An Overview of Quantifier Instantiation in Modern SMT Solvers

Andrew Reynolds
May 28, 2021
Satisfiability Modulo Theories (SMT) Solvers

- SMT solvers are:
 - Fully automated reasoners
 - Widely used in applications

Software Verification Tools
- Verification Conditions

Interactive Proof Assistants
- Conjectures

Symbolic Execution Engines
- Path Constraints

Synthesis Tools, Planners
- Specifications
SMT Solvers

• Traditionally:
 • Efficient decision procedures for *quantifier-free* constraints over theories:
 • Arithmetic
 • Uninterpreted functions (UF)
 • Bitvectors
 • Arrays
 • Datatypes
 • More recently: strings, floating points, sets, relations, ...

• In the past decade:
 • Efficient (heuristic) techniques for *quantified* formulas as well

⇒ Focus of this talk
Applications of ∀ in SMT

• Are used for:
 • Automated theorem proving:
 • Background axioms \{∀x.g(e,x)=g(x,e)=x, ∀x.g(x,g(y,z))=g(g(x,y),x), ∀x.g(x,i(x))=e\}
 • Software verification:
 • Unfolding ∀x.foo(x)=bar(x+1), code contracts ∀x.pre(x)⇒post(f(x))
 • Frame axioms ∀x.x≠t ⇒ A’(x)=A(x)
 • Function Synthesis:
 • Synthesis conjectures ∀i:input.∃o:output.R[o,i]
 • Planning:
 • Specifications ∃p:plan.∀t:time.F[P,t]
SMT Solvers for \forall using Quantifier Instantiation

• Traditionally:

• More recently:
 • Model-Based Instantiation [Ge et al 2009, Reynolds et al 2013]
 • Conflict-Based Instantiation [Reynolds et al 2014, Barbosa et al 2017]
 • Theory-specific Approaches
 • Linear arithmetic [Bjorner 2012, Reynolds et al 2015, Janota et al 2015]
 • Bit-Vectors [Wintersteiger et al 2013, Dutertre 2015]

Implemented in
simplify, z3, FX7, Alt-Ergo, Princess, cvc5, veriT, SMTInterpol
SMT Solvers for \forall using Quantifier Instantiation

• Traditionally:

• More recently:
 • Conflict-Based Instantiation [Reynolds et al 2014, Barbosa et al 2017]
 • Model-Based Instantiation [Ge et al 2009, Reynolds et al 2013]
 • Enumerative Instantiation [Reynolds et al 2018]
 • Counterexample-Guided / QE [Reynolds et al 2015, Janota et al 2015]
 • Syntax-Guided [Preiner et al 2017, Niemetz et al 2021]

Implemented in
 • simplify, z3, FX7, Alt-Ergo, Princess, cvc5, veriT, SMTInterpol
 • cvc5, veriT, SMTInterpol
 • z3, cvc5
 • cvc5, veriT
 • z3, cvc5, yices
 • boolector, cvc5
DPLL(T)-Based SMT Solvers (quantifier-free)
DPLL(T)-Based SMT Solvers

T-Clauses F

Context M

QF Solver

SAT Solver

Theory solver(s)

...when F is unsatisfiable

$M \models p F$
DPLL(T)-Based SMT Solvers

T-Clauses $F, F_1 \ldots F_n$

Context M

QF Solver

SAT Solver

Theory solver(s)

conflicts, lemmas

...when M is T-satisfiable

sat
DPLL(T)-Based SMT Solvers

T-Clauses $F \ F_1 \ldots \ F_n$

Context \mathcal{M}

QF Solver

SAT Solver

Theory solver(s)

...when \mathcal{M} is T-satisfiable

...when F is unsatisfiable

unsat

sat
DPLL(T)-Based SMT Solvers + \forall Instantiation

T-Clauses F

QF Solver

SAT Solver \rightarrow Theory solver(s)

Context M

...when F is unsatisfiable

...when M is T-satisfiable
DPLL(T)-Based SMT Solvers + ∀ Instantiation

T-Clauses F

QF Solver

SAT Solver

Theory solver(s)

Context M

When M contains quantified formulas \forall...

...when F is unsatisfiable

...when M is T-satisfiable
DPLL(T)-Based SMT Solvers + \forall Instantiation

T-Clauses F

- **QF Solver**
 - **SAT Solver**
 - **Theory solver(s)**

Context M

- **unsat**
 - ...when F is unsatisfiable

- **sat?**
 - ...when M is T-satisfiable

Undecidability!

- ...cannot always establish M is sat
DPLL(T)-Based SMT Solvers + \(\forall \) Instantiation

QF Solver

T-Clauses \(F \)

SAT Solver → Theory solver(s) → Context \(M \)

...when \(F \) is unsatisfiable
DPLL(T)-Based SMT Solvers + \forall Instantiation

Set of ground formulas
- $\{ f(a)=b, P(a), \ldots \}$

Set of quantified formulas
- $\{ \forall x . P(x), \ldots \}$

unsat

...when F is unsatisfiable
DPLL(T)-Based SMT Solvers + \forall Instantiation

T-Clauses F

QF Solver

SAT Solver

Theory solver(s)

Context M

E

Q

\forall Solver

unsat

...when F is unsatisfiable
DPLL(T)-Based SMT Solvers + ∀ Instantiation

T-Clauses F

QF Solver

SAT Solver
Theory solver(s)

Context M

∀ Solver

$F_1 \ldots F_n$

Instantiation lemmas

unsat

...when F is unsatisfiable

Given $\forall x. P(x)$ in Q, instantiation lemma F_i is a valid formula:

$\forall x. P(x) \Rightarrow P(t)$

for some ground term t
DPLL(T)-Based SMT Solvers + \forall Instantiation

T-Clauses F

QF Solver

SAT Solver

Theory solver(s)

Context M

\forall Solver

E

Q

...when F is unsatisfiable

...when E, Q is T-satisfiable

(Instantiation) lemmas

$F_1, ..., F_n$
DPLL(T)-Based SMT Solvers + ∀ Instantiation

- T-Clauses F
- QF Solver
 - SAT Solver
 - Theory solver(s)
- Context \mathcal{M}
- Solver
 - E
 - Q
 - $F_1 \ldots F_n$
- unsat
 - When can we answer “unsat”? • Which lemmas are likely lead to “unsat”?
- sat
 - ...when E, Q is T-satisfiable
Techniques for Quantifier Instantiation

∀ Solver

- Conflict-Based
- E-matching
- Model-Based
- Enumerative

Instances of ∀ in Q

E ⊕ Q is T-satisfiable

sat
∀ Solver

- Conflict-Based
- E-matching
- Model-Based
- Enumerative
- CEX-Guided
- Syntax-Guided
E-matching

- **Idea:** Instantiations found by pattern matching \mathcal{Q} to terms from \mathcal{E}

- Implemented in early SMT solvers (e.g. simplify) as well as z3, cvc5

- **Key applications:** Software verification
 - Example: Dafny/Boogie
E-matching

\[E \quad \begin{cases} P(a) \\ \neg P(b) \\ P(c) \end{cases} \quad Q \quad \forall x. P(x) \lor R(x) \]

E-matching
E-matching

\[\forall x. \neg P(x) \Rightarrow \neg P(a) \]
\[\forall x. \neg P(x) \Rightarrow \neg P(b) \]
\[\forall x. \neg P(x) \Rightarrow \neg P(c) \]
E-matching: Impact

• Highly effective for quantifiers with UF
 • Widely used as backend for many software verification applications

• Challenges:
 • Pattern selection, multi-patterns
 • *Too many* instances produced, non-termination (matching loops)
 • ...solver times out
 • *Incomplete*
 • ...solver answers “unknown”
Conflict-Based Instantiation

• **Idea:** Find instantiation that is in conflict with E, if it exists

• A *conflicting instance* forces the solver to backtrack
 • Improves ability to answer “unsat”

• Implemented in cvc5, veriT
 • [Reynolds et al FMCAD 2014, Barbosa et al TACAS 2017]

• **Key applications:** Automated Theorem Proving
 • Example: Isabelle/Sledgehammer
Conflict-Based Instantiation

\[E \rightarrow \neg P(b) \quad \neg P(a) \rightarrow \neg P(c) \quad \forall x. P(x) \rightarrow \text{Conflict-Based} \]
Conflict-Based Instantiation

\[\exists x. P(x) \iff P(a) \land \neg P(b) \land P(c) \]

\[\forall x. P(x) \Rightarrow P(a) \]
\[\forall x. P(x) \Rightarrow P(b) \]
\[\forall x. P(x) \Rightarrow P(c) \]

If no conflicting instance exists, resort to E-matching

\[\neg P(b), P(b) \models \bot \]

Conflicting instance
Conflict-Based Instantiation: Impact

- Using conflict-based instantiation (cvc4+ci), require an order of magnitude fewer instances for showing “UNSAT” wrt E-matching alone

(taken from [Reynolds et al FMCAD14], evaluation On SMTLIB, TPTP, Isabelle benchmarks)
Conflict-Based Instantiation: Impact

- CVC4 with conflicting instances **cvc4+ci**
 - Solves the **most benchmarks** for TPTP and Isabelle
 - Requires almost an order of magnitude **fewer instantiations**

<table>
<thead>
<tr>
<th></th>
<th>TPTP</th>
<th>Isabelle</th>
<th>SMT-LIB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Solved</td>
<td>Inst</td>
<td>Solved</td>
</tr>
<tr>
<td>cvc3</td>
<td>5,245</td>
<td>627.0M</td>
<td>3,827</td>
</tr>
<tr>
<td>z3</td>
<td>6,269</td>
<td>613.5M</td>
<td>3,506</td>
</tr>
<tr>
<td>cvc4</td>
<td>6,100</td>
<td>879.0M</td>
<td>3,858</td>
</tr>
<tr>
<td>cvc4+ci</td>
<td>6,616</td>
<td>150.9M</td>
<td>4,082</td>
</tr>
</tbody>
</table>

⇒ A number of hard benchmarks can be solved without resorting to E-matching at all
∀ Solver

Conflict-Based
E-matching
Model-Based
Enumerative

CEX-Guided
Syntax-Guided
Model-Based Instantiation

- **Idea:** Instantiate quantifiers based on (complete) models for E

- Complete for certain fragments, e.g. EPR, essentially uninterpreted
 - Can be useful for answering “sat”

- Implemented in z3, finite model finding in cvc4
 - [Ge et al 2009, Reynolds et al 2013]

- **Key applications:** Software Design, Planning
 - Example: Alloy Analyzer
Model-Based Instantiation

$\neg R(a)$
$\neg R(b)$

$\forall x. P(x)$
Model-Based Instantiation

\(E \)
- \(\neg R(a) \)
- \(\neg R(b) \)

\(Q \)
- \(\forall x. P(x) \)

\(R = \lambda x. \text{false} \)
\(P = \lambda x. \text{true} \)

\[\text{Model-Based} \]

\[\Rightarrow \text{Resort to model-based only when E-matching saturates} \]
Model-based Instantiation: Impact

- CVC4 Finite Model Finding + Model-Based instantiation [Reynolds et al CADE13]
 - Approach can scale to domains of >2 billion, only adds fraction of possible instances
∀ Solver

- Conflict-Based
- E-matching
- Model-Based
- Enumerative

- CEX-Guided
- Syntax-Guided
Enumerative Instantiation

• **Idea:** Instantiate based on (fair) enumeration of terms from E

• Effective alternative to model-based, better performance for “unsat”

• Complete for limited fragments

• Implemented in cvc5, veriT
 • [Reynolds et al TACAS 2018, Janota et al 2021]

• Key applications: Automated theorem proving
 • Example: Isabelle/Sledgehammer, TPTP
Enumerative Instantiation

\[f(a) = b \]
\[P(h(b)) \]

\[\forall x. P(f(x)) \]
Enumerative Instantiation

\(\forall x. P(f(x)) \Rightarrow P(f(a))\)
\(\forall x. P(f(x)) \Rightarrow P(f(b))\)
\(\forall x. P(f(x)) \Rightarrow P(f(f(a)))\)
\(\forall x. P(f(x)) \Rightarrow P(f(h(b)))\)

\(\Rightarrow\) Finds instances that E-matching may miss, more lightweight than MBQI

Ordering over terms from \(E\):

\(a < b < f(a) < h(b) < \ldots\)
Solver

- Conflict-Based
- E-matching
 - Model-Based
 - Enumerative

Generally, used for \forall with UF logics

- CEX-Guided
- Syntax-Guided

Generally, used for \forall in pure theories
Counterexample-Guided Instantiation

• **Idea:** Instantiate based on T-solving for counterexamples $\neg Q \land E$

• Can be seen as a lazy quantifier elimination algorithm in SMT loop

• Complete for quantified linear integer/real arithmetic, finite domains

• Variants of idea implemented in cvc5, (extensions of) z3, yices

• Key applications: Synthesis, Hardware Verification, Compiler Optimization
Counterexample-guided Instantiation

\[\forall x. x+b > a \]
Counterexample-guided Instantiation

\[E \quad \begin{cases} \quad a > b \\ \quad x + b \leq a \end{cases} \]

\[Q \quad \forall x . x + b > a \]

Solve for \(x \)

\[x = a - b \]

\[\forall x . x + b > a \Rightarrow (a - b) + b > a \]

where:

\[(a - b) + b > a \iff a > a \iff \bot \]

\[\Rightarrow \text{Can simulate e.g. Cooper, Loos-Weispfenning, Ferrante-Rackoff algorithms for QE} \]
Syntax-Guided Instantiation

• **Idea:** Instantiate based on enumerating terms from T-specific grammar

• Leverages advances in syntax-guided synthesis (SyGuS) [Alur et al 2013]

• **Implemented:**
 • For bitvector theory in Boolector [Preiner et al TACAS 2017]
 • For all supported theories in cvc5 [Niemetz et al TACAS 2021]

• **Key applications:** Synthesis and Verification for emerging theories
 • E.g. quantifiers over floating points
Syntax-Guided Instantiation

\[\forall x. x^2 \neq a^2 + b^2 + 2ab \]

none
Syntax-Guided Instantiation

$$\forall x. x^2 \neq a^2 + b^2 + 2*a*b$$

Construct grammar generating terms of integer type

$$G \rightarrow a \mid b \mid 0 \mid 1 \mid G+G \mid G*G \mid -G$$

Best known approach for theories where QE is unknown
Summary

• SMT solvers handle diverse set of inputs (with quantifiers)

• Best instantiation technique depends on the logic
 • When UF is present:
 ⇒ *E*-matching, conflict-based, model-based, enumerative
 • For traditional theories (e.g. LIA, BV) which emit quantifier elimination:
 ⇒ Counterexample-guided
 • For other theories (e.g. floating points, strings, non-linear arithmetic):
 ⇒ Syntax-guided
• Techniques in this talk implemented in SMT solver cvc5
 • Open source
 • Available at: https://github.com/cvc5

• ...Thanks for listening!