Finite Model Finding in
Satisfiability Modulo Theories

Andrew Reynolds
December 3, 2013
University of lowa

Motivation

 Many aspects of modern life are dependent
upon software

* Correctness of software is often highly critical

— Flight control, Bank records, Medical Devices, ...

* Growing need for automated reasoning

— For software verification and other applications

Approaches to Automated Reasoning

Boolean Satisfiability Solvers

— Fast, Handle Decidable Logic

— Cons : May be difficult to encode problem into SAT
Automated First-Order Theorem Provers

— Handle problems in an expressive natural encoding
— Cons : Logic can be Undecidable

Alternative : Satisfiability Modulo Theories (SMT)

— Incorporate specialized procedures for theories
* Arithmetic, bitvectors, arrays, datatypes, ...

— Many problems can be expressed as SMT problems

SMT Solvers

 SMT solvers are powerful tools that
— Are used in many formal methods applications

— Have optimized performance due to combination of:
e Off-the-shelf SAT solver

 Fast decision procedures for (ground) constraints
— May generate:

* Proofs
— Theorem proving, software/hardware verification

e Models

— Failing instances of aforementioned applications
— Invariant synthesis, scheduling, test case generation

SMT: Limitations

* Ongoing challenge: quantified formulas

— Are useful for:
* Frame axioms in software verification
* Universal safety properties
* Axiomatization of unsupported theories

— Needed by a growing number of SMT-based applications

* Current methods for handling quantifiers in SMT:
— Heuristic methods for answering “UNSAT”

— Limited capability of answering “SAT”
e Often will return “UNKNOWN” after some effort

Contributions

Finite Model Finding in SMT
—New approach for handling quantifiers in SMT

— Different from ATP finite model finders:
* Native support for background theories

— Different from SMT solvers:
* Increased ability to answer “satisfiable”

Outline

Intro to Satisfiability Modulo Theories (SMT)

Finite Model Finding in SMT
— Details of Approach

— Theoretical Properties

— Experimental Results

Extension to Bounded Integer Quantification

Satisfiability Modulo Theories
(-v-) Actl=b A f(c)=g(c)

Satisfiability Modulo Theories
(FE)=B HE=E) ~ct1=b ~ f(c)=g(c)

U Abstract to propositional logic

(NN O A D

Satisfiability Modulo Theories
(FE)=B HE=E) ~ct1=b ~ f(c)=g(c)

--M- 0

Satisfiability Modulo Theories
(FE)=B HE=E) ~ct1=b ~ f(c)=g(c)

Check T-consistency:-, -, f(c) = glc)

—> This can be done with ground theory solver

SMT with Quantified Formulas
(F@)=0 @I Actl=b A Vx. f(x) = g(x)

(WA NEND) e A D
— —r —
true true true

Find satisfying assignment:., C, D

Check T—consistency:-, c+tl=b, [Vx. f(x) = g(x)
e Satisfying assighment contains quantified formulas

—> Challenge: This is generally undecidable

DPLL(T) Architecture

Satisfying assignment A for F

Fis sat

F' is unsat SAT Th eo ry A is T-Consistent
Solver Solvers

Clausestoadd to F A is T-Inconsistent

DPLL(T) Architecture : Challenge

Satisfying assignment A for F°

Fis sat

F is unsat SAT Theory A is T-Consistent

UNSAT, Solver Solvers SAT,
proof model

Clausesto add to F

A is T-Inconsistent

* Challenge: What if determining the consistency of A is difficult?
* For quantified formulas, determining T-consistency is undecidable

Heuristic Instantiation

Satisfying assignment A for F' | (containing Q)

Fis sat

F is unsat
UNSAT,
proof
Instances of Q Consistency of A is
toaddto F unknown

* |f sat assignment contains quantified formula Q,

— Heuristically add instances of Q to F' [Detlefs et al 2003]
* Typically based on pattern matching
* May discover refutation, if right instances are added
* No way to answer SAT

Why Models are Important

Verification
Condition (with quantifiers)
for P

SMT
solver
Unknown

Candidate
\Yi[eYo =)

\EIIVEL
Inspection

Why Models are Important

Verification
Condition (with quantifiers)
for P

SMT
solver

UNSAT SAT

Unknown

Candidate
\Yi[eYo =)

"l N

Mconual
Inspec.'on

T

Model-Based Approach for Quantifiers

* Given:
— Set of ground formulas F
— Set of universally quantified formulas O

* To determine the satisfiability of & A O,

— Construct candidate models for Q, based on satisfying
assignments for F

 Model-Based Quantifier Instantiation (MBQ)
— [Ge/deMoura 2009]

DPLL(T) Architecture (Extended)

Ground Quantified

Formulas

Formulas
Q

F Satisfying .
assignment AlS Candidate
Afor F T-Consistent | model M

Fis sat

SAT Theory
Solver Solvers

Model
Verifier

M is a model
for O

Clauses to
addto F

When can we represent/check models for Q?

* Focus of thesis: Finite Model Finding

— Limited to quantifiers over:

* Uninterpreted sorts

— Can represent memory addresses, values, sets, etc.

e Other finite sorts
— Fixed width bitvectors, datatypes, ...

e Useful in applications:

— Software verification, automated theorem proving

Running Example

person,, person,, person, : Person
NewYork, Boston, Seattle : City
salesman: Person — Bool

travels : Person x City — Bool

I
Q

distinct(NewYork, Boston, Seattle)

YV x:Person,y : City.

travels(person,, Boston)
salesman(x) = travels(x,y)

—salesman(person,)

salesman(person;,)

F

Running Example

Satisfying
assignment

\ / AforF

UNSAT,

<€~ SAT Solver Theory Model
proof .
Solvers Verifier

Candidate
model M

Clauses to
addto F

SAT,
model M

4

distinct(NewYork, Boston, Seattle)

travels(person,, Boston)

—salesman(person,)
salesman(person;,)

V xy.salesman(x) = travels(x,y)

Q

Find Satisfying Assignment A for F

Satisfying
assignment

Q

Candidate

:

UNSAT,
oroof € SAT Solver Theory qu_el
Solvers Verifier
Clauses to 4
addto F SAT,

model M

true { distinct(NewYork, Boston, Seattle)
true { travels(person,, Boston)
true{ —salesman(person,)

true —{ | salesman(person,)

V¥ xy.salesman(x) = travels(x,y)

e A s Theory-Consistent according to the theory of equality

Construct Candidate Model M from A

Satisfying
assignment

Q

Candidate

F
N =

UNSA:' <€~ SAT Solver Theory Model
proo .
Solvers Verifier
Clauses to 4
addto F SAT,
model M
{ distinct(NewYork, Boston, Seattle), travels :
travels(person,, Boston), — person,, Boston — true
—salesman(person,), ... — false
salesman(person,) } salesman :
person, — true
... > false

Determine if M satisfies O

F
UNSAT,
oroof € SAT Solver

Satisfying
assignment Candidate Q
AforF
v_ model M
Theory Model
Solvers Verifier

Clauses to
addto F

'\J/l

SAT,
model M

M :

travels :
person,, Boston — true
... — false
salesman :
person; — true
... — false

Q : Vxy. salesman(x) = travels(x,y)

Add Clauses back to F

Satisfying

F assignment Candidate o
\ / v— model M /
UNSAT,
oroof & SAT Solver Theory Mo.d_el
Solvers Verifier
Clauses to 4

addto F SAT,

model M

M :

travels :
person,, Boston — true
... — false
salesman :
person; — true
... — false

Q: ny.\salesman(x) = travels(x,y)}

\]

|
YIx, y]

* ¥ isfalse for person, NewYork
* Add Y¥[person,;, NewYork | to F
* Will rule out M on next iteration

- Model “refinement” process

Finding Small Models : Motivation

M :=

Q : Vx: Person, y : City.
Person : { person,, person,, person, }

salesman(x) = travels(x,y)

City : { NewYork, Boston, Seattle }

* Naively, to determine whether M is model for Q:

— Check if M satisfies all instances S of O

 Challenge: S can be very large
— For Q with n vars, domain size d, | S| can be O(d")

* Inexample,3*3=9
* Solution:

— Search for candidate models with small domain sizes
e Use finite cardinality constraints [CAV 2013]

Outline of Approach

Quantified

Ground Formulas
Formulas 0

SAT Theory Model
Solver Solvers Verifier

* Require methods for:
1. Finding satisfying assignments
* Esp. ones that induce models with small domain sizes
2. Building candidate models
3. Checking candidate models

Quantified

Ground Formulas

Formulas 0

SAT Theory Model
Solver Solvers Verifier

1. Finding satisfying assignments

Finding Minimal Models in DPLL(T)

distinct(NewYork, Boston, Seattle)

. <
|Person|<1 travels(person,, Boston)

|Person|<l1

— salesman(person,)
salesman(person;,)

Search for | Person|<2 _ |Person| <2
models
of size=1
If none exist, | Person |<3 | Person|<3
search for
models
of size=2

etc.

* |dea: fix domain sizes incrementally 1,2,3,....
—> Fixed-Cardinality DPLL(T)

Finding Minimal Models in DPLL(T)

| Person|<1 —|Person|<1

Fails:
person, # person,

| Person|<2

Success:
Can identify
person, = person,

distinct(NewYork, Boston, Seattle)
travels(person,, Boston)

— salesman(person,)
salesman(person;,)

* Requires: method to find cardinality conflicts
— E.g. determine when > 1,2,3,... “Person” must exist

Finding Minimal Models in DPLL(T)

Satisfying

assignment
\ AforF
—
- Theory + EFCC
Solvers Solver
Clauses to /»\«
addto F

e Extend SMT solver with theory solver for:
= Theory of EUF + finite cardinality constraints (EFCC)

Theory Solver for EFCC

* |nterested in models M where:
— Domain elements of M are equivalence classes of terms

* Thus, signature of EFCC has predicates of form | S |< k
— Satisfied iff < k equivalence classes of terms of sort S exist

* To check if cardinality constraints are satisfied:
— Based on disequality graph (V, E)

* Vertices V are equivalence classes of sort S
* Edges E are disequalities between terms of sort S

— So,f(a)#a,f(a)#c, f(c)=cbecomes:

Theory of EFCC and k-Colorability

 Assume a single sort S with cardinality k

— Check if corresponding (V,E) is k-colorable

* If no, then report a cardinality conflict (C = —| S | <k)
— where C is an explanation of subgraph that is not k-colorable

* If yes, we cannot be sure that a model of size k exists

— Due to theory reasoning:

l | S |=2

= Must explicitly merge equivalence classes

Theory of EFCC : Challenges

 Why finite cardinality constraints are challenging:
— Interaction with theory reasoning
— k-colorability is NP-complete
— Analysis must be incremental

* Solution:
— Explicitly merge equivalence classes

— Use heuristic region-based approach which:
* May quickly detect when disequality graph is not k-colorable
e Suggests pairs of equivalence classes to merge

Region-Based Approach

e Partition the graph (V, E) into regions with high edge density

| S [<2
e For | S|< k we maintain the invariant:
— No clique of size k+1 exists having nodes from multiple regions

* Thus, we only need to search for cliques local to regions
— Region can be ignored if it has £ k nodes

Extension to Multiple Sorts
Challenge:

— Fair Strategy for enumerating cardinalities
Example:

person, # person, V (city,#cCity,...City,#City;5q0---CitYg9e7 CitY1000)

— Formula has model with 2 persons, 1 city

— But we may search for models where
* # persons, cities : (1, 1), (1, 2),, (1,1000)

With quantified formulas, this leads to incompleteness

— May imply no finite models exist in a branch

Fixed-Cardinality DPLL(T) for Multiple Sorts

Uses extended signature containing:
— Boolean predicates of form |2 |< k

 Satisfied if and only if < k equivalence classes for all sorts exist

Search for' models i3 <3
persons, cities : (1,1)
Search for models

persons, cities : (1,2) or (2,1) 121<4

—2[<4

Search for models
persons, cities : (1,3), (2,2), or (3,1) .
—> Gives a fair strategy

Properties : Ground Solver

Satisfying
d asszlg:mgnt Candidate O
\‘ model M
Terminatin T UNSAT, SAT Theory

& proof € Solver Solvers \I;/I O.?.el

Complete + EFCC erifier
Clauses to A

addto F SAT,

— model M

* For ground inputs F,
— Fixed-cardinality DPLL(T), using Theory EFCC:

* Sound, terminating, and complete
— Eventually either:
» Determines F' is unsatisfiable
» Constructs candidate model M of finite (minimal) size

Quantified

Ground Formulas
Formulas 0

I

SAT Theory Model
Solver Solvers Verifier

v

2. Building candidate models

Model Representation

* Represent a function/predicate as a list of entries:

C,—>vy, .., C >V,
— Where

* C, ..., C, are “conditions”

* Vg, .., V,are “values”
 E.g.unary predicate “P” true only for v represented as:
(V) > T,(*)—> L
— Interpreted as an if-then-else:
A X ite(x=v, T, L)

Model Construction

e Candidate models M:

— Domain elements are equivalence classes [t,], [t,], ...
— Are constructed from sat assignment A for F

— Consist of definitions D, for each f € X, where each Dy:
* |s partially determined by ground equalities from A
— For each equality f(t, ..., t,) =tin A,
» Entry ([t,], ..., [t,]) — [t] € D
* Has default value
— Determined by distinqguished f-application e
» Entry (*, ..., *) —> [e] € D¢

Constructing Models : Example

person,, person,, person; : Person

NewYork, Boston, Seattle : City
salesman: Person — Bool

F travels : Person x City — Bool
distinct(NewYork, Boston, Seattle) 0
—travels(person,, Boston) YV xvy.salesman(x) = travels(x,y)

—salesman(person,)

salesman(person,)

salesman(person,) = travels(person,, NewYork)

 Guide choice of default values based on :
— person, for Person
— NewVYork for City

e Assume Q has been instantiated with these terms

Constructing Models : Example

person,, person,, person; : Person

NewYork, Boston, Seattle : City
salesman: Person — Bool

F travels : Person x City — Bool

distinct(NewYork, Boston, Seattle) } true

travels(person,, Boston) } frye
—salesman(person,) } true V' xy.salesman(x) = travels(x,y)

salesman(person;) "L + rye

salesman(person,) = travels(person,, NewYork) } true

Q

* Choose default based on value of travels(person,;, NewYork)

A " Dtravels:
{.. (person,, NewYork) — T,
travels(person,, Boston) =T, (person,, Boston) — 1,

travels(person;, NewYork) =T } (*,*)>T

Quantified

Ground Formulas
Formulas 0

I

SAT Theory Model
Solver Solvers Verifier

3. Checking candidate models

Checking Candidate Models

Candidate
model M

\rs

Verifier

Clauses to
addto F else o

model M

* To check if M is a model for O:

M isa
model for Q

— Naively, test if every instance of Q is true in M
— Or, choose a representative set of instances of O

* Only add instances that are false in M

* |Identify sets of instances of Q that are equisatisfiable

Checking Candidate Models

person,, person,, person; : Person

NewYork, Boston, Seattle : City
salesman: Person — Bool

F travels : Person x City — Bool

Q

distinct(NewYork, Boston, Seattle)

VY xy.salesman(x) = travels(x,y)
—travels(person,, Boston)

—salesman(person,)

salesman(person;)

salesman(person,;) = travels(person;, NewYork)

D satesmant Olperson,, NewYork]
(person,) — L, Q[person,, Boston]
(person;) —> T, Q[person,, Seattle]
(*)—>T Qlperson,, NewYork]

Q[person,, Boston]
Diravels’ Q[person,, Seattle]
(person,, NewYork) —> T Q[person,, NewYork]

Q[person,, Boston]

(person,, Boston) — L,
Q[person,, Seattle]

(%,*)>T}

Checking Candidate Models

person,, person,, person; : Person

NewYork, Boston, Seattle : City
salesman: Person — Bool

F travels : Person x City — Bool

Q

distinct(NewYork, Boston, Seattle)

VY xy.salesman(x) = travels(x,y)
—travels(person,, Boston)

—salesman(person,)

salesman(person;)

salesman(person,;) = travels(person;, NewYork)

Psslesman Q[person,, NewYork true
(person,) — L, Q[person,, Boston] false
(persony) =T, O[person,, Seattle] true
(*)>T Q[person,, NewYork] e

Dtravels: B
(person,, NewYork) —> T Q[person,, NewYork]
(person,, Boston) — L, — true

(%,*)>T}

Checking Candidate Model M

To check if M satisfies quantified formula O:

— Choose representative set of instances S of O
= This is somewhat heuristic

— ForeachWin S,
e If M(W)=false,addWtoF

— If no instances added, then M satisfies O

Alternate, improved approach :

— Directly compute the interpretation of Q in M
* Using same data structure that represents functions in M

Computing Interpretations of Terms

Q:V xvy.salesman(x) = travels(x,y)

D D

salesman(x): travels(x,y):
(person,, *) —> L, (person,, NewYork) —> T
(person,, *) =T, (person,, Boston) — L,

(%, *)>T (%,*)>T }

Computing Interpretations of Terms

Q:V xvy.salesman(x) = travels(x,y)

D D

salesman(x)* travels(x,y)*
(person,, *) —> L, (person,, NewYork) —> T
((person,, *) =T, (person,, Boston) — L,)
(**)>T (*,*)>T }
Il
Desteamante) X Disavelsy Compute product

(person,, *) = (L, T),
(persong, *) — (T, T),
(person,, NewYork) — (T, T)
(person,, Boston) — (T, L),
(**)—>(T,T)

Computing Interpretations of Terms

Q:V xvy.salesman(x) = travels(x,y)

Diatesman(x)’ Diravels(xy)’
(person,, *) —> L, (person,, NewYork) —> T
((person,, *) =T, (person,, Boston) — L,)
(**)->T (**)>T }
Il
Dialesman(x) X Prravels(xy): D.alesman(x)=travels(xy) -
(person,, *) = (L, T), (person,, *) > (L =T),
— ((person,, *) — (T, T), — (persony, *) > (T=T),

(person,, NewYork) — (T, T) (person,, NewYork) — (T =T),
(person,, Boston) — (T, L), (person,, Boston) — (T = 1),
(**)—>(T,T) (**)>(T=T)

Apply interpreted predicate

Computing Interpretations of Terms

Q:V xvy.salesman(x) = travels(x,y)

D D

salesman(x)* travels(x,y)*
(person,, *) —> L, (person,, NewYork) —> T
((person,, *) =T, (person,, Boston) — L,)
(**)->T (**)>T }
Il
Dialesman(x) X Prravels(xy): D.alesman(x)=travels(xy) -
(person,, *) = (L, T), (person,, *) =T,
— ((person,, *) — (T, T), — (persony, *) > T,
(person,, NewYork) — (T, T) (person;, NewYork) — T,
(person,, Boston) — (T, L), (person,, Boston) — L,
(**)—>(T,T) (**)>T

* Add Q[person,/x, Boston/y] to F

Finite Model Finding: Summar

Quantified

Ground Formulas
Formulas 0

I

SAT Theory Model

Solver Solvers Verifier

1. Find Satisfying Assignment
— Use EFCC Solver to find Small Candidate Models

2. Construct Candidate Models

3. Model-Based Quantifier Instantiation
— Two methods: Generalizing Evaluations, Constructing Interpretations

Properties : Finite Model Finding

— Sa_tisfying
Sound , ; ass;lg%Tgnt cnigjz::ahtﬂe Q
Finite-Model \ /\/\ /
Com pIEtE, —< UNSAT, Theory Model
Refutationally proof saler e Verifier
Complete*
Clauses to
addto F
SAT,
model M

For inputs (F, Q), quantifiers in Q over free sorts

— Fixed-cardinality DPLL(T) + quantifier instantiation:
* Sound

* Finite Model Complete
— If (F, Q) has a finite model, we will eventually answer “SAT”

* Refutationally Complete (when containing no theory symbols)
— If (F, Q) is unsatisfiable, we will eventually answer “UNSAT”

* - under certain restrictions

Finite Model Finding: Properties

* For unsatisfiable (F, Q), quant. of O over free sorts
— When (F, Q) contain theory symbols

e Approach has weaker completeness property:
— If there exists a set I of instances of Q where:
» T is finite
» F A I is UNSAT
— Then,
» Fixed-cardinality DPLL(T)+Ql terminates, answering UNSAT

* Thus, approach is only non-terminating when:
— (F, Q) is SAT, but only has infinite models
— (F, Q) is UNSAT, but all finite subsets are SAT

Enhancements

e Heuristic Instantiation

— First see if instantiations based on heuristics exist
* |f not, resort to model-based instantiation

— May lead to:

* Discovering easy conflicts, if they exist
* Arriving at model faster
— Instantiations rule out spurious models

* Sort Inference
— Reduce symmetries in problem
* Relevancy

— Reduce the size of satisfying assignments

Experiments

* Implemented state of the art SMT solver CVC4

* Experiments on:
— DVF Benchmarks

* Taken from verification tool DVF used by Intel
* Both SAT/UNSAT benchmarks

— SAT benchmarks generated by removing necessary pf assumptions
* Many theories: UF, arithmetic, arrays, datatypes

e Quantifiers only over free sorts
— Memory addresses, Values, Sets, ...

— TPTP Benchmarks

e Automated theorem proving community
* No theory reasoning

— |sabelle Benchmarks
* Provable and unprovable goals, contains some arithmetic

Results: DVF

SAT german refcount agree apg bmk | Total Time

45 6 42 19 37 | 149

z3 45 1 0 0 0 46 8.1
cvCa+i 2 0 0 0 0 2 0.0
cvca+f 45 6 42 18 36 | 147 1413.1
cvca+i 45 6 42 19 36 | 148 13339
cvcd+fm 45 6 42 19 37 | 149 605.4
cvcd+fmi 45 6 42 19 37 | 149 409.8
UNSAT | german refcount agree apg bmk | Total Time

145 40 488 304 244 | 1221

z3 145 40 488 304 244 | 1221 31.0
CVCa+i 145 40 484 304 244 | 1217 21.3
cvca+f 145 40 476 298 242 | 1201 7512.2
cvca+i 145 40 488 302 244 | 1219 1181.4
cvcd+fm 145 40 471 300 242 | 1198 6949.7
cvcd+fmi 145 40 488 302 244 |1219 1185.0

cvcs :

e f:finite model

* i:heuristic

* m:model-based

600 second timeout

* CVC4 with finite model finding (cvc4+f)

Effective for answering SAT
Using heuristic instantiation, solves 4 UNSAT that cvc4 cannot

Results: TPTP

SAT UNSAT

EPR NEQ SEQ PEQ/|Total | EPR NEQ SEQ PEQ | Total

(392) (639) (340) (624)|(1995)|(1114) (1594) (7875) (2003)|(12586)
23 320 155 164 249 | 888 | 989 412 3310 1320 | 6031
cve3 27 0 0 0 | 27 | 787 381 3019 883 | 5070
iprover 363 128 107 396 | 994 | 835 105 2690 1523 | 5153
iprover+f| 362 226 178 468 |1234| 213 1 121 48 | 383
paradox | 340 304 185 526 |1355| 723 17 339 186 | 1265
cved+i |32 0 O O | 32 | 821 383 3152 1045| 5401
cved+f | 295 178 143 375|991 | 759 247 887 651 | 2544
cvcd+fm | 298 221 178 391 (1088 | 759 169 1010 703 | 2641
cved+fM | 301 235 200 395 |1131| 759 198 1073 733 | 2763
cvcd+fMi| 292 207 153 385 (1037 | 762 236 1281 746 | 3025

cvcs .

 f:finite model

* i:heuristic

* m:model-based

* M : model-based
(version 2)

10 second timeout

e CVC4 Placed 3" in FNT (non-theorem) division of CASC 24

Results : TPTP

) 1etll [=t cvcd+f
) le+10 | == cvCc4+fm 1
- cved+iM

-4 | cvcd :

f : finite model
* m: model-based

M : model-based
. (version 2)

le+6

le+s |

le+d4

IDDG 1 L 1 1 1 1
800 850 900 950 1000 1050 1100

Solved

 Model-Based Instantiation is often essential
— Solves when naive approach requires ~775 billion instances

Results: Isabelle

SAT ArrowOrder FFT FTA Hoare NS _Shared QFpres StrongNorm TwoSquares TypeSafe Total
cve3 0 9 0 O 0 0 0 8 0 17
z3 1 19 24 46 10 47 1 17 12 177
cvca+i 0 9 0 O 0 0 0 8 0 17
cvca+f 26 123 163 149 56 75 12 50 84 | 738
cvca+i 26 133 158 155 61 80 12 44 87 756
cvcd+fm 22 120 152 147 36 75 12 46 87 697
cvcd+fM 28 126 163 151 44 94 12 43 87 748
cvca+fMi 31 136 161 154 61 101 12 44 85 785
UNSAT | ArrowOrder FFT FTA Hoare NS_Shared QEpres StrongNorm TwoSquares TypeSafe Total
cve3 287 250 877 577 102 291 206 552 216 |3358
z3 254 230797 507 135 242 240 491 329 |3225
cvca+i 253 233 749 476 99 265 234 523 267 |3099
cvca+f 123 94 350 209 41 99 83 361 127 |1487
cvca+i 155 164 509 374 37 168 100 452 195 |2154
cvcd+fm 112 86 357 212 26 119 82 349 120 |1463
cvcd+M 88 92 381 202 29 109 93 365 149 |1508
cvcd+fMi| 154 164 515 371 37 167 100 452 195 |2155

cvcs .

 f:finite model

* i:heuristic

* m:model-based

* M : model-based
(version 2)

10 second timeout

* For UNSAT, cvcd with finite model finding is orthogonal :

— Solves 170 unsat that cvc3 cannot, 365 z3 cannot, 229 that cvc4+i cannot

Extension to (Bounded) Integers

A formula of the form

VXX, i Int L <x; SUpA AL <X, SU, =Y
" Where x; gFV(L;, U,), fori<]j

has Bounded Integer Quantification

e Example: Vxy.0 <x<20 A0 <y <f(x) = P(x, y)
* Can be handled similar as before
— Minimize bounds, (naively) instantiate exhaustively

Bounded Integer Quantification

c<0

Domain of Q is c<0
empty

Consider Q[0/x]

Consider Q[0/x], O[1/x]

—|C<O

ldea: Fix values of bound ¢

Q:Vx:Int.0<x<c= P(x)

—|CSO

* Approach is sound, and model complete
— When input has model, it eventually terminates with “SAT”

Results

cvcsd :

SAT (263) UNSAT (843)
solved time |solved time _ o
23 257 9579 | 843 203 | | ° i:heuristic

f : bounded integer techniques

cvca+i 0 0 843 17.4
cvcd+fi| 263 90.8 843 308.7 600 second timeout

e Set of verification benchmarks from Intel
— Arrays, datatypes, integer arithmetic

— Symbolic bounds for integer quantification, e.g.
Vx:Int. 0 <x <c= P(x), where cis free constant

e CVC4 (with fmf) finds small models v, i.e.
— Value of M[c] is 2 to 3, at most 10

Summary
 CVC4 with finite model finding:

— Incorporates various instantiation strategies:
 Model-based quantifier instantiation
e Heuristic instantiation (E-matching)

— Has important properties:
* Finite-Model Completeness
e Refutational Completeness (under certain conditions)
— Approach can be extended to integers, theory of strings

— Improves the state-of-the-art, over:
* SMT solvers
— Increased ability to answer “satisfiable”

e Automated Theorem Provers
— Efficient reasoning about background theories at QF level

Thank you

* Acknowledgements:

— Collaborators: Cesare Tinelli, Amit Goel, Sava Krstic, Clark
Barrett, Morgan Deters, Leonardo de Moura

— Dissertation Committee: Aaron Stump, Hantao Zhang,
Sriram Pemmaraju

e Questions?

