
Model-Based Reasoning about
Quantified Formulas in CVC4

Andrew Reynolds

May 23, 2013

University of Iowa

Outline

• Introduction to SMT and applications

• Model-Based approach for handling quantifiers

• How can we construct good models?

• Experimental Results

Satisfiability Modulo Theories (SMT)

• SMT solvers are powerful tools

– Used in many formal methods applications

– Support many background theories

• Arithmetic, bitvectors, arrays, datatypes, …

– May generate:

• Proofs
– Theorem proving, software/hardware verification

• Models
– Failing instances of aforementioned applications

– Invariant synthesis, scheduling, test case generation

Satisfiability Modulo Theories

(f(a) = b  f(a) = c)  c+1 = b  x. f(x) = g(x)

Satisfiability Modulo Theories

(f(a) = b  f(a) = c)  c+1 = b  x. f(x) = g(x)

(A  B)  C  D

 Abstract to propositional logic

Satisfiability Modulo Theories

true true true

(f(a) = b  f(a) = c)  c+1 = b  x. f(x) = g(x)

(A  B)  C  D

Find satisfying assignment: A , C , D

Satisfiability Modulo Theories

true true true

(f(a) = b  f(a) = c)  c+1 = b  x. f(x) = g(x)

(A  B)  C  D

Find satisfying assignment: A , C , D

Check T-consistency: f(a) = b , c+1 = b , x. f(x) = g(x)

DPLL(T) Architecture

SAT
Solver

Theory
Solvers

Satisfying assignment A for F

Clauses to add to F

UNSAT,
proof

SAT,
model

A is T-Consistent

A is T-Inconsistent

F is sat

Formula
F

F is unsat

DPLL(T) Architecture : Challenge

SAT
Solver

Theory
Solvers

Clauses to add to F

A is T-Consistent

A is T-Inconsistent

F is sat

Formula
F

F is unsat

• Challenge: What if determining the consistency of A is difficult?
• For quantified formulas, determining consistency is undecidable

UNSAT,
proof

SAT,
model

A := { f(a) = b , c+1 = b , x. f(x) = g(x) }

SMT with Quantified Formulas

• When quantified formulas are asserted
– Most SMT solvers will:

• Answer unsat, if they happen to find a proof

• Run indefinitely

• Give up, reporting “unknown”

Why Models are Important

 Solver needs way of answering satisfiable when
quantified formulas are asserted

SMT
solver

UNSAT

Verification
Condition for P

Unknown

Manual
Inspection

Candidate
Model

Property P is
verified

(with quantifiers)

Concrete
counterexample

for Property P

SAT

Model-Based Approach for Quantifiers

• Given:

– Set of ground formulas F

– Set of quantified axioms Q

• Determine the satisfiability of F  Q

• Idea:

– Construct candidate models for Q based on
satisfying assignments for F

• Ge and deMoura [2009]

Model-Based Approach for Quantifiers

SAT
Solver

Theory
Solvers

Satisfying
assignment

 A for F

Clauses to
add to F

UNSAT,
proof

A is
T-Consistent F is sat

Ground
Formulas

F

Candidate
model M

Model
Verifier

M is a model
for Q

Quantified
Formulas

Q

SAT,
model M

Running Example

person1, person2, person3 : Person

blue, brown, blonde : Color

eye, hair : Person -> Color

distinct(blue, brown, blonde)

hair(person1) = brown

eye(person2) = blue

hair(person3) = blonde

 x : Person. eye(x)=blue  hair(x)=blonde

Running Example

distinct(brown, blue, blonde)

hair(person1) = brown

eye(person2) = blue

hair(person3) = blonde

 x : Person. eye(x)=blue  hair(x)=blonde

SAT Solver Theory
Solvers

Satisfying
assignment

 A for F

Clauses to
add to F

UNSAT,
proof

Candidate
model M

Model
Verifier

SAT,
model M

F Q

F

Q

distinct(brown, blue, blonde)

hair(person1) = brown

eye(person2) = blue

hair(person3) = blonde

 x : Person. eye(x)=blue  hair(x)=blonde

Find Satisfying Assignment A for F

SAT Solver Theory
Solvers

Satisfying
assignment

 A for F

Clauses to
add to F

UNSAT,
proof

Candidate
model M

Model
Verifier

SAT,
model M

F Q

true

true

true

true

• A is Theory-Consistent according to the theory of equality

From A, construct candidate model M

A :=

{ distinct(brown, blue, blonde),

hair(person1) = brown,

eye(person2) = blue,

hair(person3) = blonde }

SAT Solver Theory
Solvers

Satisfying
assignment

 A for F

Clauses to
add to F

UNSAT,
proof

Candidate
model M

Model
Verifier

SAT,
model M

F Q

M :=

 hair : person1 -> brown

 person3 -> blonde

 else -> brown

 eye : person2 -> blue

 else -> blue

Check whether M is a model of Q

SAT Solver Theory
Solvers

Satisfying
assignment

 A for F

Clauses to
add to F

UNSAT,
proof

Candidate
model M

Model
Verifier

SAT,
model M

F Q

M :=
 hair : person1 -> brown

 person3 -> blonde

 else -> brown

 eye : person2 -> blue

 else -> blue

 x : Person. eye(x)=blue  hair(x)=blonde

Q :=

• Q is false for person2

Check whether M is a model of Q

SAT Solver Theory
Solvers

Satisfying
assignment

 A for F

Clauses to
add to F

UNSAT,
proof

Candidate
model M

Model
Verifier

SAT,
model M

F Q

M :=
 hair : person1 -> brown

 person3 -> blonde

 else -> brown

 eye : person2 -> blue

 else -> blue

 x : Person. eye(x)=blue  hair(x)=blonde

Q :=

• Q is false for person2

• Add (eye(person2)=blue  hair(person2)=blonde) to F
• Will rule out M on next iteration

• Can be thought of as model “refinement”

What are good candidate models?

• Good candidate models
– Have small domain sizes
– Most instances of axioms Q are likely to be true

• For small domain sizes,

– Use specialized theory solver within DPLL(T)

• For making most instances true,
– Use ground solver to guide model construction

• These features are implemented in SMT solver CVC4

• Idea: try to fix domain sizes 1,2,3,….

– Prioritize decisions made by DPLL(T) search

Finding Minimal Models in DPLL(T) Search

|Person|≤1 |Person|≤1

Search for
models
of size=1

If none exist,
search for

models
of size=2

etc.

|Person|≤2 |Person|≤2

|Person|≤3 |Person|≤3

distinct(brown, blue, blonde)

hair(person1) = brown

eye(person2) = blue

hair(person3) = blonde

Fails:
person1  person3

Success:
Can identify

person1 = person2

Finding Minimal Models in DPLL(T) Search

|Person|≤1 |Person|≤1

|Person|≤2

distinct(brown, blue, blonde)

hair(person1) = brown

eye(person2) = blue

hair(person3) = blonde

• Implementation in CVC4 uses:
– Splitting on demand to shrink model sizes

– Efficient methods for clique detection

 Theory of finite cardinality constraints [CAV 2013]

Constructing Good Candidate Models

• Set S can be very large

– For Q with n variables with domain size d, |S| can be O(dn)

• Would prefer if most instances of Q are true in M

Candidate
model M

Model
Verifier

M is a model
for Q

SAT,
model M

Set of Instances S
that are false in M

SAT
Solver

Constructing Good Candidate Models
• Idea for axiom Q:

– Chose default values in model M based on one
satisfying ground instance of Q

• See how Q is satisfied for one instance, then
generalize this [CADE 2013]

distinct(brown, blue, blonde)

hair(person1) = brown

eye(person2) = blue

hair(person3) = blonde

 x : Person. eye(x)=blue  hair(x)=blonde
Q

Constructing Good Candidate Models

distinct(brown, blue, blonde)

hair(person1) = brown

eye(person2) = blue

hair(person3) = blonde

 x : Person. eye(x)=blue  hair(x)=blonde

eye(person1)=blue  hair(person1)=blonde

• Consider Q[person1/x]

Q

eye(person1)=blue  hair(person1)=blonde

Constructing Good Candidate Models

distinct(brown, blue, blonde)

hair(person1) = brown

eye(person2) = blue

hair(person3) = blonde

 x : Person. eye(x)=blue  hair(x)=blonde

• Find satisfying assignment

true

true

true

true

false

A :=

{ distinct(brown, blue, blonde),

hair(person1) = brown,

eye(person2) = blue,

hair(person3) = blonde,

eye(person1)  blue }

M := hair : person1 -> brown

 person3 -> blonde

 else -> …

 eye : person1 -> brown

 person2 -> blue

 else -> …

eye(person1)=blue  hair(person1)=blonde

Constructing Good Candidate Models

distinct(brown, blue, blonde)

hair(person1) = brown

eye(person2) = blue

hair(person3) = blonde

 x : Person. eye(x)=blue  hair(x)=blonde

• Construct candidate model

M := hair : person1 -> brown

 person3 -> blonde

 else -> brown

 eye : person1 -> brown

 person2 -> blue

 else -> brown

eye(person1)=blue  hair(person1)=blonde

Constructing Good Candidate Models

distinct(brown, blue, blonde)

hair(person1) = brown

eye(person2) = blue

hair(person3) = blonde

 x : Person. eye(x)=blue  hair(x)=blonde

A :=

{ distinct(brown, blue, blonde),

hair(person1) = brown,

eye(person2) = blue,

hair(person3) = blonde,

eye(person1)  blue }

Model-Based Approach in CVC4

• CVC4 is state of the art SMT solver with

– Support for many theories

• Features implemented in CVC4:

– Theory solver for handling cardinality constraints

– Techniques for constructing candidate models

– Efficient methods for verifying candidate models

• Not mentioned in this talk

Experiments

• DVF Benchmarks

– Taken from verification tool DVF used by Intel

– Both SAT/UNSAT benchmarks
• SAT benchmarks generated by removing necessary pf assumptions

– Many theories: UF, arithmetic, arrays, datatypes

– Quantifiers only over free sorts
• Memory addresses, Values, Sets, …

• TPTP Benchmarks
– Unsorted, equality, function symbols

– Heavy use of quantifiers

Experiments: DVF

• cvc4+f effective for sat

• cvc4+f solves 4 unsat that cvc4 cannot

UNSAT german refcount agree apg bmk Total
145 40 488 304 244 1221

cvc3 145 40 457 267 229 1138
yices 145 40 488 304 244 1221

z3 145 40 488 304 244 1221
cvc4 145 40 484 304 244 1217

cvc4+f 145 40 471 300 242 1198

SAT german refcount agree apg bmk Total
45 6 42 19 37 149

cvc3 0 0 0 0 0 0
yices 2 0 0 0 0 2

z3 45 1 0 0 0 46
cvc4 2 0 0 0 0 2

cvc4+f 45 6 42 19 37 149
• Configurations :

• cvc4 : heuristic inst.

• cvc4+f : model-based

Experiments: TPTP

• For 1995 satisfiable benchmarks:
– Paradox solves 1305
– iProver solves 1231
– z3 solves 887
– cvc4+f solves 1186

• Includes 3 problems with rating 1.0

• For 12568 unsatisfiable benchmarks:
– z3 solves 5934
– iProver solves 5556
– cvc4 solves 5415
– cvc4+f solves 3028

• Orthogonal to other approaches
• 282 cannot be solved by z3

Summary

• Completed work in CVC4:
– Ground solver for finding small models

– Methods for constructing and verifying candidate models

• Publicly available : http://cvc4.cs.nyu.edu/

• Current work:
– Fair strategies for minimizing models for multiple sorts

– Improve existing approaches for answering UNSAT

– Other applications
• Theory of Strings : bounded length

• Integer quantification within bounded ranges

http://cvc4.cs.nyu.edu/

Current Work

• Extension to bounded integer quantification

– Can use similar approach

N<0 N<0

N≤0 N≤0

N≤1 N≤1

 x : Int. 0 ≤ x ≤ N  P(x)

Thanks

• Collaborators:

– Cesare Tinelli, Amit Goel, Sava Krstic, Clark Barrett,
Morgan Deters, Leonardo de Moura

• Questions?

