E-matching, Conflict-Based, Model-based:

 Common thread: satisfiability of V + UF + theories is hard!
* E-matching:
* Pattern selection, matching modulo theories

e Conflict-based:

* Matching is incomplete, entailment tests are expensive

* Model-based:

* Models are complex, interpreted domains (e.g. Int) may be infinite

—> But reasoning about V + pure theories isn’t as bad:

e C(Classic V-elimination algorithms are decision procedures for V in:
*  LRA [Ferrante+Rackoff 79, Loos+Wiespfenning 93] , LIA [Cooper 72], datatypes, ...

* Can classic V-elimination algorithms be leveraged in an DPLL(T) context?
* Yes: [Monniaux 2010, Bjorner 2012, Komuravelli et al 2014, Reynolds et al 2015, Bjorner/Janota 2016]
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Technigues for Quantifier Instantiation

F, ..

Ground
Solver

— Classic V-elimination algorit

Instances of V in Q

Satisfying
assignment

E,Q

Quantifiers Module

Conflict-Based

\ E-matching

i

Model Based

\

/

|

A decision procedure
for V in LIA, LRA, ...

nms can be cast as

counterexample-guided instantiation procedures

l EWQ is T-satisfiable




Counterexample-Guided Instantiation

* Variants implemented in number of tools:

* Z3 [Bjorner 2012, Bjorner/Janota 2016]

* Tools using Z3 as backend: SPACER [Komuravelli et al 2014] UFO [Fedyukovich et al 2016]
* Yices [Dutertre 2015]

* CV(CA [Reynolds et al 2015]

* High-level idea:

* Quantifier elimination (e.g. for LIA) says: 3x.y[x] < y[t,] v ..vy[t ] for finite n
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* Variants implemented in number of tools:

* Z3 [Bjorner 2012, Bjorner/Janota 2016]

* Tools using Z3 as backend: SPACER [Komuravelli et al 2014] UFO [Fedyukovich et al 2016]
* Yices [Dutertre 2015]

* CV(CA [Reynolds et al 2015]

* High-level idea:
* Quantifier elimination (e.g. for LIA) says: Vx.—y[x] © —y[t,] A .. A—=y[t_] for finite n

(consider the dual)



Counterexample-Guided Instantiation

* Variants implemented in number of tools:
* Z3 [Bjorner 2012, Bjorner/Janota 2016]
* Tools using Z3 as backend: SPACER [Komuravelli et al 2014] UFO [Fedyukovich et al 2016]
* Yices [Dutertre 2015]
* CV(CA [Reynolds et al 2015]

* High-level idea:
* Quantifier elimination (e.g. for LIA) says: Vx.—y[x] < —y[t,] A .. A—y[t_ ] for finite n

 Enumerate these instances lazily, via a counterexample-guided loop, that is:
* Terminating: enumerate at most n instances
* Efficient in practice: typically terminates after m<<n instances



Counterexample-Guided Instantiation

—> Consider V in the theory of linear integer arithmetic LIA:
dabc. (a=b+5 A VX. (x>a Vv x<bvx-c<3))



Counterexample-Guided Instantiation

Ground | a=b+5 }
Solver Vx. (x>a v x<b v x-c<3) E

—> Consider V in the theory of linear integer arithmetic LIA:
%. (a=b+5 A Vx. (x>a Vv x<bVv x-c<3))

Outermost existentials a, b, c are treated as free constants



Counterexample-Guided Instantiation

Ground :
Solver

a=p+5

E

CE-Guided

Vx.

a=b+5
(x>a Vv x<b Vv x-c<3)

Vx.

(x>a Vv x<b Vv x-c<3)

- F




Counterexample-Guided Instantiation

Ground | 2=b+5 }
Solver Vx. (x>a Vv x<bvx-c<3) F

F { a=p+5
ﬂ CE-Guided
Instantiation
Q{ V' x >a Vv x<b Vv x-c<3)

. (x

—> Use counterexample-guided instantiation



Counterexample-Guided Instantiation

Ground

CE-Guided

Solver

o a=b+5 ﬁ
Q{ Vx. (x>aVv x<b Vv x-c<3)

Vx.

a=b+5
(x>a Vv x<b Vv x-c<3)

CE-Guided

Instantiation

l

Check dk.— (k>a vk<b v k-c<3)

—>With respect to model-based instantiation:
 Similar: check satisfiability of 3k . — (k>a v k<b v k-c<3)

- F




Counterexample-Guided Instantiation

Ground a=hbts
e Vx. (x>a Vv x<bVv x-c<3) F
Solver C = (k<a A k>b A k>c+3)

F { a=p+5
ﬁ CE-Guided
Instantiation
Q { Vx. (x>aVv x<b Vv x-c<3)

—>With respect to model-based instantiation:
 Similar: check satisfiability of 3k . — (k>a v k<b v k-c<3)
 Key difference: use the same (ground) solver for F and counterexample k for Q




Counterexample-Guided Instantiation

CE-Guided

Ground |}
Solver

a=b+5

Vx. (x>avVv x<bvx-c<3)
C= (k<a Ak2b A k=2c+3)

CE-Guided
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Counterexample-Guided Instantiation

a=b+5
Vx. (x>avVv x<bvx-c<3)

C is a fresh Boolean variable:
“A counterexample k exists for Vx. (x>a v x<b v x-c<3)”



Counterexample-Guided Instantiation

Ground a=b+5, o« ooy
. Vx. (x>avx<b,t/ xX—-C<3) ]:T'

C= (k<an ka;l/\ k=>c+3)

Solver

/-
-7 Instances

CE-Guided

Instantiation

e Three cases:



CE-Guided

Counterexample-Guided Instantiation

1

a=b+5, ...,

unsat y EIBUE < Vx. (x>aVv x<b Vv x-c<3) F
Solver C= (k<a A k>b A k>c+3)

CE-Guided

Instantiation

* Three cases:
1. Fis unsatisfiable —> answer “unsat”



Counterexample-Guided Instantiation

E
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Ground

CE-Guided
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e Three cases:

Vx.
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CE-Guided

Instantiation

2 . Fis satisfiable, -C€E for all assignments E

= answer “sat”
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Counterexample-Guided Instantiation

Ground

CE-Guided

V' x

Solver

E{ C,...

Q { Vx. (x>aVv x<b Vv x-c<3)

e Three cases:

a=b+5, ...,
. (x>a Vv x<bvx-c<3) F
C= (k<a Ak=2b A k=2c+3)

CE-Guided =00

Instantiation

3. Fis satisfiable, CeE for some assignment E

3

...>t>avt<bv t-c<3

—

where k¢ FV (t)

—> add an instance to F



Counterexample-Guided Instantiation

CE-Guided

-‘ Ground
unsat Solver
o { (=) C, ... N
Q { Vx. (x>aVv x<b Vv x-c<3)

* Three cases:
1. Fis unsatisfiable

V' x

a=b+5, ...,
. (x>a Vv x<bvx-c<3) F
C= (k<a Ak=2b A k=2c+3)

CE-Guided

Instantiation

2 . Fis satisfiable, =CeE for all assignments E
3. Fissatisfiable, CeE for some assighnment E

return

3

...>t>avit<bv t-c<3

I

= answer “unsat”
— answer “sat”
— add an instanceto F



Counterexample-Guided Instantiation

CE-Guided

-‘ Ground
unsat Solver
o { (=) C, ... N
Q { Vx. (x>aVv x<b Vv x-c<3)

* Three cases:
1. Fis unsatisfiable

V' x

a=b+5, ...,
. (x>a Vv x<bvx-c<3) F
C= (k<a Ak=2b A k=2c+3)

CE-Guided

Instantiation

2 . Fis satisfiable, =CeE for all assignments E
3. Fissatisfiable, CeE for some assighnment E

return

3

...>t>avt<bv t-c<3

I

= answer “unsat”
— answer “sat”

— add an instance to F
(...which t?)
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Counterexample-Guided Instantiation

Ground a=hbts
< Vx. (x>avVv x<bvx-c<3)
Solver C= (k<a A k>b A k>c+3)




Counterexample-Guided Instantiation

CE-Guided

Ground :
Solver

C, a=b+5,
k<a
k=b

k>c+3

Vx.

(x>a Vv x<b Vv x-c<3)

a=b+5
Vx. (x>avVv x<bvx-c<3)

—C Vv (kf£a A k=2b A k=2c+3)




Counterexample-Guided Instantiation

Ground
Solver
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k<a
k>b
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Counterexample-Guided Instantiation

Ground
Solver
C,a=b+b,
k<a
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k=c+3
Vx. (x>aVv x<bvx—-c<3)

CE-Guided

Vx.

(x>a v x<b v x-c<3)
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Counterexample-Guided Instantiation

Ground
Solver
C,a=b+b,
k<a
k>b
k>c+3
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Compute their value in M




Counterexample-Guided Instantiation

Ground
Solver
C,a=b+b,
k<a
k>b
k>c+3
Vx. (x>aVv x<bvx—-c<3)

CE-Guided

a=b+5
Vx. (x>avVv x<bvx-c<3)
—C Vv (kZLa A k=b A k2c+3)
24 =5
in M
M_
o7 =0 k>b | =
cM=q k>c+3 | =3
kM=3

Vx. (x>avx<bvVvx-c<3)=
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\
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|

Add instance for lower bound that is maximal in M




Counterexample-Guided Instantiation

Ground
Solver
C,a=b+b,
k<a
k>b
k>c+3
Vx. (x>aVv x<bvx—-c<3)

CE-Guided

Vx. (x>avVv x<bvx-c<3)
—C Vv (kZLa A k=b A k2c+3)

a=b+5

in M
k>b =
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Vx. (x>avx<bvVvx-c<3)=
c+3>a v c+3<b
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Counterexample-Guided Instantiation

a=b+5
Ground ) —Vx. (x>avx<bvx-c<3) vVc+3>avVvc+3<b
Solver Vx. (x>aVv 3<bvx-c<3)
—C Vv (k<a A/k=>b A k=>2c+3)




Counterexample-Guided Instantiation

Ground

Solver
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Counterexample-Guided Instantiation

Ground
Solver

| C,a=b+5, c+3<Db,

k<a
k>b
k>c+3

Q{ vx.

(x>a Vv x<b Vv x-c<3)
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Counterexample-Guided Instantiation
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Counterexample-Guided Instantiation

a=b+5
Ground —Vx. (x>aVvx<bvx-c<3) Vct+3>avVvct3<b
Solver ‘ Vx. (x>aVv x<bvVvx-c<3)
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Counterexample-Guided Instantiation

Ground
Solver

| C,a=b+5, c+3<Db,

k<a
k>b
k>c+3

Q{ vx.

(x>a Vv x<b Vv x-c<3)

a=b+5
—Vx. (x>avx<bvx-c<3) Vc+3>avVvc+3<b
Vx. (x>aVv x<bvVvx-c<3)
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Counterexample-Guided Instantiation

Ground
Solver

| C,a=b+5, c+3<Db,

k<a
k>b
k>c+3

Q{ vx.

(x>a Vv x<b Vv x-c<3)

a=b+5
—Vx. (x>avx<bvx-c<3) Vc+3>avVvc+3<b
Vx. (x>aVv x<bvVvx-c<3)
—C Vv (k<a A k=b A k=2c+3)

24 =5 ,
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CM=_4 k>2c+3 =-1
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Add instance for lower bound that is maximal in M
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Counterexample-Guided Instantiation
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Counterexample-Guided Instantiation
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Counterexample-Guided Instantiation

Ground
Solver
—C
a=pb+5
c+3<a
b<c+3

Vx.

(x>a Vv x<b Vv x-c<3)

CE-Guided

a=b+5
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is LIA-satisfiable



Counterexample-Guided Instantiation

e Decision procedure for ¥V in various theories:
 Linear real arithmetic (LRA)

* Maximal lower (minimal upper) bounds 1.<k, .., 1<k —>{x—>1__ 10}
e [Loos+Wiespfenning 93] ...may involve virtual terms 6,
* Interior point method: 1o <k<u., >{x—=> (1 .,~U.,) /2}

* [Ferrante+Rackoff 79]

* Linear integer arithmetic (LIA)

* Maximal lower (minimal upper) bounds (+c) 1,<k, .., 1. <k —>{x—>1__,tc}
* [Cooper 72]

* Bitvectors/finite domains
e Value instantiations F[k] — {x—>kM}

* Datatypes, ...

= Termination argument for each: enumerate at most a finite number of instances



Summary: DPLL(T)+Instantiation
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Future Challenges

* Improve performance and precision of existing approaches
* Many engineering challenges when implementing E-matching, conflict-based instantiation

* Develop new approaches for V+UF+theories that:

* Are efficient in practice
* E-matching is efficient for V+UF, ce-guided approaches are efficient for V+ theories
* Under what conditions, and to what degree, can these techniques be combined?

e Are decision procedures for various fragments
* Extensions of Bernays-Shonfinkel
* Array Property fragments

* Local theory extensions
e Y over pure theories that emit quantifier elimination



Thanks for listening

* CVC4.
* Open source, available at http://cvc4.cs.nyu.edu/downloads/
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