Instantiation for Quantified
Formulas in SMT: Techniques and
Practical Aspects

Andrew Reynolds
June 24, 2016

L

i

The UNIVERSITY
OF lowA

In this Talk

(Vx.P(x) vi(b)=b+l) Ady. (=P (y) AT (y)<Vy)

* Focus on techniques for establishing T-satisfiability of formulas with:

In this Talk

(Vx.P(x) vi(b)=b+l) Ady. (=P (y) AL (y)<Vy)

* Focus on techniques for establishing T-satisfiability of formulas with:
* Boolean structure

In this Talk

(Vx.P(x) vVE(b)=b+l) Ady. (=P (y) Af (y)<y)

* Focus on techniques for establishing T-satisfiability of formulas with:
* Boolean structure
* Constraints in a background theory T, e.g. UFLIA

In this Talk

Mx.P (x) vE(®B)=b+1) ABv. (v) AE(¥)<Y)

* Focus on techniques for establishing T-satisfiability of formulas with:
* Boolean structure
e Constraints in a background theory T, e.g. UFLIA

e Existential and Universal _

Outline

* Background
* SMT solver architecture
...and how it extends to V reasoning via quantifier instantiation:
V. Y[x]=>y[t]

* Recent strategies for quantifier instantiation:
* E-matching, conflict-based, model-based, counterexample-guided

* Challenges, future work

Quantified formulas ¥V in SMT

* Are of importance to applications:
e Automated theorem proving:
e Background axioms {Vx.g (e, x)=g(x,e)=x, Vx.g(x,9(y,2z))=9(g(x,Vy),x),Vx.g(x,1(x))=e}
* Software verification:

* Unfolding Vx. foo (x) =bar (x+1), code contracts Vx.pre (x)=post (f (x))
* Frame axioms Vx.x#t = A’ (x)=A(x)

* Function Synthesis:

* Conjectures Vi:input.do:output.R[o, 1]
* Planning:

e Specifications dp:plan.Vt:time.F [P, t]

Quantified formulas ¥V in SMT

* Are of importance to applications:
e Automated theorem proving:
e Background axioms {Vx.g (e, x)=g(x,e)=x, Vx.g(x,9(y,2z))=9(g(x,Vy),x),Vx.g(x,1(x))=e}
* Software verification:

* Unfolding Vx. foo (x) =bar (x+1), code contracts Vx.pre (x)=post (f (x))
* Frame axioms Vx.x#t = A’ (x)=A(x)

* Function Synthesis:

* Conjectures Vi:input.do:output.R[o, 1]
* Planning:

e Specifications dp:plan.Vt:time.F [P, t]

* Are very challenging in theory:
* Establishing T-satisfiability of formulas with V is generally undecidable

Quantified formulas ¥V in SMT

* Are of importance to applications:
e Automated theorem proving:
e Background axioms {Vx.g (e, x)=g(x,e)=x, Vx.g(x,9(y,2z))=9(g(x,Vy),x),Vx.g(x,1(x))=e}
* Software verification:

* Unfolding Vx. foo (x) =bar (x+1), code contracts Vx.pre (x)=post (f (x))
* Frame axioms Vx.x#t = A’ (x)=A(x)

* Function Synthesis:
* Conjectures Vi:input.do:output.R[o, i]
* Planning:
e Specifications dp:plan.Vt:time.F [P, t]
* Are very challenging in theory:
» Establishing T-satisfiability of formulas with V is generally undecidable

* Can be handled well in practice:
* Efficient decision procedures for decidable fragments, e.g. Bernays-Shonfinkel
* Heuristic techniques have high success rates in the general case

Background: Theory

* Atheory Tis a pair (2, |1), where:
* 2. is set of function symbols, the signature of T
s Eg X ={+-,<%,>,2,0,1,2,3,..}
* |;is a set of interpretations
* E.g.eachl el ,interpret functionsin X, in standard way:

e 1+1=2, 1+2=3, 1>0=T, 0>1 =1, ..
* Interpretation of free constants chosen arbitrarily
* Aformula ¥ is T-satisfiable if there is an | € I that interprets W as T

* We calll a model of ¥
e E.gthe formula (a+1>b) is LIA-satisfiable with a model | where | (a) =2 and | (b) =0

Background: Quantifiers

e Universal quantification:
Vx:Int.P(x)

P is true for all integers x

* Existential quantification:
dx:Int.—Q (x)

Q is false for some integer x

Background: Quantifiers

e Universal quantification:
Vx:Int.P(x)

P is true for all integers x

* Existential quantification:
dx:Int.—0Q (x) —> —Vx:Int.Q(x)

—> For consistency, assume existential quantification is
rewritten as universal quantification

Theoretical Complexity

* Checking T-satisfiability of:
(Vx.P(x) vO(x) vx=a) AP(b) AQ(c)
* Bernays-Shonfinkel (function-free + equality) is decidable (NExPTIME)
(Vxy.dz.x+y+z>2 v 0<z+x)
e Case of V in pure theories is often decidable, e.g. linear arithmetic
(VX.P(x)=P(x+1)) AP(a) A—=P (b) A a<b

 However, general case is undecidable!

Approaches for Satisfiability of ¥ in Tools

* First order theorem provers focus on V reasoning
...but have been extended in the past decade to theory reasoning

* SMT solvers focus mostly on ground theory reasoning
...but have been extended in the past decade to V reasoning

Approaches for Satisfiability of ¥ in Tools

* First order theorem provers focus on V reasoning
...but have been extended in the past decade to theory reasoning:
* Vampire, E, SPASS

* First-order resolution + superposition [Robinson 65, Nieuwenhuis/Rubio 99, Prevosto/Waldman 06]
* AVATAR in Vampire [Voronkov 14, Reger et al 15]

* iProver
* |nstGen calculus [Ganzinger/Korovin 03]

* Princess, Beagle, ...

e SMT solvers focus mostly on ground theory reasoning
...but have been extended in the past decade to V reasoning:

Approaches for Satisfiability of ¥ in Tools

* First order theorem provers focus on V reasoning
...but have been extended in the past decade to theory reasoning:
* Vampire, E, SPASS

* First-order resolution + superposition [Robinson 65, Nieuwenhuis/Rubio 99, Prevosto/Waldman 06]
* AVATAR in Vampire [Voronkov 14, Reger et al 15]

* iProver
* |nstGen calculus [Ganzinger/Korovin 03]

* Princess, Beagle, ...

e SMT solvers focus mostly on ground theory reasoning
...but have been extended in the past decade to V reasoning:
e 23, CVCA4, VeriT, Alt-Ergo
* Some superposition-based [deMoura et al 09]
* Mostly instantiation-based [Detlefs et al 03, deMoura et al 07, Ge et al 07, ...]

Approaches for Satisfiability of ¥ in Tools

* First order theorem provers focus on V reasoning
...but have been extended in the past decade to theory reasoning:
* Vampire, E, SPASS

* First-order resolution + superposition [Robinson 65, Nieuwenhuis/Rubio 99, Prevosto/Waldman 06]
* AVATAR in Vampire [Voronkov 14, Reger et al 15]

* iProver
* |nstGen calculus [Ganzinger/Korovin 03]

* Princess, Beagle, ...

e SMT solvers focus mostly on ground theory reasoning

...but have been extended in the past decade to V reasoning:
e 23, CVCA4, VeriT, Alt-Ergo
* Some superposition-based [deMoura et al 09]
* Mostly instantiation-based [Detlefs et al 03, deMoura et al 07, Ge et al 09, ...]

— Focus of this talk

Quantified Formulas in DPLL(T): Basics

(P(a) vI(b)=a+l)
(—Vx.P(x) vVy.=P(y) VR(Y))
(Vx.f (x)=g(x)+h(x) v=R(a))

—> Given the above input

Quantified Formulas in DPLL(T): Basics
(P (a) v ENISNEES)

(—Vx.P(x) vVy.=P(y) VR(V))
(Vx.f(x)=g(x)+h(x) v=P(a))

* Consider the propositional abstraction of the formula

* Atoms may encapsulate quantified formulas with Boolean structure
* Eg. Vy.—=P(y) VR(y)

Quantified Formulas in DPLL(T): Basics
(PR v I)

(— C

* Find propositional satisfying assighnment via off-the-shelf SAT solver

Quantified Formulas in DPLL(T): Basics

g_v

(—

(

—> True
—> True
— false

A
B
C

* Find propositional satisfying assignment via off-the-shelf SAT solver

Quantified Formulas in DPLL(T): Basics

(P(a) v ENEISEHT)

(2Vx.P(x) v¥y. =P (y) VR(Y))
(Vx.f(x)=g(x)+h(x) v—=P(a))

P(a) — true My.=P(y) VR(y) | — true
_ — true Vx.f(x)=g(x)+h (x) — true

Vx.P(x) — false

—> Consider original atoms

Quantified Formulas in DPLL(T): Basics
(P (a) v ENBYSEH)

(-Vx.P(x) vVy.=P(y) VR(V))
(Vx.f(x)=g(x)+h(x) v—=P(a))

SAT Solver

P(a),[B, —Vx.P (x),Vx.f(x)=g(x)+h(x),Vy.=P(y) VR(y)

J

Y

M

—> Propositional assighment can be seen as a set of T-literals M
 Must check if M is T-satisfiable

Quantified Formulas in DPLL(T): Basics

P(a)

(P(a) v ENEISEHT)

(2Vx.P(x) v¥y. =P (y) VR(Y))
(Vx.f(x)=g(x)+h(x) v—=P(a))

SAT Solver

—

/ —Vx.P(x)
‘ Vx. £ (x) =g (x) +h (x)

Vy.=P(y) VR(y)

LIA-Solver Quantifiers Module

—> Distribute ground literals to T-solvers,V literals to quantifiers module

Quantified Formulas in DPLL(T): Basics

M\

(P& v

— (aVx. P()
(Vx.f(

SAT Solver

Quantifiers Module

~
~
\5-

—> These solvers may choose to add conflicts/lemmas to clause set

DPLL(T,+..+T)+Quantifiers: Overview

T-Clauses F

SAT
Solver

..when Fis
propositionally
unsatisfiable

[Nieuwenhuis/Oliveras/Tinelli 06]

Satisfying
Assignment
M

n

Q

Conflicts, lemmas

Quantifiers Module = -

—> Each of these components may:
 Report Mis T-unsatisfiable by reporting conflict clauses

* Report lemmas if they are unsure

DPLL(T,+..+T)+Quantifiers: Overview

T-Clauses F

SAT
Solver

..when Fis
propositionally
unsatisfiable

[Nieuwenhuis/Oliveras/Tinelli 06]

Satisfying
Assignment
M

T,-solver

T -solver

Quantifiers Module

..when Mis
T,+..+T -satisfiable

= If no component adds a lemma, then it must be the case
that M is T +...+T -satisfiable

DPLL(T,+..+T)+Quantifiers: Overview

T-Clauses F

Unlike the ground case where decision procedures exist for T, ..., T,
...there is no general decision procedure for V-formulas Q, thus:

unsat

'"Whef:’_ Fis// Regardless, we want techniques that:
rO OSI Iona . o) -
ProposTtionary e Are refutation-sound (“unsat” can be trusted) vhen Mis
unsatisfiable i
T -satisfiable

* This procedure may not terminate!

* Are model-sound (“sat” can be trusted)
 Terminate for many F

In this talk: DPLL(T)+Quantifiers, simplified

T-Clauses F
Satisfying
Assignment Theory
— @Ground Solver
SAT Solver M solver(s)

Quantifiers
Module

= For purposes of this talk, partition M into quantifier-free part E, and set of V formulas Q

In this talk: DPLL(T)+Quantifiers, simplified

T-Clauses F «

___________________ Conflicts, lemmas

~

Satisfying :
Assignment Theory ,'
SAT Solver M solver(s)

E is T-satisfiable

Quantifiers
Module

— Theory solvers determine whether E is T-(un)satisfiable

In this talk: DPLL(T)+Quantifiers, simplified

T-Clauses F' =

Satisfying
Assignment Theory
SAT Solver M solver(s)

Quantifiers -
Module

EWQ is T-satisfiable

= If E is T-satisfiable, quantifiers module may be invoked

In this talk: DPLL(T)+Quantifiers, simplified

T-Clauses F' =

SAT Solver

Satisfying
Assignment
M

Theory
solver(s)

Quantifiers
Module

EWQ is T-satisfiable

—=> The remainder of the talk will discuss how the quantifiers module is implemented

DPLL(T)+Quantifiers, further simplified

T-clauses F

Ground

Solver

-_— e o e o
=== e
—_—
—
—

ground literals E
Y formulas Q

—
—
~~

Quantifiers
Module

j * |Inputs:

e Set of ground T-literals E
e Set of V formulas Q

* Qutputs:
e “EUQ is T-satisfiable”, or
= Fis T-satisfiable
e Set of lemmas toaddto F

DPLL(T)+Quantifiers, further simplified

T-clauses F' «

Ground

Solver

— e -
-_—__—————
—
—
—
—
—
—
—_—

ground literals E

Y formulas Q

* Recurrent Questions:
* Which lemmas do we add?

e How do we know EUQ is T-satisfiable?

e When do we invoke it?

Quantifiers
Module

J * |Inputs:

e Set of ground T-literals E
e Set of V formulas Q

* Qutputs:
e “EUQ is T-satisfiable”, or
= Fis T-satisfiable
e Set of lemmas toaddto F

Which lemmas do we add: Basics

P(a)
E{ f(b)>a+l
Quantifiers
_Vx.P (%) Module
Q{ Vx.f (x)=0g(x)+h (x)

g (x X
Vy.=P(y) VR(g(y))

Which lemmas do we add: Basics

0 P(a) —Vx.P(x) = =P (k)
f (b) >a+1

Quantifiers L&

———

Module

—Vx.P(x)
Q{ Vx.f (x)=g(x)+h (x)
Vy.=P(y) VR(g(y))

 Existential quantification (negated universals) handled by Skolemization
* Introduce a fresh witness k, lemma says dx.—P (x) implies =P (k)
* Need only be applied once

Which lemmas do we add: Basics

P (a)
i { f (b)>a+1

—Vx.P(x)
Q{ Vx.f (x)=g(x)+h (x)
Vy.=P(y) VR(g(y))

Quantifiers

Module

return

———

= —P (k)
(x) = f(a)=g(a)+h(
= £ (b) =g (b) +h (

* Universal quantification handled by Instantiation

* Choose ground term(s) t, lemma(s) say Vx. £ (

—> May be applied ad infinitum!

x) =g (x)+h (x) implies £ (t)=g (t)+h (t)

Quantifiers Module : Recurrent Questions

 Which instances do we add?
* E-matching [Detlefs et al 03]
Conflict-based quantifier instantiation [Reynolds et al FMCAD14]
Model-based quantifier instantiation [Ge,de Moura CAV09]
* Counterexample-guided quantifier instantiation [Reynolds et al CAV15]

Quantifiers Module : Recurrent Questions

 Which instances do we add?

* E-matching [Detlefs et al 03]

* Conflict-based quantifier instantiation [Reynolds et al FMCAD14]

* Model-based quantifier instantiation [Ge,de Moura CAV09]

* Counterexample-guided quantifier instantiation [Reynolds et al CAV15]
* How do we know EUQ s satisfiable?

* For some strategies and fragments, saturation = EUQ is satisfiable

* E.g. model-based, counterexample-guided

Quantifiers Module : Recurrent Questions

 Which instances do we add?
* E-matching [Detlefs et al 03]
Conflict-based quantifier instantiation [Reynolds et al FMCAD14]
Model-based quantifier instantiation [Ge,de Moura CAV09]
* Counterexample-guided quantifier instantiation [Reynolds et al CAV15]

* How do we know EUQ is satisfiable?
* For some strategies and fragments, saturation = EUQ is satisfiable
* E.g. model-based, counterexample-guided
 When do we invoke the quantifiers module?
* Eagerly, during the DPLL(T) search [Detlefs et al 03, deMoura/Bjorner CAV07], OF
* Lazily, only if EUQ is a complete satisfying assignment

Techniques for Qua

F, ..

Ground
Solver

Instances of ¥V in Q

ntifier Instantiation: Overview

Satisfying
assignment

E,Q

Quantifiers Module

s

Conflict-Based

E-matching

CE-Guided

Model Based

i

Generally,
used for quantifiers with UF

f

Generally,
used for quantifiers w/o UF

l EWQ is T-satisfiable

Techniques for Qua

F, ..

Ground
Solver

Instances of V in Q

Satisfying
assignment

E,Q

ntifier Instantiation: Overview

Quantifiers Module

s

Conflict-Based

E-matching

Model Based

\
|

Generally,
used for quantifiers with UF

|

Generally,
used for quantifiers w/o UF

— Will describe details of each of these strategies

l EWQ is T-satisfiable

E-matching

* Introduced in Nelson’s Phd Thesis [nelson 80]
* Implemented in early SMT solvers, e.g. Simplify [Detlefs et al 03]

* Most widely used and successful technique for quantifiers in SMT

e Software verification
e Boogie/Dafny, Leon, SPARK, Why3

* Automated Theorem Proving
* Sledgehammer

* Variants implemented in numerous solvers:
e /3 [deMoura et al 07], CVC3 [Ge et al 07], CVC4, Princess [Ruemmer 12], VeriT, AIt-Ergo

E-matching
P(a)
—P (b)
E{ R(C)
—R (a)
S (e)

Vx.P(x) VR (x)

E-matching

[
[

E-matching

P(a)
—P (b)
R (c)
—R (a)
S (e)

Conflict-Based

E-matching

Model Based

Vx.P(x) VR (x)

Conflict-Based

| ConflictBased

E-matching
P(a)
—P (b)
E % R(c)
—R (a)
S (e)

Q{ Vx.P(x) VR (x)

\)
|

Pattern

= Idea: choose instances based on pattern matching

E-matching

Vx.P(x) VR (X)

\ }
|

Pattern

return
———

Conflict-Based

E-matching

Model Based

(Vx.P(x) VR(x))=P(a)VR (a)

E-matching

—P (b)

E{ R(c)
—R(a)

S (e)

| ConfecBased

| Emaching

5 (a) | VodelBased
(Vx.P(x) VR(x))=>P(a) VR(a)

return

— = —

Q{ Vx.P(x) VR(x)

\ J
|

Pattern

Conflict-Based

E-matching: Functions, Equality E—

Model Based

Conflict-Based

E-matching: Functions, Equality e

Model Based

= In E-matching, Pattern matching takes into account equalities in E

E-matching: Functions, Equality

P(a, c)
E:{ f (b)=a

Q{ Vxy.P(f(x),y) =9 (x)=y

K /
|

Pattern

Conflict-Based

E-matching

Model Based

Conflict-Based

E-matching: Functions, Equality E—

Model Based

P(a,c)
E{ f (b)=a

Q{ Vxy.P(£(x),y) =g (x)=y

P(a ,c)

Conflict-Based

E-matching: Functions, Equality B

Model Based

CeD

)

G

E{ P(a,c)
f (b)=a @P(a,
\

f
Congruence closure of E

d

Q{ Vxy.P(£(x),y) =9 (x)=y

P(a ,c)

Conflict-Based

E-matching: Functions, Equality B

Model Based

CeD

G

E{ P(a,c)
f (b)=a @P(a,

d

Q{ Vxy.P(£(x),y) =9 (x)=y

P(£(b),c) _ EimpliesP(a,c)<P(f(b),c)

Conflict-Based

Model Based

E-matching: Functions, Equality T ey
| VodelBased

f (b)=a

E]{ P(a,c)

Q{ Vxy.P(£(x),y) =9 (x)=y

P(£(b),c)

E-matching

Given:
e Set of ground T-literals E
* Quantified formula Vx .Y, where x is a tuple of variables
* A pattern p contain all variables in x
 Agroundterm g fromE

* Formally:
* We say g matches p modulo E under the substitution {x—>t}if E |=T g=p{x—>t}

E-matching

Given:
e Set of ground T-literals E
* Quantified formula Vx .Y, where x is a tuple of variables
* A pattern p contain all variables in x
 Agroundterm g fromE

* Formally:

* We say g matches p modulo E under the substitution {x—>t}if E |=T g=p{x—t}
_YJ

usually restricted such that
T is theory of equality

E-matching

Given:
e Set of ground T-literals E
* Quantified formula Vx .Y, where x is a tuple of variables
* A pattern p contain all variables in x

 Agroundterm g fromE

* Formally:
* We say g matches p modulo E under the substitution {x—>t}if E |=T g=p{x—t}
* E-matching:
1. Chooses (a set) of patterns p,, ..., p,, for Vx. ¥

2. Computes sets of pairs ({x—)tjl} - ({x—)tjn} ,95,) Where g, matches p, modulo E
3. Returnstheinstances (Vx.¥Y = Y{x—>t;;}), .., (Vx.¥Y = ¥Y{x—>t__})

E-matching: Intuition

e Say E-matching returns the instance (Vx.¥Y = Y{x—>t})
=> Why is this instance useful?

E-matching: Intuition

e Say E-matching returns the instance (Vx.Y¥Y = Y{x—>t})
=> Why is this instance useful?

* We are interested in satisfiability of ELQ

E-matching: Intuition

e Say E-matching returns the instance (Vx.Y¥Y = Y{x—>t})
=> Why is this instance useful?

* We are interested in satisfiability of EUQ
* Assume pattern p is a subterm of ¥, e.g. Vx . ¥[p]

E-matching: Intuition

e Say E-matching returns the instance (Vx.Y¥Y = Y{x—>t})
=> Why is this instance useful?

* We are interested in satisfiability of EUQ
* Assume pattern p is a subterm of ¥, e.g. Vx . ¥[p]
* E-matching finds a ground term g from E, where g=p{x—t}is implied by E

E-matching: Intuition

e Say E-matching returns the instance (Vx.Y¥Y = Y{x—>t})
=> Why is this instance useful?

* We are interested in satisfiability of EUQ

* Assume pattern p is a subterm of ¥, e.g. Vx . ¥[p]

* E-matching finds a ground term g from E, where g=p{x—t}is implied by E
* Thus: W[g]isimplied by EU{Y¥[p] {x—>t}}

E-matching: Intuition

e Say E-matching returns the instance (Vx.Y¥Y = Y{x—>t})
=> Why is this instance useful?

* We are interested in satisfiability of EUQ
* Assume pattern p is a subterm of ¥, e.g. Vx . ¥[p]
* E-matching finds a ground term g from E, where g=p{x—t}is implied by E

* Thus: Y[g]isimplied by EU{¥Y[p] {x—>t}}
= In other words, from Q, we learn information W[g] about a term g from E

E-matching: Intuition

e Say E-matching returns the instance (Vx.Y¥Y = Y{x—>t})
=> Why is this instance useful?

* We are interested in satisfiability of EUQ
* Assume pattern p is a subterm of ¥, e.g. Vx . ¥[p]
* E-matching finds a ground term g from E, where g=p{x—t}is implied by E

* Thus: Y[g]isimplied by EU {¥Y[p] {x—>t}}
—>In other words, from Q, we learn information WY[g] about a term g from E

P(a,c)=g (b)=cisimplied by

{P(a,c),f(b)=alu{P(£(b),c)=g(b)=c}
E with new instance

Conflict-Based

E-matching
P(a,c)
f (b)=a
Ground Vx.g(x)#c
Solver Vxy.P(f(x),y) =g (x)=y

(Vxy.P(£(x),y) =29 (xX)=y)=>
P(f(b),c) =g(b)=c

\)
|

From this instance,
we learn g (b) =c

E-matching

Ground

Solver

Conflict-Based

E-matching

Model Based

P(a,c)
f (b)=a
Vx.g(x)#C

Vxy.P(f(x),y) =g (x
—(Vxy.P(f(x),y) =>g(x)=y)v—-P(£(b),c) vg(b)=c

) =Yy

E-matching

Conflict-Based

E-matching

Model Based

Ground
Solver

P(a,c)
f (b)=a
g(b)=c

Vx.g(x)#C
Vxy.P(f(x),y) =g(x)=y

E-matching

E-matching

Ground

Solver

P(a, c)
f (b)=a
g(b)=c

Conflict-Based

E-matching

Model Based

Vx.g(x)#c

Vxy.P(f(x),y) =g (x

) =Y

(Vx.g (x)#c) =g (b) #c

—> New terms lead to new instances

Conflict-Based

E-matching e
Model Based
P(a,c)
f (b)=a
Ground Vx.g(x)#C
Solver Vxy.P(f(x),y) =g (x)=y

—(Vxy.P(£(x),y) =g (x)=y)v=P(f£(b),c) vg(b)=c
—(Vx.g(x)#c)vg(b)#c

Conflict-Based

E_matCh I ng E-matching

Model Based

Ground
Solver

—Success!

E-matching: Challenges

* E-matching has no standard way of selecting patterns

* E-matching generates too many instances
* Many instances may overload the ground solver

* E-matching is incomplete
* |t may be non-terminating

* When it terminates, we generally cannot answer “E\UQ is T-satisfiable”

* Although for some fragments+variants, we may guarantee (termination << model)
* Decision Procedures via Triggers [Dross et al 13]
* Local Theory Extensions [Bansal et al 15]

— Typically are established by a separate pencil-and-paper proof

E-matching: Pattern Selection T ey

* In practice, pattern selection can is done either by:

* The user, via annotations, e.g. (! .. :pattern ((P x)))
e The SMT solver itself

* Recurrent questions:
* Which terms be we permit as patterns? Typically, applications of UF:
e Use f (x,vy) butnot x+v for Vxvy. f (x, v)=x+vy

 What if multiple patterns exist? Typically use all available patterns:
e Use both P (x) andR (x) for Vx.P (x) VR (x)

 What if no appropriate term contains all variables? May use “multi-patterns”:
* {R(x,y) ,R(y,z)}forVxyz. (R(x,y)AR(y,2))=>R(x,2z)

e Pattern selections may impact performance significantly [Leino et al 16]

Conflict-Based

E-matching: Too Many Instances e

Ground Model Based

Solver

E-matching

 Typical problems in applications:
* F contains 1000s of clauses

Conflict-Based

E-matching: Too Many Instances

E-matching

Ground
Solver
| J
H 1
\ Y J
~1000 E-matching
\ J
[
~100

 Typical problems in applications:
* F contains 1000s of clauses
e Satisfying assignments contain 1000s of terms in E, 100s of ¥V in Q

Conflict-Based

E-matching: Too Many Instances ¢ matching

Model Based

Ground
Solver

[
I_\

~100

* Typical problems in applications:
e [contains 1000s of clauses
e Satisfying assignments contain 1000s of terms in E, 100s of ¥V in Q
 Leadsto 100s

Conflict-Based

E-matching: Too Many Instances

E-matching

Model Based

Ground
Solver

~100
* Typical problems in applications:
* F contains 1000s of clauses

e Satisfying assignments contain 1000s of termsin E, 100s of ¥V in Q
e Leads to 100s, 1000s

Conflict-Based

E-matching: Too Many Instances

E-matching

Sl o
Solver
~1ooooo Y
~10000
~1oo

* Typical problems in applications:
* F contains 1000s of clauses

e Satisfying assignments contain 1000s of termsin E, 100s of ¥V in Q
e Leads to 100s, 1000s, 10000s of instances

E-matching: Too Many Instances T ey

~ OVERLOADED
F,oE F

~100000 } ~1oooo

}

"’100

—> Ground solver is overloaded, loop becomes slow,
...solver times out

E-matching: Too Many Instances

Instances cvc3 cvcd z3
% i % i %
1-10 1464 13.49% | 1007 8.87% 1321 11.43%
10-100 | 1755 16.17% |1853 16.31% | 2554 22.11%
100-1000 | 3816 35.16% |[3680 32.40% |4553 39.41%
1000-10k | 1893 17.44% | 2468 21.73% | 1779 15.40%
10k-100k | 1162 10.71% | 1414 12.45% 823 7.12%
100k-1M | 560 5.16% 607 5.34% 376 3.25%
1M-10M | 193 1.78% 330 2.91% M
>10M 10 0.09% 0 0.00% |1 81 0.07%

e Evaluation on 33032 SMTLIB, TPTP, Isabelle benchmarks

* E-matching often requires many instances

E-matching

(for 8 of benchmarks z3 solves,
its E-matching procedure adds
more than 10M instances)

(Above, 16.6% required >10k, max 19.5M by z3 on a software verification benchmark from TPTP)

E-matching: Too Many Instances

[
E-matching
[

a=7t (a)

P(...
a=f (b) - zpﬁ
P(a, a) _rtitgrf’ . :>P(

=P (...
vxl...X32.P(f(X1)/°°°If(X32))

= In fact, E-matching may be exponential, above produces 23% instances

Thus, we limit # matches per ground term/pattern pair

Conflict-Based

E-matching: Non-termination e matching

Model Based

Ground
Solver

E-matching

—> E-matching may be non-terminating

E-matching: Non-termination

Conflict-Based

E-matching

Model Based

Ground

Solver

E-matching

E-matching: Non-termination

Conflict-Based

E-matching

Model Based

Ground |}
Solver

f (a) =a

Vx.f(f(x))=Ff(x)

Vx.f(f (x))=f (x)
f(a)=a
f(f(a))=£f(a)

E-matching: Non-termination

Ground

Solver

f (a)=a
f(f(a))=£(

a)

Conflict-Based

E-matching

Model Based

E-matching

E-matching: Non-termination

Ground

Solver

f (a)=a
f(f(a))=1f(a)

Conflict-Based

E-matching

Model Based

Vx.f(f (x))=f (x)
f(a)=a
f(£(a))=£f(a)
f(£(£(a)))=£(£(a))

Vx.f(f(x))=Ff(x)

Conflict-Based

E-matching: Non-termination e matching

<
<

© (%) 2 LOOPS INDEFINITELY
f(a)

t(£(f(a))=£(£(a))

t(f(a))=

Model Based

.

Situation is referred to as a matching loop

E-matching: Non-termination

/m ez
N) £ (
1

1
1

LOOPS INDEFINITELY

' S
J * Various ways to avoid matching loops, e.g. by:

e Restricting pattern selection

* Fair instantiations strategies (track “levels”)

Conflict-Based

E-matching: Incompleteness p——

Model Based

B { empty

Vx.P(x)
Q{ Vx.=P (x)

—> E-matching is an incomplete procedure

Conflict-Based

E-matching: Incompleteness —

Model Based

No
- Instances
Found

B { empty

return

Vx.P(x)
Q{ Vx.=P (x)

= If E-matching produces no instances,
this does not guarantee E_/Q is T-satisfiable

E-matching: Summary

* Using matching ground terms from E against patterns in Q:
- From Q, learn constraints about ground terms g from E

E-matching: Summary

* Using matching ground terms from E against patterns in Q:
- From Q, learn constraints about ground terms g from E

* Challenges
* What can we do when there too many instances to add?

* What can we do when there are no instances to add, problem is “sat”?

E-matching: Summary

* Using matching ground terms from E against patterns in Q:
- From Q, learn constraints about ground terms g from E

* Challenges
* What can we do when there too many instances to add?
—=>Use conflict-based instantiation [Reynolds/Tinelli/deMoura FMCAD14]

* What can we do when there are no instances to add, problem is “sat”?
—=Use model-based instantiation [Ge/deMoura CAV09]

Conflict-Based Instantiation

* Implemented in solvers:
* CVC4 [Reynolds et al 14], recently in VeriT [Barbosa16]

* Basic idea:
1. Try to find a “conflicting” instance such that EUW{x—>t} implies L

(by contrast, E-matching does not distinguish such instances)
2. If one such instance can be found, return that instance only

(and do not run E-matching)

= Leads to fewer instances, improved ability of ground solver to answer “unsat”

Conflict-Based Instantiation

P(a),—P(b)
P(c),—R(a)
R(d),—R(e)

R (c)

-1

Conflict-Based

E-matching

Model Based

Vx.P(x) VR (X)

Conflict-Based Instantiation

=
2

P(a)
P(c)
R (d)
R

-1

/_'P(
r_'R(
r_'R(
(c)

)
)
)

Conflict-Based

E-matching

Model Based

Vx.P(x

) VR(x

)

XXX

9 tu U O
i

A~ A~ A~ A~ A~
N S’ S’ S’ SN

< < < <K KL

)X

o W W
X
< << <<

X

XXX X
Uiy
' 0 U U T
™ W W

O
O

—> E-matching would produce {x—a}, {x—b}, {x—>c}, {x—>d}, {x—e}

gel
)
(%)
©
(e}
S
2
=
c
o
O

Conflict-Based Instantiation

P e e U U U

S S’ S S S

P e e U U U

S S’ S’ S’ S

P e U U s

P e U U e e U

N SN’ SN’ S’ S

A~ NS S o~ A~

SN S’ S’ S’ SN

N S’ S’ S SN

Q© o
AN~
- rro
)))R
T O T [
A A
[
,|<|\
Fr]

AN N N N N

N N N S S

P e U

N S S S S

P e U e e s

N N N S S

P e U e e U

N S’ S’ S S

,,,,,

,,,,,

gel
)
(%)
©
(e}
S
2
=
c
o
O

Conflict-Based Instantiation

P e e U U U

S S’ S S S

P e e U U U

S S’ S’ S’ S

P e U U s

P e U U e e U

N SN’ SN’ S’ S

A~ NS S o~ A~

SN S’ S’ S’ SN

N S’ S’ S SN

QT o
Ao~
T T T o
)))R
8 oo T
AL A
]
,|<|\
[

By E, we know P (a) < T

AN N N N N

N N N S S

T
(
(
(
(

P U U e U e s

N SN’ S S S

P e U e e U

N S’ S’ S S

,,,,,

,,,,,

P e e U U U

S S’ S S S

gel
)
(%)
©
(e}
S
2
=
c
o
O

P e e U U U

S S’ S’ S’ S

P e U U s

P e U U e e U

N SN’ SN’ S’ S

))))) n
EICICICICH IS
YR VR VRN TR Y -
X O
X X X X x|
>> > > > 2 e
(((((— Q 0 T O
A m X ox oo
- = > > > >
@) p Q U T o
-l—U mT((((
aVRNa VR e VAW
O O
® emm— f__________
4+
- C
© G T203T 0
1y o N
- WVVVVV
— ~ ©.Q O T O
a (((((
O e A
Q
) ~ ~ ~ X 2 333ada
a bae Rr IIIII
- = = U 0 K KR
af AN~ > | O
_ [[[O NN
t O Xn
= © O T [n | O
fl—l N S’ S .
O] >
@,)
Ed Ol

T EE B R o I iy
2 8L oo o
m Yox X —
= > > > > > @
n)))))
S CRCICRCHO ~
Ao l.h.w
I Y
HROX N X 2
XYoo oo £
> > > > > .. w
REEEE Y S
YR VR VRN TR Y -
. ©
XX X X x| B
>> > > > 2 e
(((((— Q 0O T O
A e S = =
A o XYoo
- = > > > >
O + 0T O
a m Ll __D__I_D__I_D__l_
— :m
(- e~ o~~~ —~
(O ®©882cye
1y o M
- WVVVVV
— —~ ©.Q O T O
a (((((
w e Ay
N ~ ~ ~ X 2 3d33ada
a bae Rmu IIIII
bt [B K] E]
af A~ > | O
| [I T O T
t O VA n
= © O T [n, | O
fl—l N S’ S .
O] >
@)
,|<|\ ,|<|\
Ed Ol

gel
)
(%)
©
(e}
S
2
=
c
o
O

Conflict-Based Instantiation

P e e U U U

S S’ S S S

P e e U U U

S S’ S’ S’ S

P e U U s

P e U U e e U

N SN’ SN’ S’ S

A~ NS S o~ A~

SN S’ S’ S’ SN

N S’ S’ S SN

Q© o
AN~
- rro
)))R
T O T [
A A
[
,|<|\
Fr]

— Consider what we learn from these instances:

P e U e U U e

N SN’ S’ S S

P e U e e U

N S’ S S S

,,,,,

,,,,,

P e e U U U

S S’ S S S

©
()]
s
& N oo —]
= > > > > > @
n)))))
S CRCICRCHO ~
Aoy ln.w
fonnn Y
HROX N X 2
XYoo oo £
> > > > > . O
REEEE Y S
YR VR VRN TR Y -
X O
X X X X x|
>> > > > 2 o
(((((= T O
A e S— S
A & X
- = > >
@) p Q 0T o
.U mT((((
© o o E
— :m
(- O o~ o~~~ —
(O o reeee
1y o N
- WVVVVV
o —~ ©.Q O T O
a (((((
w e A
) ~ ~ ~ X 2 3333 a
a bae Rr IIIII
- = = U 0 K KA
af A~ S | O
! [[© | '»
-+ G Xn
fl—l SN S’ .
O [>
@)
,|<|\ JL
Ed Ol

gel
)
(%)
©
(e}
S
2
=
c
o
O

Conflict-Based Instantiation

P e e U U U

S S’ S S S

P e e U U U

S S’ S’ S’ S

P e U U s

P e U U e e U

N SN’ SN’ S’ S

A~ NS S o~ A~

SN S’ S’ S’ SN

N S’ S’ S SN

Q© o
Ao~
- rro
~ o~ ~ X
T OO0 [
VRTINS
ﬁ
,|<|\
]

— Consider what we learn from these instances:

We knowR(d) =T

AN AN N N N

N N S S S

P e U e e U

T Q O T O
oomoA A
O aaaa

gel
)
(%)
©
(e}
S
2
=
c
o
O

Conflict-Based Instantiation

P e e U U U

S S’ S S S

P e e U U U

S S’ S’ S’ S

P e U U s

P e U U e e U

N SN’ SN’ S’ S

A~ NS S o~ A~

SN S’ S’ S’ SN

N S’ S’ S SN

9C
AFEN Al s A
ﬁﬁ_./w
)))R
T O T [
TN a VI
[
,|<|\
[]

— Consider what we learn from these instances:

I_
o
M
=
@
C
=
)
=
N Ay

AN AN N N N

N N S S S

P e U e e U

T Q O T O
oomoA A
O aaaa

- IR 1 -
2 8L o7T 9
m Yoy ooy —
= > > > > > @
n)))))
S CRCICRCHO ~
TR VRe Ve VR o
T >
HX N XX Z
XYoo oo £
> > > > > L O
REEER Y S
YR a VRN o VRN a VI Y -
. ©
X XX X x| P
PErrE 2
t Q
O
n <
O p Q)
* c— T(I_T/.\
4 &
e @ Ny
-m ﬂ Ll Ll Ll Ll Ll
-+ c
n | R e T T T
(O ®© 882cy
1y o NN
- WVVVVV
o = © Q O T O
a (((((
w R I = « Y VI a PR Vi ¥
N —~ ~ ~ X2 33daa
a bae Rr NN N N N
— = = Q I KA
_ [[[O _'®
t /II(Xn
fl—l SN—" S S .
O] >
@)
,|<|\ ,|<|\
] @)

P e e U U U

S S’ S S S

P e e U U U

gel
)
(%)
©
(e}
S
2
=
c
o
O

S S’ S’ S’ S

P e U U s

P e U U e e U

N SN’ SN’ S’ S

))))) n
CRCECICHCH S
YR a VRN o VRN a VI Y -
. ©
XX X X x|
PrErE 2
t Q
N
- b
O s o))
* c— T(I_T/.\
4+ &
e @ Ny
-m ﬂ____:____
-+ c
n | R e e e e
(O o reeee
1y o N
- WVVVVV
o = © Q O T O
a (((((
w R I = o VR VI o VR a VYo ¥
N ~ =~ ~ X2 dadada
a bae Rr NN N N N
— = = Q I KA
af AN~ > | O
_ [[[©O I '»;
t O Xn
= © O T [n, | O
fl—l SN—" S S .
®)] o
O —
] @)

Conflict-Based Instantiation

P(a)
P(c)
R (d)
R

-1

, —P (D)
r_'R()
r_'R()

(c)

Vx.P(x

) VR(x)

Conflict-Based
1
1

g v 0 g ™
X

X

XX

X

}XooX

VNS VR SRS RPN
XXX

< < < <K KL

O QO O W

o O /™ O ™
< < < K KL
VR VI SRS RPN

O Q0 T w

TN

0
0

— Consider what we learn from these instances:

E,Q,P(a) vR(a)
E,Q,P(b) vR(b)
E,Q,P(c) VR(c)
E,Q,P(d) vR(d)
E,Q,P(e) VR (e)

T

>} P(c

P (e)

) VR (c) is a conflicting
instance for (E,Q) !

Conflict-Based Instantiation

P(a),—P(b)

—P (c),—=R(a)

R(d),—R(e)
—R (cC)

Vx.P(x) VR (x)

Conflict-

based
Instantiation

Conflict-Based
|
|

» (Vx.P(x) VR(x))=P(c) VR(c)

— Consider what we learn from these instances:

a) g T
b) EF R(b
c) F L
d) g T
e) E P(e

)

)

I

Since P (c) VR (c)
suffices to derive L,
return only this instance

Conflict-Based Instantiation

* Why are conflicts important?
* As with the ground case, they prune the search space of DPLL(T)

* Given a conflicting instance for (E, Q) is added to the clause set F
* Solver is forced to choose a new sat assignment (E’ , Q')

e S

Conflicting
instance
found,

Backtrack

l l

E,Q0 .. E',Q’ .. E”, Q" ..

Conflict-Based Instantiation: EUF

Conflict-Based

E-matching

Model Based

Conflict-Based Instantiation: EUF

g(b)=a, f(a)=a,
I h(f(a))=d,h(b)=c

Q{ Vx.f(g(x))=h(f(x))

= Consider the instance Vx.f (g (x))=h (f (x))=f (g(b))=h(f (b))
* Is this conflicting for (E, Q) ?

Conflict-Based

Conflict-Based Instantiation: EUF

E-matching

Model Based

L
Q 0 O

0 g (b)=a, f(a)
h(f(a))=d,h(b)

Q{ Vx.f(g(x))=h(f(x))

E,Q,f(g(b))=h(f(b)) fe £(g(b))=h(£f (b))

Conflict-Based Instantiation: EUF

@@HD
M Coeono o Camnie@)

Consider the equivalence classes of E

Conflict-Based Instantiation: EUF

g(b)=a, f(a)=a,
I h(f(a))=d,h(b)=c

@=fD
H Ceno o Canie@)
f g

h

AN Y\
a b a d c
\ J

|
Build partial definitions for functions in terms of representatives

E,Q,f(g(b))=h(f(b)) k; £(g(b))=h(f (b))

Q{ Vx.f(g(x))=h(f(x))

Conflict-Based

Conflict-Based Instantiation: EUF

E-matching

Model Based

L
Q 0 O

g(b)=a, f(a)
E{ h(f(a))=d,h(b) <

Q{ V. £ (g (%)) <h (£ (x)) .

E,Q,f(g(b))=h(f(b)) e £(g(b))=h(£f (b))

U@ III

Conflict-Based

Conflict-Based Instantiation: EUF

E-matching

Model Based

L
Q 0 O

g(b)=a, f(a)
E{ h(f(a))=d,h(b) <

Q{ V. £ (g (%)) <h (£ (x)) .

E,Q,f(g(b))=h(f(b)) e f(g(b))=h(b)

U@ III

Conflict-Based Instantiation: EUF

azc, £ (b)=b,
g(b)=a, f(a)=a,
E{ h(f(a))=d,h(b)=c <
Q{ Vx.f (g (x))

E,0Q,f (g

o .

Conflict-Based

E-matching

Model Based

U@ III

Conflict-Based

Conflict-Based Instantiation: EUF

E-matching

Model Based

g(b)=a, f(a)=a,
E{ h(f(a))=d,h(b)=c <

Q{ V. £ (g (%)) <h (£ (x)) .

E,Q,f(g())=h(f(b)) e £(a)= c

U@ III

Conflict-Based Instantiation: EUF

azc, £ (b)=b,

g(b)=a, f(a)=a,

E h(f(a))=d,h(b)=c

Q{ Vx.f(g(x))=h(f(x))
E,Q, f((b))=h(f(b))|=E

_a=g

Conflict-Based

E-matching

Model Based

Ué III

Conflict-Based Instantiation: EUF

azc, £ (b)=b,

g(b)=a, f(a)=a,

E h(f(a))=d,h(b)=c

Q{ Vx.f(g(x))=h(f(x))
E,Q, f((b))=h(f(b))|=E

_a=g

Conflict-Based

E-matching

Model Based

Ué III

Conflict-Based

Conflict-Based Instantiation: EUF

E-matching

Model Based

a¥c, f (b)=b,
g(b)=a,f(a)=a
E{ h(f(a))=d,h(b)=c <

Q{ V. £ (g (%)) <h (£ (x)) .

E,Q,f(g(b))=h(£f(b)) [1 From E, we know a#c

U@ III

Conflict-Based
|

Conflict-Based Instantiation: EUF

azc, £ (b)=b,
g(b)=a, f(a)=a, _ _
E{ h(f (a))=d,h (b)=c @(b)‘fD

f g

h

AP 7

a b a d C

f (g(b))=h(f (b)) isaconflicting
1 } instance for (E, Q) !

Conflict-Based Instantiation: EUF

..., (b)=Db,
E{ g(b)=a, f(a)=a,
h(f(a))=d,h(b)=c

Q{ Vx.f(g(x))=h(f(x))

—> Consider the same example, but where we don’t know a#c
 Istheinstance £ (g (b))=h (£ (b)) still useful?

Conflict-Based Instantiation: EUF

..., f(b)=b,
g(b)=a, f(a)=a,
h(f(a))=d,h(b)=c
Vx.f(g(x))=h(f(x))

Conflict-Based

E-matching

Model Based

_a=g

U@ III

Build partial defmltlons

Conflict-Based
|

Conflict-Based Instantiation: EUF

If(b):br
g(b)=a, f(a)=a, _ _
E{ h(f (a))=d,h (b)=c @(b)‘fD

h

AP 7

a b a d C

f g

E,Q,ft(g(b))=h(f (b)) |=E f(g(b))=h(f (b)) } Check entailment

Conflict-Based Instantiation: EUF

..., f(b)=Db,
g(b)=a, f(a)=a,

E{ h(f(a))=d,h (b)=c <

Q{ Vx.f (g (x))

E,0Q,f (g

o .

Conflict-Based

E-matching

Model Based

Ué III

Conflict-Based Instantiation: EUF

..., £(b)=b,
g (b)=a, f(a)=a, () —
E{ h(f (a))=d,h (b)=c 50 @(b)‘fD

f g

h

AP 7

a b a d C

Q{ Vx.f(g(x))=h(f(x))

Instance is not conflicting,
but propagates an equality

E,Q,f(g(b))=h(£f (b)) Fe a=c} between two existing terms in E

Conflict-Based Instantiation: EUF

..., £(b)=b,
g(b)=a, f(a)=a, _ _
E{ h(f (a))=d,h (b)=c @(b)‘fD

i g

h
adL 7N
a b a d c
f(g(b)=h(f(b)) isa
propagating instance for (E, Q)
E,Q,f(g(b))=h(f (b)) fe a=c} — These are also useful

Q{ Vx.f(g(x))=h(f(x))

Conflict-Based

Conflict-Based Instantiation

Given:

* Set of ground T-literals E
* Quantified formulas Q

e Conflict-based instantiation:

1. If there exists a conflicting instance E, Y{x—t} |=T 1
* Returns {Vx.¥ =¥Y{x—>t}}only

2. If there exists propagating instance(s), &, ¥ {x—>t; } |=T s.=u,, fori=1,..,n
* Returns {Vx.¥, = ¥ {x—>t,}, .., Vx¥ =Y {x>t_ } }only

3. Otherwise:
e Returns “unknown” (and the quantifiers module will resort to E-matching)

Conflict-Based

Conflict-Based Instantiation

Given:

* Set of ground T-literals E
* Quantified formulas Q

usually restricted such that
T is theory of equality

e Conflict-based instantiation: —

1. If there exists a conflicting instance E, Y{x—t} |=T5L/
* Returns {Vx.¥ =¥Y{x—>t}}only

2. If there exists propagating instance(s), &, ¥ {x—>t; } |=T .=u,, fori=1,.,n
* Returns {Vx.¥, = ¥ {x—>t,}, .., x¥ =Y {x>t_ } }only

3. Otherwise:
e Returns “unknown” (and the quantifiers module will resort to E-matching)

cvcd+ci

Conflict-Based Instantiation: Impact

le+7

let6 F

le+5

le+4d

1000

100 f

10

Conflict-Based
|
|

* Using conflict-based
instantiation (cve4+ci),
require an order of magnitude
fewer instances for showing
“UNSAT” wrt E-matching alone

+ ++

10 100 1000 1le+4 1le+5 1le+6 le+7
ovica

_ (taken from [Reynolds et al FMCAD14], evaluation
Reported number of instances. On SMTLIB, TPTP, Isabelle benchmarks)

Conflict-Based Instantiation: Impact Lo

e Conflicting instances found on ~75% of rounds (IR)

e Configuration cvc4d+ci:
 Calls E-matching 1.5x fewer times overall
* As a result, returns 5x fewer instantiations

E-matching Conflict Inst. Propagating Inst.

IR % IR # Inst % IR # Inst % IR # Inst

TPTP cved 71,634 100.0 878,957,688
cved+ci 208,970 20.3 150.351.384 76.4 159.696 3.3 415,772

[sabelle cved 6.969 100.0 119.008.834
cved+cl 21,756 224 28.196.846 64.0 13,932 13.6 130,864

SMT-LIB cved 14,032 100.0 60,650,746
cved+ci 58,003 20.0 32,305,788 71.6 41.531 8.4 51,454

Conflict-Based

Conflict-Based Instantiation: Impact

* CVC4 with conflicting instances cvcd+ci

* Solves the most benchmarks for TPTP and Isabelle
* Requires almost an order of magnitude fewer instantiations

TPTP Isabelle SMT-LIB
Solved Inst Solved Inst Solved Inst
cve3 5,245 627.0M 3,827 186.9M 3,407 42.3M
73 6,269 613.5M 3,506 67.0M 3,983 6.4M
cved 6,100 879.0M 3,858 119.0M 3,680 60.7M
cved+ci 6,616 150.9M 3,747 32.4M

= A number of hard benchmarks can be solved without resorting to E-matching at all

Conflict-Based

Conflict-Based Instantiation: Challenges

* How do we find conflicting instances?
* What about conflicts involving multiple quantified formulas?
* What if our quantified formulas that contain theory symbols?

Conflict-Based Instantiation: Challenges

* How do we find conflicting instances?

Conflict-Based
|

Conflict-Based Instantiation: Challenges

* How do we find conflicting instances?
* Naively:
1. Produce all instances ¥, ..., ¥, via E-matching for (E,Q)
2. Fori=1, .., n, checkif ¥, is a conflicting instance for (E,Q)

Conflict-Based Instantiation: Challenges

* How do we find conflicting instances?
* Naively:
1. Produce all instances ¥, ..., ¥, via E-matching for (E,Q)
2. Fori=1, .., n, checkif ¥, is a conflicting instance for (E,Q)
= but n may be very large!

Conflict-Based
e

Conflict-Based Instantiation: Challenges

* How do we find conflicting instances?
* Naively:
1. Produce all instances ¥, ..., ¥, via E-matching for (E,Q)
2. Fori=1, .., n, checkif ¥, is a conflicting instance for (E,Q)
* In practice: it can be done more efficiently:

* Basic idea: construct instances via a stronger version of matching

 |Intuition: for Vx.P (x) v Q (x), will only match P (x) with P (t) <L
(For technical details, see [Reynolds et al FMICAD2014])

Conflict-Based Instantiation: Challenges

Conflict-Based
|

* What about conflicts involving multiple quantified formulas?

3

Q

Vx.Py(x) =P, (%)
Vx.P,(x) =P, (x)

Vx.Pyg (X) =Py (X)

Conflict-Based Instantiation: Challenges

* What about conflicts involving multiple quantified formulas?

Vx.Py(x) =P, (%)
E{ P, (a) O VB ()P (%)

Vx.Pyg (X) =Py (X)

* Want to find:
E,P,(a)=>P,(a),P,(a)=>P,(a), ...,Py(a)=>P,(a) Fel

—> Current implementations would take 100 rounds to infer this

Conflict-Based Instantiation: Challenges

Conflict-Based
|

* What about quantified formulas that contain theory symbols?

E |

(1)

5

0

Vxy.f (x+y) >x+2*y

Conflict-Based Instantiation: Challenges

Conflict-Based
|

* What about quantified formulas that contain theory symbols?

E{ £ (1)

* Want to find, e.g.:

0

Vxy.f (x+y) >x+2*y

¢ E, f (_3+4) >_3+2*4 |=UFL|Af (_3+4) >_3+2*4

Conflict-Based Instantiation: Challenges

Conflict-Based

* What about quantified formulas that contain theory symbols?

E{ £ (1)

* Want to find, e.g.:

0

Vxy.f (x+y) >x+2*y

* B, f(-34+4)>-342%4 Fyraf (1)>5

Conflict-Based Instantiation: Challenges

Conflict-Based

* What about quantified formulas that contain theory symbols?

E{ £ (1)

* Want to find, e.g.:

0

* B, f(-344)>-3+2*4 E a5>5

Vxy.f (x+y) >x+2*y

By E, we know £ (1)=5

Conflict-Based Instantiation: Challenges

Conflict-Based

* What about quantified formulas that contain theory symbols?

E{ £ (1)

* Want to find, e.g.:

0

*E,f(-3+4)>-342*4 E qal

Vxy.f (x+y) >x+2*y

Conflict-Based Instantiation: Challenges

* What about quantified formulas that contain theory symbols?

E { £(1)=5 O % Vxy. £ (x+y) >x+2*%y

- —_—

* Want to find, e.g.:
*E,f(-3+4)>-342*4 koL

= In practice, finding such instances cannot be done efficiently

Conflict-Based Instantiation: Summary

* Instantiation technique for (E, Q), where:
= From Q, derive conflicts _[, and
equalities g,=g, between ground terms g, , g, from E

* Run with higher priority to E-matching

* Resort to E-matching only if no conflicting or propagating instances can be found

* Leads to fewer instances, greater ability to answer “unsat”

Model-based Instantiation

—P(a), P(b), =R(b), —=R(c)
N Vx.P(x) VR (x)

Ground

Solver
—P (a)
P (b)
—R (b)
—R (C)

Vx.P(x) VR (x)

— What if EUQ is satisfiable?

Conflict-Based

E-matching

Model-Based

Model-based Instantiation

1 1
o W g o
oo o

i

@

Vx.P(x) VR (x)

—-P(a), P(b), —=R(b), —=R(c) ——
VB (x) v R ()

— What if EUQ is satisfiable?

Use model-based quantifier instantiation (MBQJ)

Model-based Instantiation

* Implemented in solvers:

e /3 [Ge et al CAV09], CVvC4 [Reynolds et al CADE13]

* Basic idea:
1. Build interpretation M for all uninterpreted functions in the signature
ceg. PM @ Ax.ite (x>0,T,1)
2. If this interpretation satisfies all formulas in Q, answer “sat”
e e.g. interpretation M satisfies Vx .x>4=P (x)

= Ability to answer “sat”

Conflict-Based

Model-based Instantiation

—P(a), P(b), =R(b), —=R(c)
Vx.P(x) VR (x)

E-matching

Model-Based

—P (a)

P (b)

E{ —R (b)
—R (¢C)

Q{ Vx.P(x) VR(x)

Model-based Instantiation

|

Q O O v

i

|
ZORNPS B Vv

E-matching

—P (a) ’

Vi.P (1) VR (3)

Conflict-Based
|

Vx.P(x) VR (x)

M

{

\

J

|

Build interpretation M of predicates
* This interpretation must satisfy E

Model-based Instantiation

I
79N> S RAV v
Aaoown

Vx.P(x) VR (x)

E-matching

—P (a) ’

Vi.P (1) VR (3)

Conflict-Based
|

M

{

\

J

|

Build interpretation M of predicates
* This interpretation must satisfy E
* Missing values may be filled in arbitrarily

[Sl
Model-based Instantiation "

—|P(a), P(b), —|R(b), _IR(C) I —
Vi B (x) VR ()

|

P S e

M-

o O o

[
—
ERE

i

@

Q{ Vx.P(x) VR (x)

—> Does M satisfy Q?
* Check (un)satisfiability of: 3x.— (PM(x) vRM (x))

]
Co oo

i

|
ZORNPS B Vv

Model-based Instantiation "

—|P(a), P(b), —|R(b), _IR(C) I —
Vi B (x) VR ()

Vx.P(x) VR (x)

M-

Check: dx .= (PM(x) VRM (x))

Model-based Instantiation

1
79N> S RAV v
Aaoown

i

—-P(a), P(b), —R(b),
Vx.P(x) VR (x)

—lR(C)

Vx.P(x) VR (x)

Conflict-Based
|
|

Model-Based

M-

Check: = (PM (k) VRM (k))

— Skolemize

Model-based Instantiation

]
ao oo

i

|
ZORNPS B Vv

Vx.P(x) VR (x)

—P (a) ’

P(b), —R(b), —R(c)
Vx.P(x) VR (x)

M

Conflict-Based
|
|

Model-Based

{

Check: — (ite(k=a,l,ite(k=b,T,T)))V
ite(k=b,Ll,ite(k=c,L,1))))

— Substitute

Model-based Instantiation

—P (a) ’

P(b), —R(b),
Vx.P(x) VR (x)

—lR(C)

|

M

Q O O v

i

|
ZORNPS B Vv

Vx.P(x) VR (x)

Check: — (k#a v 1)

Conflict-Based
|
|

Model-Based

{

= Simplify

Model-based Instantiation

]
Co oo

i

|
ZORNPS B Vv

Vx.P(x) VR (x)

—-P(a), P(b), —R(b),
Vx.P(x) VR (x)

—lR(C)

Conflict-Based
|
|

Model-Based

M-

Check: k=a

= Simplify

1
79N> S RAV v
Aaoown

i

Vx.P(x) VR (%)

Model-based Instantiation "

—|P(a), P(b), —|R(b), _IR(C) I —
Vi B (x) VR ()

M-

Check: k=a

—> Satisfiable! There are values k for which M does not satisfy O

Model-based Instantiation

Ground
Solver

—P (a)

P (b)
—R (b)
—R (C)

Vx.P(x) VR (x)

Conflict-Based

E-matching

—-P(a), P(b), =R(b), —R(c)

—l Vx.P(x) VR (x) Model-Based

e Wk . P (x) VR(x))=P (a) VR (a)

— Add one instance
for one such value of k

Check: k=a for which M did satisfy O

Model-based Instantiation

—P (a)

P (b)
—R (b)
—R (C)

—P (a) ’

P(b), —R(b), —R(c)
Vx.P(x) VR (x)

- (Vx.P(x) VR(x))VP(a)VR(a)

Vx.P(x) VR (x)

Conflict-Based

E-matching

Model-Based

Model-based Instantiation

2
3

| e

—P(a), P(b), =R(b), =R(c)

Vx.P(x) VR (x)
—(Vx.P(x) VR(x))VP(a)VR(a)

Conflict-Based

E-matching

Model-Based

Ground

Solver
—P (a)
P (b)
—R (b)
—R (c)
R (a)

Vx.P(x) VR (x)

—> Subsequent models must satisfy P (x) v R (x) for x—a

Model-based Instantiation

2
3

Conflict-Based

E-matching

| e

—P (a) ’

P(b), —R(b), —R(c)
Vx.P(x) VR (x)
—(Vx.P(x) VR(x))VP(a)VR(a)
- (Vx.P(x) VR(x))VP(c)VR(c)

Model-Based

Ground

Solver
—P (a)
P (b)
—R (b)
—R (c)
R (a)

Vx.P(x) VR (x)

Repeat as necessary
—>Model refinement loop

Conflict-Based

Model-based Instantiation

E-matching
—-P(a), P(b), =R(b), —R(c)
Vx.P(x) VR(x) Model-Based
—(Vx.P(x) VR(x))VvP(a)VR(a)
—(Vx.P(x) VR(x))VP(c)VR(c)
—|P(a)
, P (b)
E™ 4R (b)
_IR(C)
R (a)
P(c)
Q//
Vx.P(x) VR (x)

Model-based Instantiation

E//{
Q//{

Conflict-Based
|
|

Model-Based

|

M/I {

i

i
AV VRS ROV IV
Q O O w

N N S S S S

Q

e N T T T T

@

Vx.P(x) VR (x)

Check: dx .= (PM" (x) VRM” (%))

Model-based Instantiation

E//{
Q//{

Conflict-Based
|
|

Model-Based

|

M/I {

]
U WY
A aocoo

Vx.P(x) VR (x)

Check: k=a A k#a

Model-based Instantiation

E//{
Q//{

Conflict-Based
|

E-matching

|
Model-Based

|

M/I {

i

i
AV VRS ROV IV

Q Y Q OO0 w

Vx.P(x) VR (x)

Check: k=a A k#a

—> Unsatisfiable, there are no values k for which M "’ does not satisfy O

Model-based Instantiation

Conflict-Based
|

|
Model-Based

—|P(a) Y74
E™ —Rr (b)
—lR(C)
R(a)
P(c)
144
Q { Vx.P(x) VR (x)

, model M”

Model-based Instantiation: Completeness

* Seen techniques for which:

* Ground Solver may answer @
* Quantifiers Module (+ model-based instantiation) may answer

* Under what conditions are these techniques terminating?

Model-based Instantiation: Completeness

* Seen techniques for which:
* Ground Solver may answer @
* Quantifiers Module (+ model-based instantiation) may answer

* Under what conditions are these techniques terminating?
A. If the domains of V¥ are interpreted as finite
e E.g. quantified bitvectors [Wintersteiger et al 13]

Model-based Instantiation: Completeness

* Seen techniques for which:

* Ground Solver may answer @
* Quantifiers Module (+ model-based instantiation) may answer

* Under what conditions are these techniques terminating?
A. If the domains of V¥ are interpreted as finite
e E.g. quantified bitvectors [Wintersteiger et al 13]

B. If the domains of ¥V may be interpreted as finite in a model
* Finite model finding [Reynolds et al 13]

Model-based Instantiation: Completeness

* Seen techniques for which:

* Ground Solver may answer @
* Quantifiers Module (+ model-based instantiation) may answer

* Under what conditions are these techniques terminating?
A. If the domains of V¥ are interpreted as finite
e E.g. quantified bitvectors [Wintersteiger et al 13]
B. If the domains of ¥V may be interpreted as finite in a model
* Finite model finding [Reynolds et al 13]

C. If the domains of V are infinite
...but it can be argued that only finitely many instances will be generated
* E.g. essentially uninterpreted fragment [Ge+deMoura 09], ...

Model-based Instantiation: Impact

1E+10
1E+09
100000000
10000000
1000000
100000
10000
1000

100

10

1

1 100 200 300 400 500 600 700 800 900 1000 1100 1200
e 1203 satisfiable benchmarks from the TPTP library

* Graph shows # instances required by exhaustive instantiation
e Eg. Vxyz:U.P(x,vy,z),if |U|=4, requires 43=64 instances

Conflict-Based

E-matching

Model-Based

Model-based Instantiation: Impact

1E+10
1E+09
100000000
10000000
1000000
100000
10000
1000

100

10

1

1 100 200 300 400 500 600 700 800 900 1000 1100 1200

* CVC4 Finite Model Finding + Exhaustive instantiation
* Scales only up to ~150k instances with a 30 sec timeout

Conflict-Based

E-matching

Model-Based

Model-based Instantiation: Impact

1E+10
1E+09
100000000
10000000
1000000
100000
10000
1000

100

10

1

1 100 200 300 400 500 600 700 800 900 1000 1100 1200

Conflict-Based

E-matching

Model-Based

* CVC4 Finite Model Finding + Model-Based instantiation [Reynolds et al CADE13]
» Scales to >2 billion instances with a 30 sec timeout, only adds fraction of possible instances

Model-based Instantiation: Challenges

Conflict-Based

E-matching

Model-Based

Model-based Instantiation: Challenges

* How do we build interpretations M ?

* Typically, build interpretations £M that are almost constant:

ceg. fMi= Ax.ite (x=t,v,,ite(x=t,, v,, .., 1te (x=t_, V , Viee)))

Model-based Instantiation: Challenges

* How do we build interpretations M ?

|
Model-Based

* Typically, build interpretations £M that are almost constant:

ceg. fMi= Ax.ite (x=t,v,,ite(x=t,, v,, .., 1te (x=t_, V , Viee)))

...but models may need to be more complex when theories are present:

Vxy:Int. (£ (x,y)2xAf(X,V)2V)

Vx:Int.3*g(x)+5*h (x)=x

Vxy:Int.u(x+y)+11*v (w(x))=xX+y

b o= }LXY. 1te (XZYI Xy Y)

gMi=Ax.5*x
hM:=Ax.-3*x

E

]
1O

Putting it Together

]
1O

Putting it Together

* Input:
e Ground literals E
 Quantified formulas QO

\

Putting it Together

P(a),

where E,—P (a) kL ‘

EAQ is unsat

=]

Q

| !

Quantifiers Module

/

|

where Vx.P (x) €Q

Conflict-Based

Putting it Together

P(a), EAQ Is unsat

=]

Q

| !

Quantifiers Module

where E, =P (a) |=J_ ‘

B(b),B(c), pattern matching

Conflict-Based

P(d) ,P(e) ,P(f),...)

\

}

i
where Vx.P (x) €Q

T

Putting it Together

P(a),

where E, =P (a) |=J_ ‘

EAQ Is unsat

=]

Q

| !

Quantifiers Module

pattern matching

Conflict-Based

\

}

|

where Vx.P (x) €Q

T

M } model for E

|

Putting it Together

P(a), EAQ is unsat

[

|

Q

|

Quantifiers Module

where E, =P (a) |=J_ ‘

P D). B0, pattern matching

P(z), :M is not a model for Q

T

where M/ P (z)

\ /
|

where Vx.P (x) €0Q

Conflict-Based

|

M } model for E

!

Model Based
|

l

EUQ is sat,
model M

E-matching, Conflict-Based, Model-based:

 Common thread: satisfiability of V + UF + theories is hard!

* E-matching:
* Pattern selection, matching modulo theories

e Conflict-based:

* Matching is incomplete, entailment tests are expensive

* Model-based:

* Models are complex, interpreted domains (e.g. Int) may be infinite

E-matching, Conflict-Based, Model-based:

 Common thread: satisfiability of V + UF + theories is hard!

* E-matching:
* Pattern selection, matching modulo theories

e Conflict-based:

* Matching is incomplete, entailment tests are expensive

* Model-based:

* Models are complex, interpreted domains (e.g. Int) may be infinite

—> But reasoning about V + pure theories isn’t as bad:

e C(Classic V-elimination algorithms are decision procedures for V in:
* LRA [Ferrante+Rackoff 79, Loos+Wiespfenning 93] , LIA [Cooper 72], datatypes, ...

E-matching, Conflict-Based, Model-based:

 Common thread: satisfiability of V + UF + theories is hard!
* E-matching:
* Pattern selection, matching modulo theories

e Conflict-based:

* Matching is incomplete, entailment tests are expensive

* Model-based:

* Models are complex, interpreted domains (e.g. Int) may be infinite

—> But reasoning about V + pure theories isn’t as bad:

e C(Classic V-elimination algorithms are decision procedures for V in:
* LRA [Ferrante+Rackoff 79, Loos+Wiespfenning 93] , LIA [Cooper 72], datatypes, ...

* Can classic V-elimination algorithms be implemented in an SMT context?
* Yes: [Monniaux 2010, Bjorner 2012, Komuravelli et al 2014, Reynolds et al 2015, Bjorner/Janota 2016]

Technigues for Quantifier Instantiation

Instances of ¥V in Q

F, .. Quantifiers Module

Conflict-Based

E-matching CE-Guided

Ground

[

1

Satisfying Model Based
SO IVe r assignment
F , Q | \ Y)
Generally, Generally,
used for quantifiers with UF used for quantifiers w/o UF

l EWQ is T-satisfiable

Technigues for Quantifier Instantiation

F, ..

Ground
Solver

— Classic V-elimination algorit

Instances of V in Q

Satisfying
assignment

E,Q

Quantifiers Module

Conflict-Based

\ E-matching

i

Model Based

\

/

|

A decision procedure
for V in LIA, LRA, ...

nms can be cast as

counterexample-guided instantiation procedures

l EWQ is T-satisfiable

Counterexample-Guided Instantiation

* Variants implemented in number of tools:

* Z3 [Bjorner 2012, Bjorner/Janota 2016]

* Tools using Z3 as backend: SPACER [Komuravelli et al 2014] UFO [Fedyukovich et al 2016]
* Yices [Dutertre 2015]

* CV(CA [Reynolds et al 2015]

* High-level idea:

* Quantifier elimination (e.g. for LIA) says: 3x.y[x] < y[t,] v ..vy[t] for finite n

Counterexample-Guided Instantiation

* Variants implemented in number of tools:

* Z3 [Bjorner 2012, Bjorner/Janota 2016]

* Tools using Z3 as backend: SPACER [Komuravelli et al 2014] UFO [Fedyukovich et al 2016]
* Yices [Dutertre 2015]

* CV(CA [Reynolds et al 2015]

* High-level idea:
* Quantifier elimination (e.g. for LIA) says: Vx.—y[x] © —y[t,] A .. A—=y[t_] for finite n

(consider the dual)

Counterexample-Guided Instantiation

* Variants implemented in number of tools:
* Z3 [Bjorner 2012, Bjorner/Janota 2016]
* Tools using Z3 as backend: SPACER [Komuravelli et al 2014] UFO [Fedyukovich et al 2016]
* Yices [Dutertre 2015]
* CV(CA [Reynolds et al 2015]

* High-level idea:
* Quantifier elimination (e.g. for LIA) says: Vx.—y[x] < —y[t,] A .. A—y[t_] for finite n

 Enumerate these instances lazily, via a counterexample-guided loop, that is:
* Terminating: enumerate at most n instances
* Efficient in practice: typically terminates after m<<n instances

Counterexample-Guided Instantiation

—> Consider V in the theory of linear integer arithmetic LIA:
dabc. (a=b+5 A VX. (x>a Vv x<bvx-c<3))

Counterexample-Guided Instantiation

Ground | a=b+5 }
Solver Vx. (x>a v x<b v x-c<3) E

—> Consider V in the theory of linear integer arithmetic LIA:
%. (a=b+5 A Vx. (x>a Vv x<bVv x-c<3))

Outermost existentials a, b, c are treated as free constants

Counterexample-Guided Instantiation

Ground :
Solver

a=p+5

E

CE-Guided

Vx.

a=b+5
(x>a Vv x<b Vv x-c<3)

Vx.

(x>a Vv x<b Vv x-c<3)

- F

Counterexample-Guided Instantiation

Ground | 2=b+5 }
Solver Vx. (x>a Vv x<bvx-c<3) F

F { a=p+5
ﬂ CE-Guided
Instantiation
Q{ V' x >a Vv x<b Vv x-c<3)

. (x

—> Use counterexample-guided instantiation

Counterexample-Guided Instantiation

Ground

CE-Guided

Solver

o a=b+5 ﬁ
Q{ Vx. (x>aVv x<b Vv x-c<3)

Vx.

a=b+5
(x>a Vv x<b Vv x-c<3)

CE-Guided

Instantiation

l

Check dk.— (k>a vk<b v k-c<3)

—>With respect to model-based instantiation:
 Similar: check satisfiability of 3k . — (k>a v k<b v k-c<3)

- F

Counterexample-Guided Instantiation

Ground a=hbts
e Vx. (x>a Vv x<bVv x-c<3) F
Solver C= (k>a Vv k<b v k-c<3)

F { a=p+5
ﬁ CE-Guided
Instantiation
Q { Vx. (x>aVv x<b Vv x-c<3)

—>With respect to model-based instantiation:
 Similar: check satisfiability of 3k . — (k>a v k<b v k-c<3)
 Key difference: use the same (ground) solver for F and counterexample k for Q

Counterexample-Guided Instantiation

CE-Guided

Ground |}
Solver

a=b+5

Vx. (x>avVv x<bvx-c<3)
C= (k<a Ak2b A k=2c+3)

CE-Guided
Instantiation

Counterexample-Guided Instantiation

a=b+5
Vx. (x>avVv x<bvx-c<3)

C is a fresh Boolean variable:
“A counterexample k exists for Vx. (x>a v x<b v x-c<3)”

Counterexample-Guided Instantiation

Ground a=b+5, o« ooy
. Vx. (x>avx<b,t/ xX—-C<3)]:T'

C= (k<an ka;l/\ k=>c+3)

Solver

/-
-7 Instances

CE-Guided

Instantiation

e Three cases:

CE-Guided

Counterexample-Guided Instantiation

1

a=b+5, ...,

unsat y EIBUE < Vx. (x>aVv x<b Vv x-c<3) F
Solver C= (k<a A k>b A k>c+3)

CE-Guided

Instantiation

* Three cases:
1. Fis unsatisfiable —> answer “unsat”

Counterexample-Guided Instantiation

E
Q

Ground

CE-Guided

Solver

—-C,

Vx.

(x>ab

e Three cases:

Vx.
C= (k<a Ak=2b A k=2c+3)

a=b+5, ...,
(x>a v x<b v x-c<3)

CE-Guided

Instantiation

2 . Fis satisfiable, -C€E for all assignments E

= answer “sat”

B

Counterexample-Guided Instantiation

E
Q-

Ground

CE-Guided

a=b+5, ..., By

Solver

—-C,

Vx.

(x>a\b

e Three cases:

Vx. (x>avVv x<bvx-c<3)
C= (k<aAnk=>b A k=>c+3)

CE-Guided

Instantiation

2 . Fis satisfiable, -C€E for all assignments E

F, issat, F;U (k<a A k2b A k2c+3) is unsat

= — (k<a A k2b A k2c+3)

=—dk. (k<a A k=b A k2c+3)
(assuming k€FV (F,))

=Vx. (x>a Vv x<bvVvx-c<3)

= answer “sat”

Counterexample-Guided Instantiation

Ground

CE-Guided

V' x

Solver

E{ C,...

Q { Vx. (x>aVv x<b Vv x-c<3)

e Three cases:

a=b+5, ...,
. (x>a Vv x<bvx-c<3) F
C= (k<a Ak=2b A k=2c+3)

CE-Guided =00

Instantiation

3. Fis satisfiable, CeE for some assignment E

3

...>t>avt<bv t-c<3

—

where k¢ FV (t)

—> add an instance to F

Counterexample-Guided Instantiation

CE-Guided

-‘ Ground
unsat Solver
o { (=) C, ... N
Q { Vx. (x>aVv x<b Vv x-c<3)

* Three cases:
1. Fis unsatisfiable

V' x

a=b+5, ...,
. (x>a Vv x<bvx-c<3) F
C= (k<a Ak=2b A k=2c+3)

CE-Guided

Instantiation

2 . Fis satisfiable, =CeE for all assignments E
3. Fissatisfiable, CeE for some assighnment E

return

3

...>t>avit<bv t-c<3

I

= answer “unsat”
— answer “sat”
— add an instanceto F

Counterexample-Guided Instantiation

CE-Guided

-‘ Ground
unsat Solver
o { (=) C, ... N
Q { Vx. (x>aVv x<b Vv x-c<3)

* Three cases:
1. Fis unsatisfiable

V' x

a=b+5, ...,
. (x>a Vv x<bvx-c<3) F
C= (k<a Ak=2b A k=2c+3)

CE-Guided

Instantiation

2 . Fis satisfiable, =CeE for all assignments E
3. Fissatisfiable, CeE for some assighnment E

return

3

...>t>avt<bv t-c<3

I

= answer “unsat”
— answer “sat”

— add an instance to F
(...which t?)

CE-Guided

Counterexample-Guided Instantiation

Ground a=hbts
< Vx. (x>avVv x<bvx-c<3)
Solver C= (k<a A k>b A k>c+3)

Counterexample-Guided Instantiation

CE-Guided

Ground :
Solver

C, a=b+5,
k<a
k=b

k>c+3

Vx.

(x>a Vv x<b Vv x-c<3)

a=b+5
Vx. (x>avVv x<bvx-c<3)

—C Vv (kf£a A k=2b A k=2c+3)

Counterexample-Guided Instantiation

Ground
Solver
C,a=b+b,
k<a
k>b
k>c+3
Vx. (x>aVv x<bvx—-c<3)

CE-Guided

a=p+5
Vx. (x>avVv x<bvx-c<3)
—C Vv (kZLa A k=b A k2c+3)

aM=5

bM=0

cM=0

kM=3

J

|

Build model M for E

Counterexample-Guided Instantiation

Ground
Solver
C,a=b+b,
kb
k=c+3
Vx. (x>aVv x<bvx—-c<3)

CE-Guided

Vx.

(x>a v x<b v x-c<3)
—C Vv (kfa A k=b A k=c+3)

a=b+5

aM=5

bM=0

cM=0

kM=3

k=b

k>c+3

\

)

Take lower bounds of k in E

f

Counterexample-Guided Instantiation

Ground
Solver
C,a=b+b,
k<a
k>b
k>c+3
Vx. (x>aVv x<bvx—-c<3)

CE-Guided

a=p+5
Vx. (x>avVv x<bvx-c<3)
—C Vv (kZLa A k=b A k2c+3)

aM=5

cM=0

kM=3

k>b =
k>c+3 | =

Compute their value in M

Counterexample-Guided Instantiation

Ground
Solver
C,a=b+b,
k<a
k>b
k>c+3
Vx. (x>aVv x<bvx—-c<3)

CE-Guided

a=b+5
Vx. (x>avVv x<bvx-c<3)
—C Vv (kZLa A k=b A k2c+3)
24 =5
in M
M_
o7 =0 k>b | =
cM=q k>c+3 | =3
kM=3

Vx. (x>avx<bvVvx-c<3)=

c+3>ave+3<bve+3-c<3

\

J

|

Add instance for lower bound that is maximal in M

Counterexample-Guided Instantiation

Ground
Solver
C,a=b+b,
k<a
k>b
k>c+3
Vx. (x>aVv x<bvx—-c<3)

CE-Guided

Vx. (x>avVv x<bvx-c<3)
—C Vv (kZLa A k=b A k2c+3)

a=b+5

in M
k>b =
k>c+3 | =3
Vx. (x>avx<bvVvx-c<3)=
c+3>a v c+3<b

CE-Guided

Counterexample-Guided Instantiation

a=b+5
Ground) —Vx. (x>avx<bvx-c<3) vc+3>avc+3<b
Solver Vx. (x>aVv 3<bvx-c<3)
—C Vv (k<a A/k=>b A k=>2c+3)

Counterexample-Guided Instantiation

Ground

Solver

| C,a=b+5, c+3<Db,

k<a
k>b
k>c+3

Q{ vx.

(x>a Vv x<b Vv x-c<3)

CE-Guided

a=b+5
—Vx. (x>avx<bvx-c<3) Vc+3>avVvc+3<b
Vx. (x>aVv x<bvVvx-c<3)
—C Vv (k<a A k=b A k=2c+3)

Counterexample-Guided Instantiation

Ground
Solver

| C,a=b+5, c+3<Db,

k<a
k>b
k>c+3

Q{ vx.

(x>a Vv x<b Vv x-c<3)

CE-Guided

a=b+5
—Vx. (x>avx<bvx-c<3) vc+3>av c+3<b

Vx. (x>aVv x<bvVvx-c<3)
—C Vv (k<a A k=b A k=2c+3)

J

Build model M for E

CE-Guided

Counterexample-Guided Instantiation

a=p+5
Ground —Vx. (x>aVvx<bvx-c<3) Vct+3>avVvct3<b
Solver ‘ Vx. (x>aVv x<bvVvx-c<3)
—C Vv (k<a A k=b A k=2c+3)
k<a
B k>b bM=0 k>b
B kZC+3 CM=_4 kZC+3

jelil=
Q { Vx. (x>aVv x<bvx—-c<3) Y

Take lower bounds of k in E

CE-Guided

Counterexample-Guided Instantiation

a=b+5
Ground —Vx. (x>aVvx<bvx-c<3) Vct+3>avVvct3<b
Solver ‘ Vx. (x>aVv x<bvVvx-c<3)
—C Vv (k<a A k=b A k=2c+3)

| C,a=b+5, c+3<Db, M_c
k<a in M
B - k>b k>b | =0
8 k2c+3 k>c+3 =-1

M_
Q { Vx. (x>aVv x<bvVv x-c<3) k¥=3 Y

Compute their value in M

Counterexample-Guided Instantiation

Ground
Solver

| C,a=b+5, c+3<Db,

k<a
k>b
k>c+3

Q{ vx.

(x>a Vv x<b Vv x-c<3)

a=b+5
—Vx. (x>avx<bvx-c<3) Vc+3>avVvc+3<b
Vx. (x>aVv x<bvVvx-c<3)
—C Vv (k<a A k=b A k=2c+3)

24 =5 ,
in M

pM=0 k>b | =0

CM=_4 k>2c+3 =-1

kM=3 Vx. (x>aVv x<bVvx-c<3)=
b>a vb<bvb-c<3

\ J
|

Add instance for lower bound that is maximal in M

Counterexample-Guided Instantiation

Ground
Solver

| C,a=b+5, c+3<Db,

k<a
k>b
k>c+3

Q{ vx.

(x>a Vv x<b Vv x-c<3)

a=b+5
—Vx. (x>avx<bvx-c<3) Vc+3>avVvc+3<b
Vx. (x>aVv x<bvVvx-c<3)
—C Vv (k<a A k=b A k=2c+3)

24 =5 ,
in M
pM=0 k>b | =0
CM=_4 k>2c+3 =-1
kM=3 Vx. (x>aVv x<bVvx-c<3)=
b>a vb-c<3

\ J
|

Add instance for lower bound that is maximal in M

CE-Guided

Counterexample-Guided Instantiation

a=b+5b
—Vx. (x>avx<bvx-c<3)Vvc+t3i>avct+3<b
—Vx. (x>avx<bvx-c<3) V b >avb<c+3
Vx. (x>aVv x<byVyx-c<3)
—C Vv (k<a A kZ2b/A k=2c+3)

Ground

Solver

CE-Guided

Counterexample-Guided Instantiation

a=b+5
—Vx. (x>avx<bvx-c<3)Vc+t3>avc+t3<b
—Vx. (x>avx<bvx-c<3)V b >avb<ct+3
Vx. (x>aVv x<bvx-c<3)
—C v (ka A k=2b A k=2c+3)

Ground
Solver

b a c¢+3

Counterexample-Guided Instantiation

Ground
Solver
—C
a=pb+5
c+3<a
b<c+3

Vx.

(x>a Vv x<b Vv x-c<3)

CE-Guided

a=b+5
—Vx. (x>avx<bvx-c<3)Vc+t3>avc+t3<b
—Vx. (x>avx<bvx-c<3)V b >avb<ct+3
Vx. (x>aVv x<bvx-c<3)
—C Vv (k£a A k=2b A k=2c+3)

Counterexample-Guided Instantiation

Ground
Solver
—C
a=pb+5
c+3<a
b<c+3

Vx.

(x>a Vv x<b Vv x-c<3)

CE-Guided

a=b+5
—Vx. (x>avx<bvx-c<3)VvVc+t3i>avct+3i<b

—Vx. (x>avx<bvx-c<3)V b >avb<c+3
Vx. (x>a Vv x<bvx—-c<3)
—C Vv (kZLa A k=2b A k=>2c+3)

b a c¢+3
|

| — I

Counterexample-Guided Instantiation

Ground
Solver
—C
a=pb+5
c+3<a
b<c+3

Vx.

(x>a Vv x<b Vv x-c<3)

CE-Guided

a=b+5
—Vx. (x>avx<bvx-c<3)VvVc+t3i>avct+3i<b

—Vx. (x>avx<bvx-c<3)V b >avb<c+3
Vx. (x>aVv x<bvx-c<3)
—C Vv (kfLa A k=2b A k=2c+3)

—dabc. (a=b+5 A Vx. (x>a Vv x<bvVv x-c<3))
is LIA-satisfiable

Counterexample-Guided Instantiation

e Decision procedure for ¥V in various theories:
 Linear real arithmetic (LRA)

* Maximal lower (minimal upper) bounds 1.<k, .., 1<k —>{x—>1__ 10}
e [Loos+Wiespfenning 93] ...may involve virtual terms 6,
* Interior point method: 1o <k<u., >{x—=> (1 .,~U.,) /2}

* [Ferrante+Rackoff 79]

* Linear integer arithmetic (LIA)

* Maximal lower (minimal upper) bounds (+c) 1,<k, .., 1. <k —>{x—>1__,tc}
* [Cooper 72]

* Bitvectors/finite domains
e Value instantiations F[k] — {x—>kM}

* Datatypes, ...

= Termination argument for each: enumerate at most a finite number of instances

Counterexample-Guided Instantiation

Vx.y[x]

 Can be used for:

e Quantifier elimination
vt I A .. Ay[t]is (un)sat
* dx.—y[x]is equivalent to —y[t,] v..Vv y[t]
* Function Synthesis
vlt,]A ... Ay[t,] is unsat
° Ax.ite(y[t;],t,,.., ite(y[t,_;]1,t,;,t,)..) isasolutionfor f£finVx.y[f (x)]

Counterexample-Guided Instantiation

* Challenge:

Counterexample-Guided |Instantiation |

CE-Guided

* Challenge: does not work in presence of uninterpreted functions!

Ground P
Solver

Vx.x<avVv x<bvVvP(x)

Counterexample-Guided Instantiation

* Challenge: does not work in presence of uninterpreted functions!

Ground P Vx.x<a v x<bVv P (x)
Solver —CvVv (kza Ak=2b A—=P (k))

Counterexample-Guided Instantiation

CE-Guided

* Challenge: does not work in presence of uninterpreted functions!

Ground B
Solver
C, «o.y

k>a
k>b
—P (k)

Vx.

(x<avVvx<bvP(x))

Vx.x<avVv x<bvVv P (x)
—CvVv (k=2a Ak>b A =P (k))

Counterexample-Guided Instantiation

CE-Guided

* Challenge: does not work in presence of uninterpreted functions!

Ground

Solver

L C, e,
k=a
B k>b
=P (k)
Q{ Vx. (x<avx<bvVvP(x))

Vx.x<avVv x<bvVv P (x)
—CvV (kz2a Ak>b A =P (k))

aM=1 in M

v k>a =
p*=0 Kb | =
kM=1

Vx. (x>avx<bVvP(x))=
a<ava<bvP(a)

Counterexample-Guided Instantiation

* Challenge: does not work in presence of uninterpreted functions!

Ground . Vx. (x<avx<bVvP(x)) =>a<bvP(a)
Solver Vx.x<av g<bv P (x)
—C Vv (k=a >b A—=P (k))

Counterexample-Guided Instantiation

CE-Guided

* Challenge: does not work in presence of uninterpreted functions!

C, ..
k=a,k=2b,

-1

P (k)
P(a)

4

Ground

Solver

Vx.

(x<avVvx<bvP(x))

Vx.

(x<avx<bvP(x)) =Da<bvP(a)
Vx.x<avVv x<bvVv P (x)
—C Vv (kza A k=2b A—=P (k))

Counterexample-Guided Instantiation

CE-Guided

* Challenge: does not work in presence of uninterpreted functions!

Ground

Solver

C, ey,
k=a,k=b,
E —
—P (k)
B P(a)
Q { Vx. (x<avx<bvVvP(x))

Vx.

(x<avx<bvP(x)) =Da<bvVvP(a)
Vx.x<avVv x<bvVv P (x)
—CvVv (kza A k=2b A—=P (k))

— a is stil

aM=1 in M
M=) k=a =1

k>b | =0
KkM=>

the maximal lower bound in M |

Counterexample-Guided Instantiation

CE-Guided

* Challenge: does not work in presence of uninterpreted functions!

C, ..
k=a,k=2b,

-1

P (k)
P(a)

4

Ground

Solver

Vx.

(x<avVvx<bvP(x))

Vx. (x<avx<bvVvP(x)) =>a<bvP(a)
Vx.x<avVv x<bvVv P (x)
—C Vv (kza A k=2b A—=P (k))

a’=1 in M
bM=O k=a =

k>b =
kM=>

= Unlike the pure arithmetic case:
* [nstance does not suffice to rule out a as maximal lower bound

summary

* SMT solvers handle quantifiers+theories via combination of:
 DPLL(T)-based ground solver

* |nstantiation via:

* Conflict-based, E-matching, Model-Based Instantiation
e Effective in practice for V+UF, V+UFLIA, V+UFLRA, ...
* Can be decision procedure for limited fragments, e.g. Bernays-Shonfinkel
e Conflict-Based, E-matching are useful for “unsat”
* Model-Based is useful for “sat”

* Counterexample-guided Instantiation
e Decision procedure for V+LRA, V+LIA, V+BY, ...

In practice: Distribute V to proper strategy

Quantifiers Module

Conflict-Based

E-matching

Model Based

Summary: DPLL(T)+Instantiation

T-clauses F «

Lemmas

SAT

Conflict-Based
Solver

E-matching CE-Guided

T-Decision

Model-Based
Procedures

ground literals E
Vv formulas O

Summary: DPLL(T)+Instantiation

T-clauses F «

unsat

Other Important Aspects of V Not Covered

e Eager Quantifier Instantiation
* Relevancy

* Preprocessing

* Rewriting

Future Challenges

* Improve performance and precision of existing approaches
* Many engineering challenges when implementing E-matching, conflict-based instantiation

* Develop new approaches for V+UF+theories that:

* Are efficient in practice
* E-matching is efficient for V+UF, ce-guided approaches are efficient for V+ theories
* Under what conditions, and to what degree, can these techniques be combined?

e Are decision procedures for various fragments
* Extensions of Bernays-Shonfinkel
* Array Property fragments

* Local theory extensions
e Y over pure theories that emit quantifier elimination

Thanks for listening

eQuestions?

