Model-Based Reasoning about Quantified Formulas in CVC4

Andrew Reynolds

May 23, 2013

University of Iowa
Outline

• Introduction to SMT and applications
• Model-Based approach for handling quantifiers
• How can we construct good models?
• Experimental Results
Satisfiability Modulo Theories (SMT)

• SMT solvers are powerful tools
 – Used in many formal methods applications
 – Support many background theories
 • Arithmetic, bitvectors, arrays, datatypes, ...
 – May generate:
 • Proofs
 – Theorem proving, software/hardware verification
 • Models
 – Failing instances of aforementioned applications
 – Invariant synthesis, scheduling, test case generation
Satisfiability Modulo Theories

\((f(a) = b \lor f(a) = c) \land c+1 = b \land \forall x. f(x) = g(x) \)
Satisfiability Modulo Theories

\[(f(a) = b \lor f(a) = c) \land c + 1 = b \land \forall x. f(x) = g(x) \]

\[\downarrow\text{ Abstract to propositional logic}\]

\[(A \lor B) \land C \land D \]
Satisfiability Modulo Theories

\[(f(a) = b \lor f(a) = c) \land c + 1 = b \land \forall x. f(x) = g(x) \]

\[\begin{align*}
(A \lor B) \land C \land D \land \text{true} \\
\text{true} \land \text{true} \land \text{true}
\end{align*}\]

Find satisfying assignment: A, C, D
Satisfiability Modulo Theories

\[(f(a) = b \vee f(a) = c) \land c + 1 = b \land \forall x. f(x) = g(x)\]

Find satisfying assignment: \(A, C, D\)

Check T-consistency: \(f(a) = b, c + 1 = b, \forall x. f(x) = g(x)\)
DPLL(T) Architecture

- **Formula F**
 - If F is sat, go to SAT Solver.
 - If F is unsat, go to UNSAT, proof.

- **SAT Solver**
 - If F is sat, go to Theory Solvers.
 - If F is unsat, go to UNSAT, proof.
 - Clauses to add to F.

- **Theory Solvers**
 - Satisfying assignment A for F.
 - A is T-Consistent.
 - A is T-Inconsistent.

- **UNSAT, proof**
 - SAT, model.

- **SAT, model**
DPLL(T) Architecture: Challenge

Formula F

F is sat

SAT Solver

$A := \{ f(a) = b, c+1 = b, \forall x. f(x) = g(x) \}$

F is unsat

Theory Solvers

A is T-Consistent

Clauses to add to F

A is T-Inconsistent

SAT, model

• Challenge: What if determining the consistency of A is difficult?
• For quantified formulas, determining consistency is undecidable
SMT with Quantified Formulas

• When quantified formulas are asserted
 – Most SMT solvers will:
 • Answer unsat, if they happen to find a proof
 • Run indefinitely
 • Give up, reporting “unknown”
Why Models are Important

⇒ Solver needs way of answering satisfiable when quantified formulas are asserted
Model-Based Approach for Quantifiers

• Given:
 – Set of ground formulas F
 – Set of quantified axioms Q

• Determine the satisfiability of $F \land Q$

• Idea:
 – Construct candidate models for Q based on satisfying assignments for F
 • Ge and deMoura [2009]
Model-Based Approach for Quantifiers

SAT Solver

Theory Solvers

Model Verifier

Ground Formulas F

Quantified Formulas Q

F is sat

Satisfying assignment A for F

A is T-Consistent

Candidate model M

M is a model for Q

UNSAT, proof

Clauses to add to F

SAT, model M
Running Example

person₁, person₂, person₃ : Person
blue, brown, blonde : Color
eye, hair : Person -> Color

distinct(blue, brown, blonde)
hair(person₁) = brown
eye(person₂) = blue
hair(person₃) = blonde
∀ x : Person. eye(x)=blue ⇒ hair(x)=blonde
Running Example

\[
\begin{align*}
\text{distinct(brown, blue, blonde)} \\
\text{hair(person}_1\text{)} &= \text{brown} \\
\text{eye(person}_2\text{)} &= \text{blue} \\
\text{hair(person}_3\text{)} &= \text{blonde} \\
\forall x : \text{Person}. \text{eye(x)=blue} &\implies \text{hair(x)=blonde}
\end{align*}
\]
distinct(brown, blue, blonde)

\[\text{true} \]

\[\text{true} \]

\[\text{true} \]

\[\text{true} \]

\[\forall x : \text{Person. eye}(x) = \text{blue} \Rightarrow \text{hair}(x) = \text{blonde} \]

• A is Theory-Consistent according to the theory of equality
From \mathbb{A}, construct candidate model M.

$\mathbb{A} :=$

\[
\{ \text{distinct(brown, blue, blonde)}, \\
\text{hair(person}_1\text{) = brown,} \\
\text{eye(person}_2\text{) = blue,} \\
\text{hair(person}_3\text{) = blonde} \}
\]

$M :=$

\[
\text{hair : person}_1 \rightarrow \text{brown} \\
\text{person}_3 \rightarrow \text{blonde} \\
\text{else} \rightarrow \text{brown} \\
\text{else} \rightarrow \text{blue}
\]

\[
\text{eye : person}_2 \rightarrow \text{blue} \\
\text{else} \rightarrow \text{blue}
\]
Check whether \mathcal{M} is a model of \mathcal{Q}

$\mathcal{M} :=$

- hair : person_1 -> brown
- person_3 -> blonde
- else -> brown
- eye : person_2 -> blue
- else -> blue

$\mathcal{Q} :=$

- $\forall x : \text{Person. eye}(x) = \text{blue} \Rightarrow \text{hair}(x) = \text{blonde}$

- \mathcal{Q} is false for person_2
Check whether \mathcal{M} is a model of \mathcal{Q}

$\mathcal{M} :=$

- hair : person$_1$ -> brown
- person$_3$ -> blonde
- else -> brown
- eye : person$_2$ -> blue
- else -> blue

$\mathcal{Q} :=$

- \forall x : Person. eye(x)=blue \Rightarrow hair(x)=blonde
- \mathcal{Q} is false for person$_2$

• Add (eye(person$_2$)=blue \Rightarrow hair(person$_2$)=blonde) to \mathcal{F}
• Will rule out \mathcal{M} on next iteration
 • Can be thought of as model “refinement”
What are good candidate models?

• Good candidate models
 – Have small domain sizes
 – Most instances of axioms \mathcal{Q} are likely to be true

• For small domain sizes,
 – Use specialized theory solver within DPLL(T)

• For making most instances true,
 – Use ground solver to guide model construction

• These features are implemented in SMT solver CVC4
Finding Minimal Models in DPLL(T) Search

- Idea: try to fix domain sizes 1, 2, 3,
 - Prioritize decisions made by DPLL(T) search

Search for models of size=1

|Person|≤1

If none exist, search for models of size=2

|Person|≤2

distinct(brown, blue, blonde)

|Person|≤3

- |Person|≤1

- |Person|≤2

- |Person|≤3

- |Person|≤3

- etc.

- eye(person\textsubscript{2}) = blue

- hair(person\textsubscript{3}) = blonde
Finding Minimal Models in DPLL(T) Search

\[|\text{Person}| \leq 1 \quad \rightarrow \quad \neg |\text{Person}| \leq 1 \]

Fails: \(\text{person}_1 \neq \text{person}_3 \)

Success: Can identify \(\text{person}_1 = \text{person}_2 \)

distinct(brown, blue, blonde)

\(\text{hair(person}_1) = \text{brown} \)

\(\text{eye(person}_2) = \text{blue} \)

\(\text{hair(person}_3) = \text{blonde} \)

• Implementation in CVC4 uses:
 – Splitting on demand to shrink model sizes
 – Efficient methods for clique detection

\[\Rightarrow \text{Theory of finite cardinality constraints [CAV 2013]} \]
• Set S can be very large
 – For Q with n variables with domain size d, $|S|$ can be $O(d^n)$
• Would prefer if most instances of Q are true in M
Constructing Good Candidate Models

• Idea for axiom \mathcal{Q}:
 – Chose default values in model \mathbb{M} based on one satisfying ground instance of \mathcal{Q}

\mathcal{Q}

- distinct(brown, blue, blonde)
- hair(person$_1$) = brown
- eye(person$_2$) = blue
- hair(person$_3$) = blonde
- $\forall x : \text{Person. }$ eye(x)=blue \Rightarrow hair(x)=blonde

• See how \mathcal{Q} is satisfied for one instance, then generalize this [CADE 2013]
Constructing Good Candidate Models

- distinct(brown, blue, blonde)
- hair(person₁) = brown
- eye(person₂) = blue
- hair(person₃) = blonde
- ∀ x : Person. eye(x)=blue ⇒ hair(x)=blonde

- Consider $Q[person₁/x]$

Q

![Diagram with formulas and variables](image-url)
Constructing Good Candidate Models

- distinct(brown, blue, blonde)
- hair(person₁) = brown
- eye(person₂) = blue
- hair(person₃) = blonde
- \(\forall x : \text{Person. eye}(x) = \text{blue} \implies \text{hair}(x) = \text{blonde} \)

- Find satisfying assignment
Constructing Good Candidate Models

\[\begin{align*}
\text{distinct(brown, blue, blonde)} \\
\text{hair(person}_1\text{) = brown} \\
\text{eye(person}_2\text{) = blue} \\
\text{hair(person}_3\text{) = blonde} \\
\forall \, x : \text{Person. eye}(x) = \text{blue} \Rightarrow \text{hair}(x) = \text{blonde} \\
\text{eye(person}_1\text{)} = \text{blue} \Rightarrow \text{hair(person}_1\text{)} = \text{blonde}
\end{align*} \]

• Construct candidate model

\[\begin{align*}
\mathcal{A} := \\
\{ \text{distinct(brown, blue, blonde)}, \\
\text{hair(person}_1\text{) = brown}, \\
\text{eye(person}_2\text{) = blue}, \\
\text{hair(person}_3\text{) = blonde}, \\
\text{eye(person}_1\text{)} \neq \text{blue} \} \\
\mathcal{M} := \text{hair : person}_1\rightarrow\text{brown} \\
& \text{person}_3\rightarrow\text{blonde} \\
& \text{else} \rightarrow \ldots \\
& \text{eye : person}_1\rightarrow\text{brown} \\
& \text{person}_2\rightarrow\text{blue} \\
& \text{else} \rightarrow \ldots
\end{align*} \]
Constructing Good Candidate Models

\(M := \begin{cases}
\text{hair} : & \text{person}_1 \to \text{brown} \\
& \text{person}_3 \to \text{blonde} \\
& \text{else} \to \text{brown} \\
\text{eye} : & \text{person}_1 \to \text{brown} \\
& \text{person}_2 \to \text{blue} \\
& \text{else} \to \text{brown}
\end{cases} \)

\(A := \{ \text{distinct(brown, blue, blonde)}, \\
\text{hair(person}_1) = \text{brown}, \\
\text{eye(person}_2) = \text{blue}, \\
\text{hair(person}_3) = \text{blonde}, \\
\text{eye(person}_1) \neq \text{blue} \} \)
Model-Based Approach in CVC4

• CVC4 is state of the art SMT solver with
 – Support for many theories

• Features implemented in CVC4:
 – Theory solver for handling cardinality constraints
 – Techniques for constructing candidate models
 – Efficient methods for verifying candidate models
 • Not mentioned in this talk
Experiments

• DVF Benchmarks
 – Taken from verification tool DVF used by Intel
 – Both SAT/UNSAT benchmarks
 • SAT benchmarks generated by removing necessary pf assumptions
 – Many theories: UF, arithmetic, arrays, datatypes
 – Quantifiers only over free sorts
 • Memory addresses, Values, Sets, ...

• TPTP Benchmarks
 – Unsorted, equality, function symbols
 – Heavy use of quantifiers
Experiments: DVF

<table>
<thead>
<tr>
<th>SAT</th>
<th>german</th>
<th>refcount</th>
<th>agree</th>
<th>apg</th>
<th>bmk</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>45</td>
<td>6</td>
<td>42</td>
<td>19</td>
<td>37</td>
<td>149</td>
</tr>
<tr>
<td>cvc3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>yices</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>z3</td>
<td>45</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>46</td>
</tr>
<tr>
<td>cvc4</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>cvc4+f</td>
<td>45</td>
<td>6</td>
<td>42</td>
<td>19</td>
<td>37</td>
<td>149</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNSAT</th>
<th>german</th>
<th>refcount</th>
<th>agree</th>
<th>apg</th>
<th>bmk</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>145</td>
<td>40</td>
<td>488</td>
<td>304</td>
<td>244</td>
<td>1221</td>
</tr>
<tr>
<td>cvc3</td>
<td>145</td>
<td>40</td>
<td>457</td>
<td>267</td>
<td>229</td>
<td>1138</td>
</tr>
<tr>
<td>yices</td>
<td>145</td>
<td>40</td>
<td>488</td>
<td>304</td>
<td>244</td>
<td>1221</td>
</tr>
<tr>
<td>z3</td>
<td>145</td>
<td>40</td>
<td>488</td>
<td>304</td>
<td>244</td>
<td>1221</td>
</tr>
<tr>
<td>cvc4</td>
<td>145</td>
<td>40</td>
<td>484</td>
<td>304</td>
<td>244</td>
<td>1217</td>
</tr>
<tr>
<td>cvc4+f</td>
<td>145</td>
<td>40</td>
<td>471</td>
<td>300</td>
<td>242</td>
<td>1198</td>
</tr>
</tbody>
</table>

- Configurations:
 - cvc4 : heuristic inst.
 - cvc4+f : model-based

- cvc4+f effective for sat
- cvc4+f solves 4 unsat that cvc4 cannot
Experiments: TPTP

• For 1995 satisfiable benchmarks:
 – Paradox solves 1305
 – iProver solves 1231
 – z3 solves 887
 – cvc4+f solves 1186
 • Includes 3 problems with rating 1.0

• For 12568 unsatisfiable benchmarks:
 – z3 solves 5934
 – iProver solves 5556
 – cvc4 solves 5415
 – cvc4+f solves 3028
 • Orthogonal to other approaches
 • 282 cannot be solved by z3
Summary

• Completed work in CVC4:
 – Ground solver for finding small models
 – Methods for constructing and verifying candidate models

• Current work:
 – Fair strategies for minimizing models for multiple sorts
 – Improve existing approaches for answering UNSAT
 – Other applications
 • Theory of Strings : bounded length
 • Integer quantification within bounded ranges
Current Work

• Extension to bounded integer quantification
 – Can use similar approach

∀ x : Int. 0 ≤ x ≤ N ⇒ P(x)
Thanks

• Collaborators:
 – Cesare Tinelli, Amit Goel, Sava Krstic, Clark Barrett, Morgan Deters, Leonardo de Moura

• Questions?