A DPLL(T) Theory Solver for Strings and Regular Expressions

Tianyi Liang
Andrew Reynolds
Cesare Tinelli
Morgan Deters
Clark Barrett
Motivation: Security Applications

```c
char buff[15];
char pass;

std::cout << "Enter the password :"; 
gets(buff);

if (std::regex_match( 
    buff, 
    std::regex("([A-Z]+)")) { 
    if(strcmp(buff, "PASSWORD")) { 
        std::cout << "Wrong Password";
    } 
    else { 
        std::cout << "Correct Password";
        pass = 'Y';
    }
}

if(pass == 'Y') {
    /* Grant the root permission*/
}
```

```
(set-logic QF_S)
(declare-const input String)
(declare-const buff String)
(declare-const pass0 String)
(declare-const rest String)
(declare-const pass1 String)

(assert (= (str.len buff) 15))
(assert (= (str.len pass1) 1))
(assert (= input (str.++ buff pass0 rest)))

(assert (str.in.re buff (re.+ (re.range "A" "Z"))))
(assert (ite (= buff "PASSWORD")
    (= pass1 "Y")
    (= pass1 pass0)))

(assert (not (= buff "PASSWORD")))
(assert (= pass1 "Y"))
```

Explain
Encode
Solve
Objectives

• Want solver to handle:
 – (Unbounded) string constraints
 – Length constraints
 – Regular language memberships, ...

• Theoretical complexity of:
 – Word equation problem is in \textit{PSPACE}
 – ...with length constraints is \textit{OPEN}
 – ...with extended functions (e.g. \texttt{replace}) is \textit{UNDECIDABLE}

• Instead, focus on:
 – Solver that is efficient in practice
 – Tightly integrated into SMT solver architecture
 • Conflict analysis, T-propagation, lemma learning, ...
Core Language for Theory of Strings

- Terms are:
 - Constants from a fixed finite alphabet \(\Sigma^* \) (a, ab, cbc...)
 - Free constants or “variables” (x, y, z...)
 - String concatenation
 \(_ \cdot _\) : String \(\times \) String \(\rightarrow \) String
 - Length terms
 \(\text{len}(_) \) : String \(\rightarrow \) Int

- Example input:
 \[
 \text{len}(x) > \text{len}(y) \\
 x \cdot z = y \cdot ab
 \]
Cooperating *Theory Solvers*

- \(\text{len}(x) > \text{len}(y) \)
- \(x \cdot z = y \cdot ab \)

- Distribute constraints to corresponding theory solvers

Theory
- LIA
 - \(\text{len}(x) > \text{len}(y) \)

Theory
- Strings
 - \(x \cdot z = y \cdot ab \)
Cooperating *Theory Solvers*

- Communicate (dis)equalities over shared terms
 - [Nelson-Oppen]

- \(\text{len}(x) > \text{len}(y) \)
 - \(x \cdot z = y \cdot ab \)

- \(\text{len}(x) \neq \text{len}(y) \)
 - \(x \cdot z = y \cdot ab \)
 - \(\text{len}(x) \neq \text{len}(y) \)
Summary of Approach

• Determines satisfiability of $A \cup S$, where
 – A is a set of linear arithmetic constraints
 – S is a set of (dis)equalities over:
 • String terms
 • Length terms

• Uses procedure consisting of four steps:

1. Check length constraints A
2. Normalize equalities in S
3. Normalize disequalities in S
4. Check cardinality of S
Check Length Constraints

- Add **equalities** to A regarding the **length** of (non-variable) terms from S

1. Check length constraints
2. Normalize equalities
3. Normalize disequalities
4. Check cardinality of Σ

Theory

- LIA

A

- $\text{len}(x) > \text{len}(y)$

Theory

- Strings

S

- $\text{len}(x) \neq \text{len}(y)$
- $x \cdot z = y \cdot ab$
Check Length Constraints

1. Check length constraints
2. Normalize equalities
3. Normalize disequalities
4. Check cardinality of Σ

Theory LIA

\Rightarrow Check if A is satisfiable

Theory Strings

- $\text{len}(x) > \text{len}(y)$
- $\text{len}(x) + \text{len}(z) = \text{len}(y) + 2$
- $\text{len}(x) \neq \text{len}(y)$
- $x \cdot z = y \cdot ab$
Normalize Equalities

- To show: satisfiability of (dis)equalities \(S \) between string terms

- To ensure equality \(t = s \) has model:
 - If \(t \) and \(s \) are non-variable,
 - Must be equivalent to flat forms \(F[t], F[s] \)
 - \(F[t] \) and \(F[s] \) are syntactically equivalent
 - Flat form \(F[t] \) computed by expanding/flattening \(t \)

Strings

\[
\text{len}(x) \neq \text{len}(y) \\
x \cdot z = y \cdot ab
\]
Normalize Equalities

• Modified example:

\[
\begin{align*}
\text{len}(x) &= \text{len}(y) \\
z \cdot w &= y \cdot ab \\
z &= x \cdot a
\end{align*}
\]

• Flat form of terms from first equality are not the same:
 – \(F[z \cdot w] \) is: \(x \cdot a \cdot w \)
 – \(F[y \cdot ab] \) is: \(y \cdot ab \)

• Procedure continues based on three cases:
 – We know the length of \(x \) and \(y \) are equal: \textbf{conclude } x=y
 – We know the length of \(x \) and \(y \) are disequal: conclude \(\exists k.((x=y \cdot k \lor y=x \cdot k) \land \text{len}(k)>0) \)
 – We know \textbf{neither} : guess their lengths are equal, restart

1. Check length constraints
2. Normalize equalities
3. Normalize disequalities
4. Check cardinality of \(\Sigma \)
Normalize Equalities

- After concluding \(x = y \),

\[
\begin{align*}
\text{len}(x) &= \text{len}(y) \\
z \cdot w &= y \cdot ab \\
z &= x \cdot a \\
x &= y
\end{align*}
\]

- Flat form of terms from first equality are now, e.g.:
 - \(F[z \cdot w] \) is: \(y \cdot a \cdot w \)
 - \(F[y \cdot ab] \) is: \(y \cdot ab \)

- Will conclude \(w = b \), after which \(F[z \cdot w] = F[y \cdot ab] \)
Normalize Equalities

• For $t = s$, procedure makes progress* towards:
 – Towards forcing flat forms $F[t]$ and $F[s]$ equal, or
 – Discovering conflicts

• If $F[t_1] = \ldots = F[t_n]$ for an eq class $E = \{t_1 \ldots t_n\}$:
 – We refer to $F[t_1]$ as the normal form $N[t_1]$ of E

• If normal form exists for each eq class,
 – Then a model exists for all equalities from S
 • Constructed trivially, given normal form

* exception: looping word equations (explained later)
Normalize Disequalities

- For **disequalities** in S
 - A disequality $t \not= s$ is normalized if:
 - $\text{len}(t) \neq \text{len}(s)$, or
 - $N[t] = t_1 \cdot u \cdot t_2$ and $N[s] = s_1 \cdot v \cdot s_2$, where:
 - $\text{len}(t_1) = \text{len}(t_2)$,
 - $\text{len}(u) = \text{len}(v)$, and
 - $u \neq v$

- For example:
 - $\text{len}(z) \neq \text{len}(y)$
 - $z \neq y$
 - $x \cdot a \cdot z \neq x \cdot b \cdot z$
 - $x \cdot w \neq y \cdot b$
Normalize Disequalities

• To normalize disequalities,
 – Proceed by cases, similar to Step 2
 • In example, we would succeed, for example if:
 – \(\text{len}(x \cdot w) \neq \text{len}(y \cdot b) \), or
 – \(\text{len}(x) = \text{len}(y) \) and \(x \neq y \),
 – ...
 – Continue until all disequalities are normalized

\[
\begin{align*}
\text{len}(z) &\neq \text{len}(y) \\
z &\neq y \\
x \cdot a \cdot z &\neq x \cdot b \cdot z \\
x \cdot w &\neq y \cdot b
\end{align*}
\]
Check Cardinality of Σ

- Σ may be unsatisfiable since Σ is finite
- For instance,

 If

 - Σ is a finite alphabet of 256 characters, and
 - Σ entails that 257 distinct strings of length 1 exist

 Then

 - Σ is unsatisfiable

- Performed as a last step of our procedure
Challenge: Looping Word Equations

• Say we are given: $x \cdot a = b \cdot x$
Challenge: Looping Word Equations

• Say we are given: \(x \cdot a = b \cdot x \)

• Flat forms are:
 \[F[x \cdot a] = x \cdot a \]
 \[F[b \cdot x] = b \cdot x \]

• Compare \(\text{len}(x) \) and \(\text{len}(b) \), i.e. 1
 – If \(\text{len}(x) = 1 \), then \(x = a \) and \(x = b \) \(\Rightarrow \) conflict
 – If \(\text{len}(x) \neq 1 \)
 • If \(x \) is a prefix of \(b \) (i.e. it is empty), then \(a = b \) \(\Rightarrow \) conflict
 • If \(b \) is a prefix of \(x \), then \(x = b \cdot k \) for some \(k \)
Challenge: Looping Word Equations

• Now we have:

\[x \cdot a = b \cdot x \]
\[x = b \cdot k \]

• Flat forms of first equation are:

\[F[x \cdot a] = b \cdot k \cdot a \]
\[F[b \cdot x] = b \cdot b \cdot k \] \(\Rightarrow \) Problem: looping!

• Solution:
 - Recognize when these cases occur
 - Reduce to regular language membership:

\[x \cdot a = b \cdot x \Leftrightarrow \exists yz. (a = y \cdot z \land b = z \cdot y \land x \in (z \cdot y)^*z) \]
Experimental Results

<table>
<thead>
<tr>
<th></th>
<th>CVC4</th>
<th>Z3-STR</th>
<th>Kaluza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Result</td>
<td>Incorrect</td>
<td>Incorrect</td>
<td>Incorrect</td>
</tr>
<tr>
<td>unsat</td>
<td>11,625<sup>1</sup></td>
<td>317</td>
<td>11,769<sup>2</sup></td>
</tr>
<tr>
<td>sat</td>
<td>33,271</td>
<td>1,583</td>
<td>31,372</td>
</tr>
<tr>
<td>unknown</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>timeout</td>
<td>2,388</td>
<td>2,123</td>
<td></td>
</tr>
<tr>
<td>error</td>
<td>0</td>
<td>120<sup>5</sup></td>
<td></td>
</tr>
</tbody>
</table>

1. For the problems where CVC4 answers UNSAT, neither Z3-STR nor Kaluza answer SAT
2. We cannot verify the problems where CVC4 does not answer UNSAT
3. We verified these errors by asserting a model back as assertions to the tool
4. We cannot verify these answers due to bugs in Kaluza’s model generation
5. One is because of non-trivial regular expression, and 119 are because of escaped characters
Experimental Results
Theoretical Results

• Our approach is:
 – **Refutation sound**
 • When it answer “UNSAT”, it can be trusted
 – Even for strings of unbounded length
 – **Solution sound**
 • When it answers “SAT”, it can be trusted

• (A version of) our approach is:
 – **Solution complete**
 • When it is “SAT”, it will eventually get a model
 – Somewhat trivially, by finite model finding

• Our approach is **not**:
 – **Refutation complete**
 • When it is “UNSAT”, it is not guaranteed to derive refutation
 – Would like to identify fragments (i.e. non-cyclical) where it is
Further Work

• Handling regular language membership $t \in \mathbb{R}^*$
 – Currently handled, but naively (unrolling)

• Handling extended functions
 – `substr`, `contains`, `replace`, `prefixOf`, `suffixOf`, `str.indexOf`, `str.to.int`, `int.to.str`
 – Many are challenging, for instance:
 – `contains(x, y)`
 – `\neg contains(x, y)`

• Intuitively, requires (universal) quantification over the positions of x
Questions?

• For more details, see CAV 2014 paper
• CVC4 is publicly available at:
 http://cvc4.cs.nyu.edu/web/