
A DPLL(T) Theory Solver for

Strings and Regular Expressions

Tianyi Liang

Andrew Reynolds

Cesare Tinelli

Morgan Deters

Clark Barrett

Motivation : Security Applications
char buff[15];
char pass;

std::cout << "Enter the password :";
gets(buff);

if (std::regex_match(
 buff,
 std::regex("([A-Z]+)"))) {
 if(strcmp(buff, “PASSWORD")) {
 std::cout << "Wrong Password";
 }
 else {
 std::cout << "Correct Password";
 pass = 'Y';
 }
}

if(pass == 'Y') {
 /* Grant the root permission*/
}

(set-logic QF_S)

(declare-const input String)
(declare-const buff String)
(declare-const pass0 String)
(declare-const rest String)
(declare-const pass1 String)

(assert (= (str.len buff) 15))
(assert (= (str.len pass1) 1))
(assert (= input (str.++ buff pass0 rest)))

(assert (str.in.re buff (re.+ (re.range "A" "Z"))))
(assert (ite (= buff "PASSWORD")
 (= pass1 "Y")
 (= pass1 pass0)))

(assert (not (= buff "PASSWORD")))
(assert (= pass1 "Y"))

Encode

Objectives

• Want solver to handle:

– (Unbounded) string constraints

– Length constraints

– Regular laŶguage ŵeŵďerships, …

• Theoretical complexity of:

– Word equation problem is in PSPACE

– …ǁith leŶgth ĐoŶstraiŶts is OPEN

– …ǁith eǆteŶded fuŶĐtioŶs ;e.g. replace) is UNDECIDABLE

• Instead, focus on:

– Solver that is efficient in practice

– Tightly integrated into SMT solver architecture

• Conflict analysis, T-propagatioŶ, leŵŵa learŶiŶg, …

Core Language for Theory of Strings

• Terms are:

– Constants from a fixed finite alphabet S* (a, ab, cbc...)

– Free ĐoŶstaŶts or ͞ǀariaďles͟ ;ǆ, Ǉ, z...Ϳ
– String concatenation

 · : String  String  String

– Length terms

 len(_) : String  Int

• Example input:

 len(x) > len(y)

x·z = y·ab

Cooperating Theory Solvers

Theory

LIA

Theory

Strings

len(x) > len(y)

x·z = y·ab

len(x) > len(y) x·z = y·ab

• Distribute constraints

to corresponding

theory solvers

len(x) > len(y) x·z = y·ab

Cooperating Theory Solvers

Theory

LIA

Theory

Strings

len(x) > len(y)

x·z = y·ab

len(x) > len(y) x·z = y·ab

len(x)len(y)

• Communicate

(dis)equalities over

shared terms

[Nelson-Oppen]

len(x)len(y)

Summary of Approach

• Determines satisfiability of A  S, where

– A is a set of linear arithmetic constraints

– S is a set of (dis)equalities over:

• String terms

• Length terms

• Uses procedure consisting of four steps:

1. Check length constraints A

2. Normalize equalities in S

3. Normalize disequalities in S

4. Check cardinality of S

x·z = y·ab

len(x)  len(y)

Check Length Constraints
1. Check length constraints

2. Normalize equalities

3. Normalize disequalities

4. Check cardinality of S

Theory

LIA

Theory

Strings

• Add equalities to A regarding the length of

(non-variable) terms from S

len(x)  len(y)
x·z = y·ab

len(x)>len(y) A S

Check Length Constraints
1. Check length constraints

2. Normalize equalities

3. Normalize disequalities

4. Check cardinality of S

Theory

LIA

Theory

Strings

 Check if A is satisfiable

len(x)  len(y)
x·z = y·ab

len(x)>len(y)

len(x)+len(z)=len(y)+2 A S

Normalize Equalities
1. Check length constraints

2. Normalize equalities

3. Normalize disequalities

4. Check cardinality of S

• To ensure equality t=s has model:

– If t and s are non-variable,

– Must be equivalent to flat forms F[t], F[s]

• F[t] and F[s] are syntactically equivalent

• Flat form F[t] computed by expanding/flattening t

Theory

Strings

len(x)  len(y)
x·z = y·ab

• To show: satisfiability of

(dis)equalities S between

string terms

• Modified example:

• Flat form of terms from first equality are not the same:
– F[z·w] is: x·a·w

– F[y·ab] is: y·ab

• Procedure continues based on three cases:
– We know the length of x and y are equal : conclude x=y

– We know the length of x and y are disequal : conclude
 k.((x=y·k  y=x·k)  len(k)>0)

– We know neither : guess their lengths are equal, restart

Normalize Equalities
1. Check length constraints

2. Normalize equalities

3. Normalize disequalities

4. Check cardinality of S

len(x) = len(y)

z·w = y·ab

z = x·a

• After concluding x=y,

• Flat form of terms from first equality are now, e.g.:
– F[z·w] is: y·a·w

– F[y·ab] is: y·ab

• Will conclude w=b, after which F[z·w]=F[y·ab]

Normalize Equalities
1. Check length constraints

2. Normalize equalities

3. Normalize disequalities

4. Check cardinality of S

len(x) = len(y)

z·w = y·ab

z = x·a

x = y

• For t=s, procedure makes progress* towards:

– Towards forcing flat forms F[t] and F[s] equal, or

– Discovering conflicts

• If F[t1]=…=F[tn] for an eq class E={t1…tn}:

– We refer to F[t1] as the normal form N[t1] of E

• If normal form exists for each eq class,

– Then a model exists for all equalities from S

• Constructed trivially, given normal form

Normalize Equalities
1. Check length constraints

2. Normalize equalities

3. Normalize disequalities

4. Check cardinality of S

* exception: looping word equations (explained later)

• For disequalities in S

– A disequality ts is normalized if:

• len(t)len(s), or

• N[t]=t1·u·t2 and N[s]=s1·v·s2, where:

– len(t1)=len(t2),

– len(u)=len(v), and

– uv

• For example:

Normalize Disequalities
1. Check length constraints

2. Normalize equalities

3. Normalize disequalities

4. Check cardinality of S

len(z)len(y)
zy

x·a·zx·b·z
x·wy·b

• To normalize disequalities,

– Proceed by cases, similar to Step 2

• In example, we would succeed, for example if:

– len(x·w)len(y·b), or

– len(x)=len(y) and xy,
– …

– Continue until all disequalities are normalized

Normalize Disequalities
1. Check length constraints

2. Normalize equalities

3. Normalize disequalities

4. Check cardinality of S

len(z)len(y)
zy

x·a·zx·b·z
x·wy·b

• S may be unsatisfiable since S is finite

• For instance,

If

• S is a finite alphabet of 256 characters, and

• S entails that 257 distinct strings of length 1 exist

Then

• S is unsatisfiable

• Performed as a last step of our procedure

Check Cardinality of S
1. Check length constraints

2. Normalize equalities

3. Normalize disequalities

4. Check cardinality of S

Challenge: Looping Word Equations

• Say we are given: x·a = b·x

Challenge: Looping Word Equations

• Say we are given:

• Flat forms are:

F[x·a] = x·a

F[b·x] = b·x

• Compare len(x) and len(b), i.e. 1

– If len(x)=1, then x=a and x=b  conflict

– If len(x)1

• If x is a prefix of b (i.e. it is empty), then a=b  conflict

• If b is a prefix of x, then x=b·k for some k

x·a = b·x

Challenge: Looping Word Equations

• Now we have:

• Flat forms of first equation are:

F[x·a] = b·k·a

F[b·x] = b·b·k  Problem: looping!

• Solution:

- Recognize when these cases occur

- Reduce to regular language membership:

x·a=b·x  yz.(a=y·z  b=z·y  x(z·y)*z)

x·a = b·x

x = b·k

Experimental Results

CVC4 Z3-STR Kaluza

Result Incorrect3 Incorrect3

unsat 11,6251 317 11,7692 7,154 13,4352

sat 33,271 1,583 31,372 n/a4 25,4684

unknown 0 0 3

timeout 2,388 2,123 84

error 0 1205 1,140

1. For the problems where CVC4 answers UNSAT, neither Z3-STR nor Kaluza answer SAT

2. We cannot verify the problems where CVC4 does not answer UNSAT

3. We verified these errors by asserting a model back as assertions to the tool

4. We cannot verify these answers due to bugs in Kaluza’s model generation

5. One is because of non-trivial regular expression, and 119 are because of escaped characters

Experimental Results

Theoretical Results

• Our approach is:
– Refutation sound

• WheŶ it aŶsǁer ͞UN“AT ,͟ it ĐaŶ ďe trusted
– Even for strings of unbounded length

– Solution sound
• WheŶ it aŶsǁers ͞“AT ,͟ it ĐaŶ ďe trusted

• (A version of) our approach is:
– Solution complete

• WheŶ it is ͞“AT ,͟ it ǁill eǀeŶtuallǇ get a ŵodel
– Somewhat trivially, by finite model finding

• Our approach is not:
– Refutation complete

• WheŶ it is ͞UN“AT ,͟ it is not guaranteed to derive refutation
– Would like to identify fragments (i.e. non-cyclical) where it is

Further Work

• Handling regular language membership tR*
– Currently handled, but naively (unrolling)

• Handling extended functions

– substr, contains, replace,
prefixOf, suffixOf, str.indexOf,
str.to.int, int.to.str

– Many are challenging, for instance:

contains(x,y)
• Intuitively, requires (universal) quantification over the

positions of x

Questions?

• For more details, see CAV 2014 paper

• CVC4 is publicly available at:

 http://cvc4.cs.nyu.edu/web/

