A DPLL(T) Theory Solver for
Strings and Regular Expressions

Tianyi Liang
Andrew Reynolds
Cesare Tinelli
Morgan Deters
Clark Barrett

Motivation : Security Applications

char buff[15];
char pass;

std::cout << "Enter the password :";
gets(buff);

if (std::regex_match(
buff,
std::regex("([A-Z]+)"))) {
if(strcmp(buff, “PASSWORD")) {
std::cout << "Wrong Password";
}
else {
std::cout << "Correct Password";
pass ='Y";
}
}

if(pass == "Y") {
[* Grant the root permission®/

(set-logic QF_S)

(declare-const input String)
(declare-const buff String)
(declare-const pass0 String)
(declare-const rest String)
(declare-const pass1 String)

(assert (= (str.len buff) 15))
(assert (= (str.len pass1) 1))
(assert (= input (str.++ buff passO0 rest)))

(assert (str.in.re buff (re.+ (re.range "A" "Z"))))
(assert (ite (= buff "PASSWORD")

(= pass1"Y")

(= pass1 pass0)))

(assert (not (= buff "PASSWORD")))
(assert (= pass1"Y"))

Objectives

 Want solver to handle:
— (Unbounded) string constraints
— Length constraints
— Regular language memberships, ...
* Theoretical complexity of:
— Word equation problem is in PSPACE
— ...with length constraints is OPEN
— ...with extended functions (e.g. replace) is UNDECIDABLE

* Instead, focus on:

— Solver that is efficient in practice

— Tightly integrated into SMT solver architecture
* Conflict analysis, T-propagation, lemma learning, ...

Core Language for Theory of Strings

* Terms are:
— Constants from a fixed finite alphabet 2* (a, ab, cbc...)
— Free constants or “variables” (x, v, z...)
— String concatenation
- :String x String — String
— Length terms
len() :String > Int

 Example input:

len(x) > len (vy)
Xz = y-ab

Cooperating Theory Solvers

len(x) > len(y)
Xz = y-ab

len (x)

e Distribute constraints
to corresponding
theory solvers

len(x) > len(y) Xz = y-ab

Cooperating Theory Solvers

len(x) > len(y)
Xz = y-ab

* Communicate
(dis)equalities over
shared terms
[Nelson-Oppen]

len (x)#len (y)

len (x)

> len(y)

len (x)#len (vy)

Summary of Approach

* Determines satisfiability of A U S, where
— Ais a set of linear arithmetic constraints
— S is a set of (dis)equalities over:

* String terms
* Length terms

X *Z
len (x)

= y-ab
* len(y)

* Uses procedure consisting of four steps:

1.

= W

Check length constraints A
Normalize equalities in S
Normalize disequalities in S
Check cardinality of X

1. Check length constraints
2. Normalize equalities

Check Length Constraints : smie st

4. Check cardinality of

* Add equalities to A regarding the length of
(non-variable) terms from S

Theory

Strings

Xz = Yy a

1. Check length constraints
2. Normalize equalities

Check Length Constraints : smie st

4. Check cardinality of

Theory

Strings

A len(x)>1len(y) S len (x) # len(y)
len(x)+len(z)=len(y)+2 X'z = y-ab

— Check if A is satisfiable

1. Check length constraints
2. Normalize equalities

N O r m a I i Ze E q u a I it i e S 3. Normalize disequalities

4. Check cardinality of

* To show: satisfiability of Theory
(dis)equalities S between

string terms Strings

len(x) # len(y)
X 'Z =

* To ensure equality t=s has model:

— If t and s are non-variable,

— Must be equivalentto flat forms F [t], F[s]
e F[t] and F[s] are syntactically equivalent

* Flat form F[t] computed by expanding/flattening t

1. Check length constraints
2. Normalize equalities

N O r m a | i Ze E q u a I it i e S 3. Normalize disequalities

4. Check cardinality of

 Modified example:

len(x) = len(y)
Z'w = y-ab
Z = X-a

* Flat form of terms from first equality are not the same:
— F[z-w] Is: X-a-w
— Fly-ab]is: yv-ab

* Procedure continues based on three cases:
— We know the length of x and y are equal : conclude x=y

— We know the length of x and y are disequal : conclude
dk. ((x=y'k v y=x-"k) A len(k)>0)
— We know neither : guess their lengths are equal, restart

Normalize Equalities

e After concluding x=v,

len (x)
Z "W
Z

X

len(y)
vy -ab

= X a

Y

1. Check length constraints
2. Normalize equalities

3. Normalize disequalities
4. Check cardinality of

* Flat form of terms from first equality are now, e.g.:

— F[z - -w] Is:

v -

a "W

— Fly-ablis: y-ab
* Will conclude w=Db, after which F'[z -w]=F[y -ab]

1. Check length constraints
2. Normalize equalities

N O r m a | i Ze E q u a I it i e S 3. Normalize disequalities

4. Check cardinality of

e For t=s, procedure makes progress* towards:
— Towards forcing flat forms F [t] and F'[s] equal, or
— Discovering conflicts

* fF[t,]=.=F[t,] foraneqclass E={t ..t }

— We referto F[t,] as the normal form N[t,] of E

* |f normal form exists for each eq class,
— Then a model exists for all equalities from S

* Constructed trivially, given normal form

* exception: looping word equations (explained later)

1. Check length constraints
2. Normalize equalities

N O rm a I ize Diseq u a | ities 3. Normalize disequalities

4. Check cardinality of

* For disequalitiesin S

— A disequality t#s is normalized if:
* len(t)#len(s), or
* N[t]=t, u-t,andN[s]=s, 'V s,, where:
— len(t,)=len(t,),
— len (u)=len(v), and

— U#V

* Forexample: | 1en(z)#len (v)
Z£Y
Xa - z#EX ‘bz

X "W#Y b x

Normalize Disequalities

* To normalize disequalities,

— Proceed by cases, similar to Step 2

1. Check length constraints
2. Normalize equalities

3. Normalize disequalities
4. Check cardinality of

* In example, we would succeed, for example if:

— len(x -w)#len(y-b),or
— len(x)=len(y) and x#y,

— Continue until all disequalities are normalized

len(z)#len(y)
ZF#Y
Xa z#EX bz
X "W#Y D

1. Check length constraints

Check Cardinality of 2 s aseauaine

4. Check cardinality of

* S may be unsatisfiable since X is finite

* For instance,

If
* Y is a finite alphabet of 256 characters, and
* S entails that 257 distinct strings of length 1 exist

Then
e S is unsatisfiable

* Performed as a last step of our procedure

Challenge: Looping Word Equations

* Say we aregiven: x-'a = pb-x

Challenge: Looping Word Equations

* Say we aregiven: x-'a = pb-x

* Flat forms are:
Flx-a] = x-a
Flb'x] = b-x

* Compare 1len (x) and 1len (b),i.e. 1
—If 1len (x) =1, then x=a and x=b = conflict

—If len (x) #1
* If x is a prefix of b (i.e. it is empty), then a=b = conflict
* |If b is a prefix of x, then x=b -k for some k

Challenge: Looping Word Equations

e Now we have: Xxa = b-x
X = bk

* Flat forms of first equation are:
F'ilx-al] = blk-a
F[b-x] = b b k| = Problem: looping!

e Solution:
- Recognize when these cases occur
- Reduce to regular language membership:

X a=b - 'x<dyz. (a=y 'z A b=z'yv A xe€(z"Yy)*2)

nhwbpE

Experimental Results

Result Incorrect3 Incorrect3

unsat 11,6251 317 11,7692 7,154 13,435
sat 33,271 1,583 31,372 n/a* 25,468%
unknown 0 0 3
timeout 2,388 2,123 84
error 0 120° 1,140

For the problems where CVC4 answers UNSAT, neither Z3-STR nor Kaluza answer SAT

We cannot verify the problems where CVC4 does not answer UNSAT

We verified these errors by asserting a model back as assertions to the tool

We cannot verify these answers due to bugs in Kaluza’s model generation

One is because of non-trivial regular expression, and 119 are because of escaped characters

Experimental Results

—(Vc4

100,000

= = =/3-str

10,000

k.3
=]
[|
= |
—
1+]
-

3 — Y

1,000

(s) swtlL

100

1@

eee ‘v

200 ‘ot

eeo ‘8¢

eeo ‘ot

eee ‘ve

eoe ‘Zt

000 ‘0t

000 ‘8¢

eee ‘97

e ‘e

eeo ‘¢c

eee ‘ez

eee ‘81

eee ‘91

Solved Problems

Theoretical Results

* QOur approach is:

— Refutation sound

 When it answer “UNSAT”, it can be trusted
— Even for strings of unbounded length

— Solution sound
 When it answers “SAT”, it can be trusted

* (A version of) our approach is:

— Solution complete
 When it is “SAT”, it will eventually get a model
— Somewhat trivially, by finite model finding

* Our approach is not:

— Refutation complete

* When itis “UNSAT”, it is not guaranteed to derive refutation
— Would like to identify fragments (i.e. non-cyclical) where it is

Further Work

 Handling regular language membership t eR*
— Currently handled, but naively (unrolling)

 Handling extended functions

— substr, contains, replace,
prefixOf, suffixOf, str.indexOf,
str.to.1nt, 1nt.to.str

— Many are challenging, for instance:
—contalns (x,V)

* Intuitively, requires (universal) quantification over the
positions of x

Questions?

* For more details, see CAV 2014 paper
e CVC4 is publicly available at:
http://cvcd.cs.nyu.edu/web/

