A DPLL(T) Theory Solver for Strings and Regular Expressions

Tianyi Liang

Andrew Reynolds

Cesare Tinelli

Morgan Deters

Clark Barrett

Motivation: Security Applications

```
(set-logic QF_S)
char buff[15];
char pass;
                                                                                       (declare-const input String)
                                                                                       (declare-const buff String)
std::cout << "Enter the password :";
                                                                                       (declare-const pass0 String)
gets(buff);
                                                                                       (declare-const rest String)
                                                                                       (declare-const pass1 String)
if (std::regex_match()
       buff.
                                                        Encode
                                                                                       (assert (= (str.len buff) 15))
       std::regex("([A-Z]+)") )) {
                                                                                       (assert (= (str.len pass1) 1))
  if(strcmp(buff, "PASSWORD")) {
                                                                                       (assert (= input (str.++ buff pass0 rest)))
     std::cout << "Wrong Password":
                                                                                      (assert (str.in.re buff (re.+ (re.range "A" "Z"))))
  else {
                                                                                       (assert (ite (= buff "PASSWORD")
     std::cout << "Correct Password";
                                                                                                  (= pass1 "Y")
     pass = 'Y':
                                                                                                  (= pass1 pass0)))
                                                                                       (assert (not (= buff "PASSWORD")))
                                                                                       (assert (= pass1 "Y"))
if(pass == 'Y') {
  /* Grant the root permission*/
```

```
tiliang@milner:~/workspace/security/benchmarks/homemade$ ~/CVC4/bin/pt-cvc4 propsalex.smt2
sat
(model
(define-fun input () String "AAAAAAAAAAAAAY")
(define-fun buff () String "AAAAAAAAAAAAA")
(define-fun pass0 () String "Y")
(define-fun rest () String "")
(define-fun pass1 () String "Y")
)
```

Objectives

- Want solver to handle:
 - (Unbounded) string constraints
 - Length constraints
 - Regular language memberships, ...
- Theoretical complexity of:
 - Word equation problem is in PSPACE
 - ...with length constraints is OPEN
 - ...with extended functions (e.g. replace) is UNDECIDABLE
- Instead, focus on:
 - Solver that is efficient in practice
 - Tightly integrated into SMT solver architecture
 - Conflict analysis, T-propagation, lemma learning, ...

Core Language for Theory of Strings

- Terms are:
 - Constants from a fixed finite alphabet Σ^* (a, ab, cbc...)
 - Free constants or "variables" (x, y, z...)
 - String concatenation

```
· : String \times String \rightarrow String
```

Length terms

```
len(): String \rightarrow Int
```

Example input:

len(x)
$$>$$
 len(y)
 $x \cdot z = y \cdot ab$

Cooperating Theory Solvers

len(x) > len(y)

$$x \cdot z = y \cdot ab$$

Theory LIA

len(x) > len(y)

 Distribute constraints to corresponding theory solvers

Theory Strings

 $x \cdot z = y \cdot ab$

Cooperating Theory Solvers

$$len(x) > len(y)$$

 $x \cdot z = y \cdot ab$

Theory LIA

len(x) > len(y)

Communicate
 (dis)equalities over
 shared terms
 [Nelson-Oppen]

 $len(x) \neq len(y)$

Theory Strings

 $x \cdot z = y \cdot ab$ len(x) \neq len(y)

Summary of Approach

- Determines satisfiability of $A \cup S$, where
 - A is a set of linear arithmetic constraints
 - S is a set of (dis)equalities over:
 - String terms
 - Length terms

$$x \cdot z = y \cdot ab$$

len(x) \neq len(y)

- Uses procedure consisting of four steps:
 - 1. Check length constraints A
 - 2. Normalize equalities in S
 - 3. Normalize disequalities in S
 - 4. Check cardinality of Σ

Check Length Constraints

- 1. Check length constraints
- 2. Normalize equalities
- 3. Normalize disequalities
- 4. Check cardinality of $\boldsymbol{\Sigma}$
- Add equalities to A regarding the length of (non-variable) terms from S

Theory LIA

$$A$$
 len(x)>len(y)

Theory Strings

S len(x)
$$\neq$$
 len(y)
 $x \cdot z = y \cdot ab$

Check Length Constraints

- 1. Check length constraints
- 2. Normalize equalities
- 3. Normalize disequalities
- 4. Check cardinality of $\boldsymbol{\Sigma}$

Theory LIA

$A = \begin{cases} len(x) > len(y) \\ len(x) + len(z) = len(y) + 2 \end{cases}$

Theory Strings

$$S = \begin{cases} len(x) \neq len(y) \\ x \cdot z = y \cdot ab \end{cases}$$

 \Rightarrow Check if A is satisfiable

- 1. Check length constraints
- 2. Normalize equalities
- 3. Normalize disequalities
- 4. Check cardinality of $\boldsymbol{\Sigma}$

 To show: satisfiability of (dis)equalities S between string terms

Theory Strings

```
len(x) \neq len(y)
x \cdot z = y \cdot ab
```

- To ensure equality t=s has model:
 - If t and s are non-variable,
 - Must be equivalent to flat forms F[t], F[s]
 - F[t] and F[s] are syntactically equivalent
- Flat form F[t] computed by expanding/flattening t

- 1. Check length constraints
- 2. Normalize equalities
- 3. Normalize disequalities
- 4. Check cardinality of $\boldsymbol{\Sigma}$

Modified example:

$$len(x) = len(y)$$

$$z \cdot w = y \cdot ab$$

$$z = x \cdot a$$

Flat form of terms from first equality are not the same:

```
F[z·w] is: x·a·wF[y·ab] is: y·ab
```

- Procedure continues based on three cases:
 - We know the length of x and y are equal : conclude x=y
 - We know the length of x and y are disequal : conclude $\exists k . ((x=y \cdot k \lor y=x \cdot k) \land len(k) > 0)$
 - We know neither: guess their lengths are equal, restart

- 1. Check length constraints
- 2. Normalize equalities
- 3. Normalize disequalities
- 4. Check cardinality of Σ

After concluding x=y,

$$len(x) = len(y)$$

$$z \cdot w = y \cdot ab$$

$$z = x \cdot a$$

$$x = y$$

- Flat form of terms from first equality are now, e.g.:
 - $F[z \cdot w]$ is: $y \cdot a \cdot w$
 - F[y ab] is: y ab
- Will conclude w=b, after which F [z·w]=F [y·ab]

- 1. Check length constraints
- 2. Normalize equalities
- 3. Normalize disequalities
- 4. Check cardinality of $\boldsymbol{\Sigma}$
- For t=s, procedure makes progress* towards:
 - Towards forcing flat forms F[t] and F[s] equal, or
 - Discovering conflicts
- If $F[t_1] = ... = F[t_n]$ for an eq class $E = \{t_1...t_n\}$:
 - We refer to $F[t_1]$ as the normal form $N[t_1]$ of E
- If normal form exists for each eq class,
 - Then a model exists for all equalities from S
 - Constructed trivially, given normal form

^{*} exception: looping word equations (explained later)

Normalize Disequalities

- 1. Check length constraints
- 2. Normalize equalities
- 3. Normalize disequalities
- 4. Check cardinality of Σ

- For disequalities in S
 - A disequality $t \neq s$ is normalized if:
 - len(t)≠len(s), or
 - $N[t] = t_1 \cdot u \cdot t_2$ and $N[s] = s_1 \cdot v \cdot s_2$, where:
 - len(t₁)=len(t₂),
 - len (u) =len (v), and
 - u≠v
- For example:

Normalize Disequalities

- 1. Check length constraints
- 2. Normalize equalities
- 3. Normalize disequalities
- 4. Check cardinality of Σ

- To normalize disequalities,
 - Proceed by cases, similar to Step 2
 - In example, we would succeed, for example if:

```
- len(x·w)≠len(y·b), or
- len(x)=len(y) and x≠y,
```

Continue until all disequalities are normalized

Check Cardinality of Σ

- 1. Check length constraints
- 2. Normalize equalities
- 3. Normalize disequalities
- 4. Check cardinality of Σ
- S may be unsatisfiable since Σ is finite
- For instance,

lf

- Σ is a finite alphabet of 256 characters, and
- S entails that 257 distinct strings of length 1 exist

Then

- S is unsatisfiable
- Performed as a last step of our procedure

Challenge: Looping Word Equations

• Say we are given: $x \cdot a = b \cdot x$

$$x \cdot a = b \cdot x$$

Challenge: Looping Word Equations

• Say we are given: $x \cdot a = b \cdot x$

Flat forms are:

$$F[x \cdot a] = x \cdot a$$

 $F[b \cdot x] = b \cdot x$

- Compare len(x) and len(b), i.e. 1
 - If len (x) =1, then x=a and x=b \Rightarrow conflict
 - If len(x)≠1
 - If x is a prefix of b (i.e. it is empty), then $a=b \Rightarrow$ conflict
 - If b is a prefix of x, then $x=b \cdot k$ for some k

Challenge: Looping Word Equations

Now we have:

$$x \cdot a = b \cdot x$$

 $x = b \cdot k$

Flat forms of first equation are:

$$F[x \cdot a] = b \cdot k \cdot a$$

$$F[b \cdot x] = b \cdot b \cdot k \Rightarrow Problem: looping!$$

- Solution:
 - Recognize when these cases occur
 - Reduce to regular language membership:

$$x \cdot a=b \cdot x \Leftrightarrow \exists yz. (a=y \cdot z \land b=z \cdot y \land x \in (z \cdot y) *z)$$

Experimental Results

	CVC4	Z3-STR		Kaluza	
Result		Incorrect ³		Incorrect ³	
unsat	11,625 ¹	317	11,769 ²	7,154	13,435 ²
sat	33,271	1,583	31,372	n/a ⁴	25,468 ⁴
unknown	0		0		3
timeout	2,388		2,123		84
error	0		120 ⁵		1,140

- 1. For the problems where CVC4 answers UNSAT, neither Z3-STR nor Kaluza answer SAT
- 2. We cannot verify the problems where CVC4 does not answer UNSAT
- 3. We verified these errors by asserting a model back as assertions to the tool
- 4. We cannot verify these answers due to bugs in Kaluza's model generation
- 5. One is because of non-trivial regular expression, and 119 are because of escaped characters

Experimental Results

Theoretical Results

- Our approach is:
 - Refutation sound
 - When it answer "UNSAT", it can be trusted
 - Even for strings of unbounded length
 - Solution sound
 - When it answers "SAT", it can be trusted
- (A version of) our approach is:
 - Solution complete
 - When it is "SAT", it will eventually get a model
 - Somewhat trivially, by finite model finding
- Our approach is not:
 - Refutation complete
 - When it is "UNSAT", it is not guaranteed to derive refutation
 - Would like to identify fragments (i.e. non-cyclical) where it is

Further Work

- Handling regular language membership t∈R*
 - Currently handled, but naively (unrolling)
- Handling extended functions
 - -substr, contains, replace, prefixOf, suffixOf, str.indexOf, str.to.int, int.to.str
 - Many are challenging, for instance:

```
\negcontains(x,y)
```

• Intuitively, requires (universal) quantification over the positions of $\mathbf x$

Questions?

- For more details, see CAV 2014 paper
- CVC4 is publicly available at:

```
http://cvc4.cs.nyu.edu/web/
```

