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Rewrite Rules are Important for SMT Solving

• To develop an SMT theory solver for T, one must implement:
1. A set of inference rules that decide if a set of constraints is T-sat/T-unsat

• E.g.  x=y,y=z |= x=z, x=y |= f(x)=f(y), x≠x |= 

2. A “rewriter” to put constraints in some normal form
• E.g. x+0x, x-yx+(-1*y), (x>x+y)(0>y), x=x-2

• Can be seen as a set of “rewrite rules”

Development of the latter is the focus of this talk



Rewrite Rules are Important for SMT Solving

• Having a good rewriter is often highly critical to performance 
• In particular, theory of bit-vectors, strings, floating points

• Single rewrite may make problem go from hard  trivial

• Powerful rewriter  fast enumeration for syntax-guided synthesis
[Reynolds et al CAV 2015] 



Rewrite Rules are Difficult to Implement

• Hard to find commonly applicable rewrites
• Analyze problem instances, solver runs

• What rewrites have I not already implemented?

• Time consuming, many lines of code
• CVC4’s BV rewriter ~3500 LOC

• CVC4’s string rewriter ~2800 LOC

• CVC4’s floating point rewriter ??? LOC

• Many special and subtle cases
• Often need to see many examples to see proper generalization



Goal of this Paper

• Use the SMT solver itself to assist the developer to implement 
the solver’s rewriter

 Increase confidence in the correctness of the rewriter

 Increase productivity of the developer
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(Not) Goals of this Paper

• We do not focus on automating:
• Code generation of the implementation itself

• Assessing good vs bad rewrites

 For these, we rely on the creativity and ingenuity of the developer

…although these could be future work
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?

• Developer has some idea of the set of terms that they are interested 
in developing new rewrites for:
• “set of string terms built from concat, replace, and at most 2 variables”

• “set of bit-vector terms with top-symbol multiplication”

• “set of floating point predicates that include common interval abstractions”



Grammar + Specification

• Use syntax-guided synthesis format *.sy for specify a class of terms:

(synth-fun f ((x Int) (y Int)) Int (
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Grammar + Specification

• Use syntax-guided synthesis format *.sy for specify a class of terms:

(1) Body of f is built from the grammar:

A -> A+A | x | y | 0 | 1 | ite( B, A, A )

B -> A = A | A  A | B | B  B

(synth-fun f ((x Int) (y Int)) Int (

(Start Int (A))

(A Int ((+ A A) x y 0 1 (ite B A A))

(B Int ((= A A) (>= A A) (not B) (and B B))

))

(constraint (= (f x y) (f y x)))

(check-synth)

(2) f satisfies the specification:

xy.f(x,y)=f(y,x)
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Syntax-Guided Enumeration

• Use enumerative syntax-guided search to generate multiple solutions 
to this conjecture
• E.g. 0, 1, (+ x y), (+ y x), (+ 1 1), …

Number of arguments determines (maximum) variables per rewrite

Specification can be used to filter out classes of terms
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Filtering via the Current Rewriter

• When enumerating: map terms to their rewritten form, based on the 
current rewriter:

• Can discard all but one term for each set of terms that have the same 
rewritten form
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• When enumerating, map terms to their rewritten form, based on the 
current rewriter:

• Can discard all but one term for each set of terms that have the same 
rewritten form
This is what makes syntax-guided enumeration fast in practice

0, 1, x, y, x+0, x+y, y+x, y+0, x+x, 1+1, …
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• Gives us a stream of terms that are unique up to the current rewriter:

• Can discard all but one term for each set of terms that have the same 
rewritten form

0, 1, x, y, x+0, x+y, y+x, y+0, x+x, 1+1, …

Filtering via the Current Rewriter

Term 
Database

SG
Enum

(Current)
Rewriter

CR Database
Eq

Checking

Matching, 
Congruence

Developer

“Term Database”



Equivalence Checking

• Given: a set of terms, unique up to rewriting

• Compute: pairs of terms (s,t) such that s and t are (likely) T-equivalent

• This gives us pairs of terms (s,t) such that:
• s could be rewritten to t (or vice versa), but our current rewriter does not 

already do so

0,1,x,y,x+0,x+y,y+x,y+0,1+1,x-x,x-0,…
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Equivalence Checking

• Given: a set of terms, unique up to rewriting

• Compute: pairs of terms (s,t) such that s and t are (likely) T-equivalent

• This gives us pairs of terms (s,t) such that:
• s could be rewritten to t (or vice versa)

• But our current rewriter does not already know this rewrite
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Equivalence Checking

• To compute pairs (s,t), we check equivalence of s and t:
• Via Sampling

s and t are equivalent if they evaluate to the same thing on N fixed sample points

• Pro: can be very fast

• Pro: feasible even if background theory (e.g. strings) is undecidable

• Con: procedures false positives (s,t) where s and t are T-disequivalent

 …but can be made fairly precise using “grammar-based” sampling to find interesting points

• Via Exact Equivalence Checking
s and t are equivalent if the SMT solver says “unsat” for query x.s≠t

• Pro: exact, i.e. (s,t) is a pair only if s and t are indeed T-equivalent

• Con: not feasible and slower for some theories

 …but can be made efficient by caching counterexample points to failed queries
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Rewrite Rule Filtering

• Given: set of rewrite pairs

• Compute: set of rewrite pairs that are useful to the user
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Rewrite Rule Filtering
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Alpha-equivalent 
 Can be efficiently enforced by fixing a variable ordering



Rewrite Rule Filtering

• Given: set of rewrite pairs

• Compute: set of rewrite pairs that are not useful to the user
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Rewrite Rule Filtering

• Given: set of rewrite pairs

• Compute: set of rewrite pairs that are not useful to the user

Term 
Database

SG
Enum

(Current)
Rewriter

CR Database
Eq

Checking

Matching, 
Congruence

Developer

(x,x+0),(x+y,y+x),(y,y+0),(x+0,0+x),(x,x-0),(x+y,(x+0)+y),…

Consequence of Equality Reasoning
Maintain a congruence closure over pairs of terms

x=x+0 |= x+y=(x+0)+y

• Typically 30-40% rewrites are filtered, some grammars 60+%



Rewrite Rule Filtering

• Given: set of rewrite pairs

• Compute: set of rewrite pairs that are not useful to the user

• This set of pairs is reported back to the user:
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(x,x+0),(x+y,y+x),(y,y+0),(x+0,0+x),(x,x-0),(x+y,(x+0)+y),…

(candidate-rewrite (+ x 0) x)

(candidate-rewrite (+ x y) (+ y x))

(candidate-rewrite (- x 0) x)

…

(candidate-rewrite t1 t2)
(candidate-rewrite s1 22)

…



Preliminary Experience

• Implemented these features in the CVC4 SMT solver
• Run on *.sy inputs using command line option --sygus-rr-synth

• Many variants of this option are available

• Used workflow to generate rewrites for:
• Strings

• Bit-Vectors

• Booleans

• …Floating Points?
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Examples of Rewrites

• Bit-Vectors
bvlshr(x,x) #x0000 x-(x&y) x&~y concat(#x1,x)=concat(#x0,y)

x+1 ~(-x) (x&y)+(x|y)  x+y bvxor(x,x&y) ~y&x

• Strings
x++”A”=“B”++x  indexof(“ABCDE”,x,3) indexof(“AAADE”,x,3)

contains(x,x++”A”) replace(x,x++y,y)  replace(x,x++y,””)

• Booleans
A(AB)  AB (AC)(AB) A(CB)

A=A&B  AB (AB)=(ABC) ABC
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Statistics: CVC4’s Current Rewriter(s)
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none: # terms from the grammar at given depth std: CVC4 version 1.5’s rewriter (before this paper)
actual: # T-unique terms from grammar at given depth ext: CVC4’s aggressive rewriter (after this paper)
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Impact on Solving: SyGuS Conjectures

• For syntax-guided synthesis (sygus) queries, all rewrites are useful
 Speeds up enumeration times



Impact on Solving: SMT queries

• For general *.smt2 queries, some rewrites are good, some are bad

• Mixed performance using new rewrites (ext) vs original (def):
• SMTLIB, QF_BV: good for unsat (+232,-158), bad for sat (+143,-236)

• Quantified BV: overall improvement (+42,-15)

• Strings (PyEx): good for unsat (+12,-1), bad for sat (+13,-94)



Improving Confidence in the Rewriter

• Can use sampling techniques to detect unsoundness in the rewriter
• Run on *.sy inputs using command line option --sygus-rr-verify

• Approximately 3.5x overhead

 Has been critical for finding bugs in newly written rewriter code

(unsound-rewrite (bvuge (bvadd x #x0001) x) true)

; --sygus-rr-verify detected unsoundness in the rewriter!

; Terms have the same rewritten form but are not equivalent 

; for x=#xFFFF, where they evaluate to:

; (bvuge (bvadd x #x0001) x) = false

; true = true



Conclusions

• Infrastructure in CVC4 to increase productivity of rewrite rule developer
• Used for past ~6 months to develop ~3000 LOC of rewrites

• Strings, Bit-vectors, Booleans

• Feedback loop: 
• More rewrites implemented  faster enumeration more interesting rewrites found

• Has had impact on solving:
• Significant improvements in syntax-guided synthesis *.sy problems

• Mixed impact on *.smt2 problems



Future Work

• Further implementation on rewriters
• Strings, bit-vectors, Booleans, …floating points?

• Optimizations to enumeration, equivalence checking

• Ways to infer grammars and interesting terms from *.smt2 inputs
• Give me the rewrites that will help benchmark X

• Automate configurations of rewrite rules
• Is this rewrite X good or bad (in context Y)? 

• Interfaces to external users?
• Users who want new rewrites in CVC4?
• Developers of other rewriters?



• SMT Solver CVC4
• Open source

• Available at : http://cvc4.cs.stanford.edu/web/

• New options
• --sygus-rr-synth: synthesize new rewrite rules from *.sy

• --sygus-rr-verify: check the correctness of the current rewriter on *.sy

• Configurable term filtering, equivalence checking, rule filtering

47

Thanks for Listening!

http://cvc4.cs.stanford.edu/web/


Demo?


