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Outline 

• Introduction to SMT and applications 

• Model-Based approach for handling quantifiers 

• How can we construct good models? 

• Experimental Results 



Satisfiability Modulo Theories (SMT) 

• SMT solvers are powerful tools 

– Used in many formal methods applications 

– Support many background theories 

• Arithmetic, bitvectors, arrays, datatypes, … 

– May generate: 

• Proofs 
– Theorem proving, software/hardware verification 

• Models 
– Failing instances of aforementioned applications 

– Invariant synthesis, scheduling, test case generation 

 



Satisfiability Modulo Theories 

( f(a) = b  f(a) = c )  c+1 = b    x. f(x) = g(x) 

 



Satisfiability Modulo Theories 

( f(a) = b  f(a) = c )  c+1 = b    x. f(x) = g(x) 

 

(      A            B      )        C                   D 

   Abstract to propositional logic 



Satisfiability Modulo Theories 

true true true 

( f(a) = b  f(a) = c )  c+1 = b    x. f(x) = g(x) 
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Find satisfying assignment:  A  ,   C  ,   D  

 



Satisfiability Modulo Theories 

true true true 

( f(a) = b  f(a) = c )  c+1 = b    x. f(x) = g(x) 

 

(      A            B      )        C                   D 

 

 

Find satisfying assignment:  A  ,   C  ,   D  

 

Check T-consistency: f(a) = b , c+1 = b , x. f(x) = g(x) 



DPLL(T) Architecture 
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DPLL(T) Architecture : Challenge 

SAT 
Solver 

Theory 
Solvers 

Clauses to add to F 

A is T-Consistent 

A is T-Inconsistent 

F is sat 

Formula 
F 

F is unsat 

• Challenge: What if determining the consistency of A is difficult? 
• For quantified formulas, determining consistency is undecidable 

UNSAT, 
proof 

SAT, 
model 

A := { f(a) = b , c+1 = b , x. f(x) = g(x) } 



SMT with Quantified Formulas 

• When quantified formulas are asserted 
– Most SMT solvers will: 

• Answer unsat, if they happen to find a proof 

• Run indefinitely 

• Give up, reporting “unknown” 



Why Models are Important 

  Solver needs way of answering satisfiable when 
quantified formulas are asserted 

 

SMT 
solver 

UNSAT 

Verification 
Condition for P 

Unknown 

Manual 
Inspection 

Candidate 
Model 

Property P is  
verified 

(with quantifiers) 

Concrete 
counterexample 

for Property P 

SAT 



Model-Based Approach for Quantifiers 

• Given: 

– Set of ground formulas F 

– Set of quantified axioms Q 

• Determine the satisfiability of F  Q 

• Idea: 

– Construct candidate models for Q based on 
satisfying assignments for F 

• Ge and deMoura  [2009] 



Model-Based Approach for Quantifiers 

SAT 
Solver 

Theory 
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Running Example 

person1, person2, person3 : Person 

blue, brown, blonde : Color 

eye, hair : Person -> Color 

 

distinct(blue, brown, blonde) 

hair(person1) = brown 

eye(person2) = blue 

hair(person3) = blonde 

 x : Person. eye(x)=blue  hair(x)=blonde  



Running Example 

distinct(brown, blue, blonde) 

hair(person1) = brown 

eye(person2) = blue 

hair(person3) = blonde 

 x : Person. eye(x)=blue  hair(x)=blonde  

SAT Solver Theory 
Solvers 

Satisfying  
assignment 

 A for F 

Clauses to  
add to F 

UNSAT, 
proof 

Candidate  
model M 

Model 
Verifier 

SAT, 
model M 

F Q 

F 

Q 



distinct(brown, blue, blonde) 

hair(person1) = brown 

eye(person2) = blue 

hair(person3) = blonde 

 x : Person. eye(x)=blue  hair(x)=blonde  

Find Satisfying Assignment A for F 

SAT Solver Theory 
Solvers 

Satisfying  
assignment 

 A for F 

Clauses to  
add to F 

UNSAT, 
proof 

Candidate  
model M 

Model 
Verifier 

SAT, 
model M 

F Q 

true 

true 

true 

true 

•  A is Theory-Consistent according to the theory of equality 



From A, construct candidate model M 

A :=  

{ distinct(brown, blue, blonde), 

hair(person1) = brown, 

eye(person2) = blue, 

hair(person3) = blonde } 

SAT Solver Theory 
Solvers 

Satisfying  
assignment 

 A for F 

Clauses to  
add to F 

UNSAT, 
proof 

Candidate  
model M 

Model 
Verifier 

SAT, 
model M 

F Q 

M := 

 hair :  person1 -> brown 

     person3 -> blonde 

     else -> brown 

 eye : person2 -> blue 

    else -> blue 

 



Check whether M is a model of Q 

SAT Solver Theory 
Solvers 

Satisfying  
assignment 

 A for F 

Clauses to  
add to F 

UNSAT, 
proof 

Candidate  
model M 

Model 
Verifier 

SAT, 
model M 

F Q 

M := 
 hair :  person1 -> brown 

     person3 -> blonde 

     else -> brown 

 eye : person2 -> blue 

    else -> blue 

 

 x : Person. eye(x)=blue  hair(x)=blonde  

Q := 

 

•  Q is false for person2  



Check whether M is a model of Q 

SAT Solver Theory 
Solvers 

Satisfying  
assignment 

 A for F 

Clauses to  
add to F 

UNSAT, 
proof 

Candidate  
model M 

Model 
Verifier 

SAT, 
model M 

F Q 

M := 
 hair :  person1 -> brown 

     person3 -> blonde 

     else -> brown 

 eye : person2 -> blue 

    else -> blue 

 

 x : Person. eye(x)=blue  hair(x)=blonde  

Q := 

 

•  Q is false for person2  

• Add (eye(person2)=blue   hair(person2)=blonde) to F 
• Will rule out M on next iteration 

• Can be thought of as model “refinement” 



What are good candidate models? 

• Good candidate models 
– Have small domain sizes 
– Most instances of axioms Q are likely to be true 

 
• For small domain sizes, 

– Use specialized theory solver within DPLL(T) 

• For making most instances true, 
– Use ground solver to guide model construction 

 

• These features are implemented in SMT solver CVC4 



• Idea: try to fix domain sizes 1,2,3,…. 

– Prioritize decisions made by DPLL(T) search 

Finding Minimal Models in DPLL(T) Search 

|Person|≤1 |Person|≤1 

Search for  
models  
of size=1 

If none exist, 
search for  

models  
of size=2 

etc. 

|Person|≤2 |Person|≤2 

|Person|≤3 |Person|≤3 

distinct(brown, blue, blonde) 

hair(person1) = brown 

eye(person2) = blue 

hair(person3) = blonde 



Fails: 
person1  person3 

Success: 
Can identify 

person1 = person2 

Finding Minimal Models in DPLL(T) Search 

|Person|≤1 |Person|≤1 

|Person|≤2 

distinct(brown, blue, blonde) 

hair(person1) = brown 

eye(person2) = blue 

hair(person3) = blonde 

• Implementation in CVC4 uses: 
– Splitting on demand to shrink model sizes 

– Efficient methods for clique detection 

 Theory of finite cardinality constraints [CAV 2013] 



Constructing Good Candidate Models 

• Set S can be very large 

– For Q with n variables with domain size d, |S| can be O(dn) 

• Would prefer if most instances of Q are true in M 

Candidate  
model M 

Model 
Verifier 

M is a model 
for Q 

SAT, 
model M 

Set of Instances S 
that are false in M 

SAT 
Solver 



Constructing Good Candidate Models 
• Idea for axiom Q:  

– Chose default values in model M based on one 
satisfying ground instance of Q 

 

 

 

 

 

 

 

• See how Q is satisfied for one instance, then 
generalize this [CADE 2013] 

distinct(brown, blue, blonde) 

hair(person1) = brown 

eye(person2) = blue 

hair(person3) = blonde 

 x : Person. eye(x)=blue  hair(x)=blonde  
Q 



Constructing Good Candidate Models 

distinct(brown, blue, blonde) 

hair(person1) = brown 

eye(person2) = blue 

hair(person3) = blonde 

 x : Person. eye(x)=blue  hair(x)=blonde  

eye(person1)=blue  hair(person1)=blonde 

• Consider Q[person1/x]  

Q 



eye(person1)=blue  hair(person1)=blonde 

Constructing Good Candidate Models 

distinct(brown, blue, blonde) 

hair(person1) = brown 

eye(person2) = blue 

hair(person3) = blonde 

 x : Person. eye(x)=blue  hair(x)=blonde  

• Find satisfying assignment 

true 

true 

true 

true 

false 



A :=  

{ distinct(brown, blue, blonde), 

hair(person1) = brown, 

eye(person2) = blue, 

hair(person3) = blonde, 

eye(person1 )  blue } 

M :=  hair :  person1 -> brown 

        person3 -> blonde 

        else -> … 

 eye :    person1 -> brown 

    person2 -> blue 

    else -> … 

 

eye(person1)=blue  hair(person1)=blonde 

Constructing Good Candidate Models 

distinct(brown, blue, blonde) 

hair(person1) = brown 

eye(person2) = blue 

hair(person3) = blonde 

 x : Person. eye(x)=blue  hair(x)=blonde  

• Construct candidate model 



M :=  hair :  person1 -> brown 

        person3 -> blonde 

        else -> brown 

 eye :    person1 -> brown 

    person2 -> blue 

    else -> brown 

 

eye(person1)=blue  hair(person1)=blonde 

Constructing Good Candidate Models 

distinct(brown, blue, blonde) 

hair(person1) = brown 

eye(person2) = blue 

hair(person3) = blonde 

 x : Person. eye(x)=blue  hair(x)=blonde  

A :=  

{ distinct(brown, blue, blonde), 

hair(person1) = brown, 

eye(person2) = blue, 

hair(person3) = blonde, 

eye(person1 )  blue } 



Model-Based Approach in CVC4 

• CVC4 is state of the art SMT solver with 

– Support for many theories 

• Features implemented in CVC4: 

– Theory solver for handling cardinality constraints 

– Techniques for constructing candidate models 

– Efficient methods for verifying candidate models 

• Not mentioned in this talk 

 



Experiments 

• DVF Benchmarks 

– Taken from verification tool DVF used by Intel 

– Both SAT/UNSAT benchmarks 
• SAT benchmarks generated by removing necessary pf assumptions 

– Many theories:  UF, arithmetic, arrays, datatypes 

– Quantifiers only over free sorts 
• Memory addresses, Values, Sets, … 

• TPTP Benchmarks 
– Unsorted, equality, function symbols 

– Heavy use of quantifiers 



Experiments: DVF 

• cvc4+f effective for sat 

• cvc4+f solves 4 unsat that cvc4 cannot 

UNSAT german refcount agree apg bmk Total 
# 145 40 488 304 244 1221 

cvc3 145 40 457 267 229 1138 
yices 145 40 488 304 244 1221 

z3 145 40 488 304 244 1221 
cvc4 145 40 484 304 244 1217 

cvc4+f 145 40 471 300 242 1198 

SAT german refcount agree apg bmk Total 
# 45 6 42 19 37 149 

cvc3 0 0 0 0 0 0 
yices 2 0 0 0 0 2 

z3 45 1 0 0 0 46 
cvc4 2 0 0 0 0 2 

cvc4+f 45 6 42 19 37 149 
• Configurations : 

• cvc4 : heuristic inst. 

• cvc4+f : model-based  



Experiments: TPTP 

• For 1995 satisfiable benchmarks: 
– Paradox solves 1305 
– iProver solves 1231 
– z3 solves 887 
– cvc4+f solves 1186 

• Includes 3 problems with rating 1.0 

• For 12568 unsatisfiable benchmarks: 
– z3 solves 5934  
– iProver solves 5556 
– cvc4 solves 5415 
– cvc4+f solves 3028 

• Orthogonal to other approaches 
• 282 cannot be solved by z3 



Summary 

• Completed work in CVC4: 
– Ground solver for finding small models 

– Methods for constructing and verifying candidate models 

• Publicly available : http://cvc4.cs.nyu.edu/ 

• Current work: 
– Fair strategies for minimizing models for multiple sorts 

– Improve existing approaches for answering UNSAT 

– Other applications 
• Theory of Strings : bounded length 

• Integer quantification within bounded ranges 

http://cvc4.cs.nyu.edu/


Current Work 

• Extension to bounded integer quantification 

– Can use similar approach 

N<0 N<0 

N≤0 N≤0 

N≤1 N≤1 

 x : Int. 0 ≤ x ≤ N  P(x)  



Thanks 

• Collaborators: 

– Cesare Tinelli, Amit Goel, Sava Krstic, Clark Barrett, 
Morgan Deters, Leonardo de Moura 

 

• Questions? 


