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Motivation : Security Applications 
char buff[15]; 
char pass; 
 
std::cout << "Enter the password :"; 
gets(buff);  
 
if (std::regex_match( 
           buff,  
           std::regex("([A-Z]+)") )) { 
    if(strcmp(buff, “PASSWORD")) { 
        std::cout << "Wrong Password"; 
    }  
    else {  
        std::cout << "Correct Password"; 
        pass = 'Y';  
    }  
} 
 
if(pass == 'Y') {  
    /* Grant the root permission*/  
}  

(set-logic QF_S)  
 
(declare-const input String)  
(declare-const buff String)  
(declare-const pass0 String)  
(declare-const rest String)  
(declare-const pass1 String)  
 
(assert (= (str.len buff) 15))  
(assert (= (str.len pass1) 1))  
(assert (= input (str.++ buff pass0 rest)))  
 
(assert (str.in.re buff (re.+ (re.range "A" "Z"))))  
(assert (ite (= buff "PASSWORD")  
                  (= pass1 "Y")  
                  (= pass1 pass0))) 
 
(assert (not (= buff "PASSWORD")))  
(assert (= pass1 "Y"))  

Encode 



Objectives 

• Want solver to handle: 

– (Unbounded) string constraints 

– Length constraints 

– Regular laŶguage ŵeŵďerships, … 

• Theoretical complexity of: 

– Word equation problem is in PSPACE 

– …ǁith leŶgth ĐoŶstraiŶts is OPEN 

– …ǁith eǆteŶded fuŶĐtioŶs ;e.g. replace) is UNDECIDABLE 

• Instead, focus on: 

– Solver that is efficient in practice 

– Tightly integrated into SMT solver architecture 

• Conflict analysis, T-propagatioŶ, leŵŵa learŶiŶg, … 



Core Language for Theory of Strings 

• Terms are: 

– Constants from a fixed finite alphabet S*  (a, ab, cbc...) 

– Free ĐoŶstaŶts or ͞ǀariaďles͟ ;ǆ, Ǉ, z...Ϳ 
– String concatenation 

 _·_ : String  String  String 

– Length terms 

 len(_) : String  Int 

• Example input: 

 len(x) > len(y) 

x·z = y·ab 



Cooperating Theory Solvers 

Theory  

LIA 

Theory  

Strings 

len(x) > len(y) 

x·z = y·ab 

len(x) > len(y) x·z = y·ab 

• Distribute constraints 

to corresponding 

theory solvers 

len(x) > len(y) x·z = y·ab 



Cooperating Theory Solvers 

Theory  

LIA 

Theory  

Strings 

len(x) > len(y) 

x·z = y·ab 

len(x) > len(y) x·z = y·ab 

len(x)len(y) 

• Communicate 

(dis)equalities over 

shared terms 

[Nelson-Oppen] 

len(x)len(y) 



Summary of Approach 

• Determines satisfiability of A  S, where 

– A is a set of linear arithmetic constraints 

– S is a set of (dis)equalities over: 

• String terms 

• Length terms 

• Uses procedure consisting of four steps: 

1. Check length constraints A 

2. Normalize equalities in S 

3. Normalize disequalities in S 

4. Check cardinality of S 
 

x·z = y·ab 

len(x)  len(y) 



Check Length Constraints 
1. Check length constraints 

2. Normalize equalities 

3. Normalize disequalities 

4. Check cardinality of S 

Theory  

LIA 

Theory  

Strings 

• Add equalities to A regarding the length of 

(non-variable) terms from S  

len(x)  len(y) 
x·z = y·ab 

len(x)>len(y) A S 



Check Length Constraints 
1. Check length constraints 

2. Normalize equalities 

3. Normalize disequalities 

4. Check cardinality of S 

Theory  

LIA 

Theory  

Strings 

 Check if A is satisfiable 

len(x)  len(y) 
x·z = y·ab 

len(x)>len(y) 

len(x)+len(z)=len(y)+2 A S 



Normalize Equalities 
1. Check length constraints 

2. Normalize equalities 

3. Normalize disequalities 

4. Check cardinality of S 

• To ensure equality t=s has model: 

– If t and s are non-variable, 

– Must be equivalent to flat forms F[t], F[s] 

• F[t] and F[s] are syntactically equivalent 

•  Flat form F[t] computed by expanding/flattening t 
 

Theory  

Strings 

len(x)  len(y) 
x·z = y·ab 

• To show: satisfiability of 

(dis)equalities S between 

string terms 



• Modified example: 

 

 

 

 

• Flat form of terms from first equality are not the same: 
– F[z·w]    is:   x·a·w 

– F[y·ab] is:   y·ab 

• Procedure continues based on three cases: 
– We know the length of x and y are equal : conclude x=y 

– We know the length of x and y are disequal : conclude 
 k.(( x=y·k  y=x·k )  len(k)>0 ) 

– We know neither : guess their lengths are equal, restart 

 

Normalize Equalities 
1. Check length constraints 

2. Normalize equalities 

3. Normalize disequalities 

4. Check cardinality of S 

len(x) = len(y) 

z·w = y·ab 

z = x·a 



• After concluding x=y, 

 

 

 

 

 

• Flat form of terms from first equality are now, e.g.: 
– F[z·w]    is:   y·a·w 

– F[y·ab] is:   y·ab 

• Will conclude w=b, after which F[z·w]=F[y·ab] 

Normalize Equalities 
1. Check length constraints 

2. Normalize equalities 

3. Normalize disequalities 

4. Check cardinality of S 

len(x) = len(y) 

z·w = y·ab 

z = x·a 

x = y 



• For t=s, procedure makes progress* towards: 

– Towards forcing flat forms F[t] and F[s] equal, or 

– Discovering conflicts 

• If F[t1]=…=F[tn] for an eq class E={t1…tn}: 

– We refer to F[t1] as the normal form N[t1] of E 

• If normal form exists for each eq class, 

– Then a model exists for all equalities from S 

• Constructed trivially, given normal form 

Normalize Equalities 
1. Check length constraints 

2. Normalize equalities 

3. Normalize disequalities 

4. Check cardinality of S 

* exception: looping word equations (explained later) 



• For disequalities in S 

– A disequality ts is normalized if: 

• len(t)len(s), or 

• N[t]=t1·u·t2 and N[s]=s1·v·s2, where: 

– len(t1)=len(t2),  

– len(u)=len(v), and 

– uv 

• For example: 

 

 

 

Normalize Disequalities 
1. Check length constraints 

2. Normalize equalities 

3. Normalize disequalities 

4. Check cardinality of S 

len(z)len(y) 
zy 

x·a·zx·b·z 
x·wy·b 



• To normalize disequalities, 

–  Proceed by cases, similar to Step 2 

• In example, we would succeed, for example if: 

– len(x·w)len(y·b), or 

– len(x)=len(y) and  xy, 
– … 

–  Continue until all disequalities are normalized 

 

 

 

 

Normalize Disequalities 
1. Check length constraints 

2. Normalize equalities 

3. Normalize disequalities 

4. Check cardinality of S 

len(z)len(y) 
zy 

x·a·zx·b·z 
x·wy·b 



• S may be unsatisfiable since S is finite  

• For instance,  

If 

• S is a finite alphabet of 256 characters, and 

• S entails that 257 distinct strings of length 1 exist 

Then 

• S is unsatisfiable 

• Performed as a last step of our procedure 

Check Cardinality of S 
1. Check length constraints 

2. Normalize equalities 

3. Normalize disequalities 

4. Check cardinality of S 



Challenge: Looping Word Equations 

• Say we are given: x·a = b·x 



Challenge: Looping Word Equations 

• Say we are given: 

• Flat forms are: 

F[x·a] = x·a 

F[b·x] = b·x 

• Compare len(x) and len(b), i.e. 1 

– If len(x)=1, then x=a and x=b  conflict 

– If len(x)1 

• If x is a prefix of b (i.e. it is empty), then a=b  conflict 

• If b is a prefix of x, then x=b·k for some k 

x·a = b·x 



Challenge: Looping Word Equations 

• Now we have: 

 

• Flat forms of first equation are: 

F[x·a] = b·k·a 

F[b·x] = b·b·k  Problem: looping! 

• Solution: 

- Recognize when these cases occur 

- Reduce to regular language membership: 

x·a=b·x  yz.(a=y·z  b=z·y  x(z·y)*z) 

x·a = b·x 

x = b·k 



Experimental Results 

CVC4 Z3-STR Kaluza 

Result Incorrect3 Incorrect3 

unsat 11,6251 317 11,7692 7,154 13,4352 

sat 33,271 1,583 31,372 n/a4 25,4684 

unknown 0 0 3 

timeout 2,388 2,123 84 

error 0 1205 1,140 

1. For the problems where CVC4 answers UNSAT, neither Z3-STR nor Kaluza answer SAT 

2. We cannot verify the problems where CVC4 does not answer UNSAT 

3. We verified these errors by asserting a model back as assertions to the tool 

4. We cannot verify these answers due to bugs in Kaluza’s model generation 

5. One is because of non-trivial regular expression, and 119 are because of escaped characters 



Experimental Results 



Theoretical Results 

• Our approach is: 
–  Refutation sound 

• WheŶ it aŶsǁer ͞UN“AT ,͟ it ĐaŶ ďe trusted 
– Even for strings of unbounded length 

–  Solution sound 
• WheŶ it aŶsǁers ͞“AT ,͟ it ĐaŶ ďe trusted 

• (A version of) our approach is: 
–  Solution complete 

• WheŶ it is ͞“AT ,͟ it ǁill eǀeŶtuallǇ get a ŵodel 
– Somewhat trivially, by finite model finding 

• Our approach is not: 
–  Refutation complete 

• WheŶ it is ͞UN“AT ,͟ it is not guaranteed to derive refutation 
– Would like to identify fragments (i.e. non-cyclical) where it is 



Further Work 

• Handling regular language membership tR* 
– Currently handled, but naively (unrolling) 

• Handling extended functions 

– substr, contains, replace, 
prefixOf, suffixOf, str.indexOf, 
str.to.int, int.to.str 

– Many are challenging, for instance: 

contains(x,y) 
• Intuitively, requires (universal) quantification over the 

positions of x 



Questions? 

• For more details, see CAV 2014 paper 

• CVC4 is publicly available at: 

 http://cvc4.cs.nyu.edu/web/ 


