
Rewrites for SMT Solvers Using
Syntax-Guided Enumeration
Andrew Reynolds

Haniel Barbosa

Cesare Tinelli

Aina Niemetz

Andres Noetzli

Mathias Preiner

Clark Barrett

Rewrite Rules are Important for SMT Solving

• To develop an SMT theory solver for T, one must implement:
1. A set of inference rules that decide if a set of constraints is T-sat/T-unsat

• E.g. x=y,y=z |= x=z, x=y |= f(x)=f(y), x≠x |= 

2. A “rewriter” to put constraints in some normal form
• E.g. x+0x, x-yx+(-1*y), (x>x+y)(0>y), x=x-2

• Can be seen as a set of “rewrite rules”

Development of the latter is the focus of this talk

Rewrite Rules are Important for SMT Solving

• Having a good rewriter is often highly critical to performance
• In particular, theory of bit-vectors, strings, floating points

• Single rewrite may make problem go from hard  trivial

• Powerful rewriter  fast enumeration for syntax-guided synthesis
[Reynolds et al CAV 2015]

Rewrite Rules are Difficult to Implement

• Hard to find commonly applicable rewrites
• Analyze problem instances, solver runs

• What rewrites have I not already implemented?

• Time consuming, many lines of code
• CVC4’s BV rewriter ~3500 LOC

• CVC4’s string rewriter ~2800 LOC

• CVC4’s floating point rewriter ??? LOC

• Many special and subtle cases
• Often need to see many examples to see proper generalization

Goal of this Paper

• Use the SMT solver itself to assist the developer to implement
the solver’s rewriter

 Increase confidence in the correctness of the rewriter

 Increase productivity of the developer

SMT Solver

Workflow / Outline

Term
Database

Syntax-Guided
Enumeration

(Current)
Rewriter

Candidate Rewrite
Database

Equivalence
Checking

Matching,
Congruence

Developer

(1) Grammar
+ Specification

(2) Enumerate (3) Find Pairs

(4) Report Pairs

(5) Implement

Filter Filter

SMT Solver

Workflow / Outline

Term
Database

Syntax-Guided
Enumeration

(Current)
Rewriter

Candidate Rewrite
Database

Equivalence
Checking

Matching,
Congruence

Developer

(1) Grammar
+ Specification

(2) Enumerate (3) Find Pairs

(4) Report Pairs

(5) Implement

Filter Filter

A->

A+A|x|y|0|1

SMT Solver

Workflow / Outline

Term
Database

Syntax-Guided
Enumeration

(Current)
Rewriter

Candidate Rewrite
Database

Equivalence
Checking

Matching,
Congruence

Developer

(1) Grammar
+ Specification

(2) Enumerate (3) Find Pairs

(4) Report Pairs

(5) Implement

Filter Filter

0,x,x+y,x+0,…

A->

A+A|x|y|0|1

SMT Solver

Workflow / Outline

Term
Database

Syntax-Guided
Enumeration

(Current)
Rewriter

Candidate Rewrite
Database

Equivalence
Checking

Matching,
Congruence

Developer

(1) Grammar
+ Specification

(2) Enumerate (3) Find Pairs

(4) Report Pairs

(5) Implement

Filter Filter

0,x,x+y,x+0,… x+0=x,x+y=y+x,y+0=y…

A->

A+A|x|y|0|1

SMT Solver

Workflow / Outline

Term
Database

Syntax-Guided
Enumeration

(Current)
Rewriter

Candidate Rewrite
Database

Equivalence
Checking

Matching,
Congruence

Developer

(1) Grammar
+ Specification

(2) Enumerate (3) Find Pairs

(4) Report Pairs

(5) Implement

Filter Filter

0,x,x+y,x+0,… x+0=x,x+y=y+x,y+0=y…

A->

A+A|x|y|0|1 x+0=x,x+y=y+x…

SMT Solver

Workflow / Outline

Term
Database

Syntax-Guided
Enumeration

(Current)
Rewriter

Candidate Rewrite
Database

Equivalence
Checking

Matching,
Congruence

Developer

(1) Grammar
+ Specification

(2) Enumerate (3) Find Pairs

(4) Report Pairs

(5) Implement

Filter Filter

0,x,x+y,x+0,… x+0=x,x+y=y+x,y+0=y…

A->

A+A|x|y|0|1 x+0=x,x+y=y+x…

if(t.getKind()==PLUS && t[1]==0) return t[0];

SMT Solver

Workflow / Outline

Inference
Rules

Theory Solver for T

(Current)
Rewriter

if(t.getKind()==PLUS && t[1]==0) return t[0];

+

SMT Solver

Workflow / Outline

(6) Solve/Test

Inference
Rules

Theory Solver for T

sat / unsat
VCs, Proof

Obligations, …

(Current)
Rewriter

if(t.getKind()==PLUS && t[1]==0) return t[0];

+

…not the focus of this paper

(Not) Goals of this Paper

• We do not focus on automating:
• Code generation of the implementation itself

• Assessing good vs bad rewrites

 For these, we rely on the creativity and ingenuity of the developer

…although these could be future work

Term
Database

SG
Enum

(Current)
Rewriter

CR Database
Eq

Checking

Matching,
Congruence

Developer

Term
Database

SG
Enum

(Current)
Rewriter

CR Database
Eq

Checking

Matching,
Congruence

Developer

Development of SMT Rewriter
?

• Developer has some idea of the set of terms that they are interested
in developing new rewrites for:
• “set of string terms built from concat, replace, and at most 2 variables”

• “set of bit-vector terms with top-symbol multiplication”

• “set of floating point predicates that include common interval abstractions”

Grammar + Specification

• Use syntax-guided synthesis format *.sy for specify a class of terms:

(synth-fun f ((x Int) (y Int)) Int (

(Start Int (A))

(A Int ((+ A A) x y 0 1 (ite B A A))

(B Int ((= A A) (>= A A) (not B) (and B B))

))

(constraint (= (f x y) (f y x)))

(check-synth)

Term
Database

SG
Enum

(Current)
Rewriter

CR Database
Eq

Checking

Matching,
Congruence

Developer

(synth-fun
…
))

(check-sat)

Grammar + Specification

• Use syntax-guided synthesis format *.sy for specify a class of terms:

(1) Body of f is built from the grammar:

A -> A+A | x | y | 0 | 1 | ite(B, A, A)

B -> A = A | A  A | B | B  B

(synth-fun f ((x Int) (y Int)) Int (

(Start Int (A))

(A Int ((+ A A) x y 0 1 (ite B A A))

(B Int ((= A A) (>= A A) (not B) (and B B))

))

(constraint (= (f x y) (f y x)))

(check-synth)

(2) f satisfies the specification:

xy.f(x,y)=f(y,x)

Term
Database

SG
Enum

(Current)
Rewriter

CR Database
Eq

Checking

Matching,
Congruence

Developer

(synth-fun
…
))

(check-sat)

Syntax-Guided Enumeration

• Use enumerative syntax-guided search to generate multiple solutions
to this conjecture
• E.g. 0, 1, (+ x y), (+ y x), (+ 1 1), …

Number of arguments determines (maximum) variables per rewrite

Specification can be used to filter out classes of terms

(synth-fun f ((x Int) (y Int)) Int (

(Start Int (A))

(A Int ((+ A A) x y 0 1 (ite B A A))

(B Int ((= A A) (>= A A) (not B) (and B B))

))

(constraint (= (f x y) (f y x)))

(check-synth)

Term
Database

SG
Enum

(Current)
Rewriter

CR Database
Eq

Checking

Matching,
Congruence

Developer

Syntax-Guided Enumeration

• Use enumerative syntax-guided search to generate multiple solutions
to this conjecture
• E.g. 0, 1, (+ x y), (+ y x), (+ 1 1), …

Number of arguments determines (maximum) variables per rewrite

Specification can be used to filter out classes of terms

(synth-fun f ((x Int) (y Int)) Int (

(Start Int (A))

(A Int ((+ A A) x y 0 1 (ite B A A))

(B Int ((= A A) (>= A A) (not B) (and B B))

))

(constraint (= (f x y) (f y x)))

(check-synth)

Term
Database

SG
Enum

(Current)
Rewriter

CR Database
Eq

Checking

Matching,
Congruence

Developer

Syntax-Guided Enumeration

• Use enumerative syntax-guided search to generate multiple solutions
to this conjecture
• E.g. 0, 1, (+ x y), (+ y x), (+ 1 1), …

Number of arguments determines (maximum) variables per rewrite

Specification can be used to filter out classes of terms

(synth-fun f ((x Int) (y Int)) Int (

(Start Int (A))

(A Int ((+ A A) x y 0 1 (ite B A A))

(B Int ((= A A) (>= A A) (not B) (and B B))

))

(constraint (= (f x y) (f y x)))

(check-synth)

Term
Database

SG
Enum

(Current)
Rewriter

CR Database
Eq

Checking

Matching,
Congruence

Developer

Filtering via the Current Rewriter

• When enumerating: map terms to their rewritten form, based on the
current rewriter:

• Can discard all but one term for each set of terms that have the same
rewritten form

0, 1, x, y, x+0, x+y, y+x, y+0, x+x, 1+1, …

Term
Database

SG
Enum

(Current)
Rewriter

CR Database
Eq

Checking

Matching,
Congruence

Developer

• When enumerating, map terms to their rewritten form, based on the
current rewriter:

• Can discard all but one term for each set of terms that have the same
rewritten form

0, 1, x, y, x+0, x+y, y+x, y+0, x+x, 1+1, …

0, 1, x, y, x+y, 2*x, 2

Filtering via the Current Rewriter

Term
Database

SG
Enum

(Current)
Rewriter

CR Database
Eq

Checking

Matching,
Congruence

Developer

• When enumerating, map terms to their rewritten form, based on the
current rewriter:

• Can discard all but one term for each set of terms that have the same
rewritten form
This is what makes syntax-guided enumeration fast in practice

0, 1, x, y, x+0, x+y, y+x, y+0, x+x, 1+1, …

0, 1, x, y, x+y, 2*x, 2

Filtering via the Current Rewriter

Term
Database

SG
Enum

(Current)
Rewriter

CR Database
Eq

Checking

Matching,
Congruence

Developer

• Gives us a stream of terms that are unique up to the current rewriter:

• Can discard all but one term for each set of terms that have the same
rewritten form

0, 1, x, y, x+0, x+y, y+x, y+0, x+x, 1+1, …

Filtering via the Current Rewriter

Term
Database

SG
Enum

(Current)
Rewriter

CR Database
Eq

Checking

Matching,
Congruence

Developer

“Term Database”

Equivalence Checking

• Given: a set of terms, unique up to rewriting

• Compute: pairs of terms (s,t) such that s and t are (likely) T-equivalent

• This gives us pairs of terms (s,t) such that:
• s could be rewritten to t (or vice versa), but our current rewriter does not

already do so

0,1,x,y,x+0,x+y,y+x,y+0,1+1,x-x,x-0,…

Term
Database

SG
Enum

(Current)
Rewriter

CR Database
Eq

Checking

Matching,
Congruence

Developer

Equivalence Checking

• Given: a set of terms, unique up to rewriting

• Compute: pairs of terms (s,t) such that s and t are (likely) T-equivalent

• This gives us pairs of terms (s,t) such that:
• s could be rewritten to t (or vice versa), but our current rewriter does not

already do so

0,1,x,y,x+0,x+y,y+x,y+0,1+1,x-x,x-0,…

(x,x+0) (x+y,y+x)

(y,y+0)

(x-x,0)

(x,x-0)

Term
Database

SG
Enum

(Current)
Rewriter

CR Database
Eq

Checking

Matching,
Congruence

Developer

Equivalence Checking

• Given: a set of terms, unique up to rewriting

• Compute: pairs of terms (s,t) such that s and t are (likely) T-equivalent

• This gives us pairs of terms (s,t) such that:
• s could be rewritten to t (or vice versa)

• But our current rewriter does not already know this rewrite

0,1,x,y,x+0,x+y,y+x,y+0,1+1,x-x,x-0,…

(x,x+0) (x+y,y+x)

(y,y+0)

(x-x,0)

(x,x-0)

Term
Database

SG
Enum

(Current)
Rewriter

CR Database
Eq

Checking

Matching,
Congruence

Developer

Equivalence Checking

• To compute pairs (s,t), we check equivalence of s and t:
• Via Sampling

s and t are equivalent if they evaluate to the same thing on N fixed sample points

• Pro: can be very fast

• Pro: feasible even if background theory (e.g. strings) is undecidable

• Con: procedures false positives (s,t) where s and t are T-disequivalent

 …but can be made fairly precise using “grammar-based” sampling to find interesting points

• Via Exact Equivalence Checking
s and t are equivalent if the SMT solver says “unsat” for query x.s≠t

• Pro: exact, i.e. (s,t) is a pair only if s and t are indeed T-equivalent

• Con: not feasible and slower for some theories

 …but can be made efficient by caching counterexample points to failed queries

Term
Database

SG
Enum

(Current)
Rewriter

CR Database
Eq

Checking

Matching,
Congruence

Developer

Rewrite Rule Filtering

• Given: set of rewrite pairs

• Compute: set of rewrite pairs that are useful to the user

Term
Database

SG
Enum

(Current)
Rewriter

CR Database
Eq

Checking

Matching,
Congruence

Developer

(x,x+0),(x+y,y+x),(y,y+0),(x+0,0+x),(x,x-0),(x+y,(x+0)+y),…

“Candidate Rewrite Database”

Rewrite Rule Filtering

• Given: set of rewrite pairs

• Compute: set of rewrite pairs that are not useful to the user

Term
Database

SG
Enum

(Current)
Rewriter

CR Database
Eq

Checking

Matching,
Congruence

Developer

(x,x+0),(x+y,y+x),(y,y+0),(x+0,0+x),(x,x-0),(x+y,(x+0)+y),…

Rewrite Rule Filtering

• Given: set of rewrite pairs

• Compute: set of rewrite pairs that are not useful to the user

Term
Database

SG
Enum

(Current)
Rewriter

CR Database
Eq

Checking

Matching,
Congruence

Developer

(x,x+0),(x+y,y+x),(y,y+0),(x+0,0+x),(x,x-0),(x+y,(x+0)+y),…

Rewrite Rule Filtering

• Given: set of rewrite pairs

• Compute: set of rewrite pairs that are not useful to the user

Term
Database

SG
Enum

(Current)
Rewriter

CR Database
Eq

Checking

Matching,
Congruence

Developer

(x,x+0),(x+y,y+x),(y,y+0),(x+0,0+x),(x,x-0),(x+y,(x+0)+y),…

Alpha-equivalent
 Can be efficiently enforced by fixing a variable ordering

Rewrite Rule Filtering

• Given: set of rewrite pairs

• Compute: set of rewrite pairs that are not useful to the user

Term
Database

SG
Enum

(Current)
Rewriter

CR Database
Eq

Checking

Matching,
Congruence

Developer

(x,x+0),(x+y,y+x),(y,y+0),(x+0,0+x),(x,x-0),(x+y,(x+0)+y),…

Matchable
 Use discrimination tree indexing

Rewrite Rule Filtering

• Given: set of rewrite pairs

• Compute: set of rewrite pairs that are not useful to the user

Term
Database

SG
Enum

(Current)
Rewriter

CR Database
Eq

Checking

Matching,
Congruence

Developer

(x,x+0),(x+y,y+x),(y,y+0),(x+0,0+x),(x,x-0),(x+y,(x+0)+y),…

Consequence of Equality Reasoning
Maintain a congruence closure over pairs of terms

x=x+0 |= x+y=(x+0)+y

• Typically 30-40% rewrites are filtered, some grammars 60+%

Rewrite Rule Filtering

• Given: set of rewrite pairs

• Compute: set of rewrite pairs that are not useful to the user

• This set of pairs is reported back to the user:

Term
Database

SG
Enum

(Current)
Rewriter

CR Database
Eq

Checking

Matching,
Congruence

Developer

(x,x+0),(x+y,y+x),(y,y+0),(x+0,0+x),(x,x-0),(x+y,(x+0)+y),…

(candidate-rewrite (+ x 0) x)

(candidate-rewrite (+ x y) (+ y x))

(candidate-rewrite (- x 0) x)

…

(candidate-rewrite t1 t2)
(candidate-rewrite s1 22)

…

Preliminary Experience

• Implemented these features in the CVC4 SMT solver
• Run on *.sy inputs using command line option --sygus-rr-synth

• Many variants of this option are available

• Used workflow to generate rewrites for:
• Strings

• Bit-Vectors

• Booleans

• …Floating Points?

Term
Database

SG
Enum

(Current)
Rewriter

CR Database
Eq

Checking

Matching,
Congruence

Developer

Preliminary Experience

Term
Database

SG
Enum

(Current)
Rewriter

CR Database
Eq

Checking

Matching,
Congruence

Developer

Examples of Rewrites

• Bit-Vectors
bvlshr(x,x) #x0000 x-(x&y) x&~y concat(#x1,x)=concat(#x0,y)

x+1 ~(-x) (x&y)+(x|y)  x+y bvxor(x,x&y) ~y&x

• Strings
x++”A”=“B”++x  indexof(“ABCDE”,x,3) indexof(“AAADE”,x,3)

contains(x,x++”A”) replace(x,x++y,y)  replace(x,x++y,””)

• Booleans
A(AB)  AB (AC)(AB) A(CB)

A=A&B  AB (AB)=(ABC) ABC

Term
Database

SG
Enum

(Current)
Rewriter

CR Database
Eq

Checking

Matching,
Congruence

Developer

Statistics: CVC4’s Current Rewriter(s)

1

10

100

1000

10000

100000

1000000

none std ext actual

bv-term, depth 3

1

10

100

1000

10000

100000

none std ext actual

string-term, depth 2

1

10

100

1000

10000

100000

1000000

none std ext actual

bool-crci, depth 7
588064

396

24587

4181

110583

4744

none: # terms from the grammar at given depth std: CVC4 version 1.5’s rewriter (before this paper)
actual: # T-unique terms from grammar at given depth ext: CVC4’s aggressive rewriter (after this paper)

Statistics: CVC4’s Current Rewriter(s)

1

10

100

1000

10000

100000

1000000

none std ext actual

bv-term, depth 3

1

10

100

1000

10000

100000

none std ext actual

string-term, depth 2

1

10

100

1000

10000

100000

1000000

none std ext actual

bool-crci, depth 7

174005

1955

8312 5872

7815 5253

49.7% 28.8%
90.0 60.8

%redundant:
time to

enumerate:

39.3% 9.7%
96.4 55.4

99.8% 82.2%
19128.8 60.6

4181

588064

396

24587 110583

4744

Impact on Solving: SyGuS Conjectures

• For syntax-guided synthesis (sygus) queries, all rewrites are useful
 Speeds up enumeration times

Impact on Solving: SMT queries

• For general *.smt2 queries, some rewrites are good, some are bad

• Mixed performance using new rewrites (ext) vs original (def):
• SMTLIB, QF_BV: good for unsat (+232,-158), bad for sat (+143,-236)

• Quantified BV: overall improvement (+42,-15)

• Strings (PyEx): good for unsat (+12,-1), bad for sat (+13,-94)

Improving Confidence in the Rewriter

• Can use sampling techniques to detect unsoundness in the rewriter
• Run on *.sy inputs using command line option --sygus-rr-verify

• Approximately 3.5x overhead

 Has been critical for finding bugs in newly written rewriter code

(unsound-rewrite (bvuge (bvadd x #x0001) x) true)

; --sygus-rr-verify detected unsoundness in the rewriter!

; Terms have the same rewritten form but are not equivalent

; for x=#xFFFF, where they evaluate to:

; (bvuge (bvadd x #x0001) x) = false

; true = true

Conclusions

• Infrastructure in CVC4 to increase productivity of rewrite rule developer
• Used for past ~6 months to develop ~3000 LOC of rewrites

• Strings, Bit-vectors, Booleans

• Feedback loop:
• More rewrites implemented  faster enumeration more interesting rewrites found

• Has had impact on solving:
• Significant improvements in syntax-guided synthesis *.sy problems

• Mixed impact on *.smt2 problems

Future Work

• Further implementation on rewriters
• Strings, bit-vectors, Booleans, …floating points?

• Optimizations to enumeration, equivalence checking

• Ways to infer grammars and interesting terms from *.smt2 inputs
• Give me the rewrites that will help benchmark X

• Automate configurations of rewrite rules
• Is this rewrite X good or bad (in context Y)?

• Interfaces to external users?
• Users who want new rewrites in CVC4?
• Developers of other rewriters?

• SMT Solver CVC4
• Open source

• Available at : http://cvc4.cs.stanford.edu/web/

• New options
• --sygus-rr-synth: synthesize new rewrite rules from *.sy

• --sygus-rr-verify: check the correctness of the current rewriter on *.sy

• Configurable term filtering, equivalence checking, rule filtering

47

Thanks for Listening!

http://cvc4.cs.stanford.edu/web/

Demo?

