Instantiation for Quantified Formulas in SMT: Techniques and Practical Aspects

Andrew Reynolds

June 24, 2016

$$(\forall x.P(x) \lor f(b)=b+1) \land \exists y. (\neg P(y) \land f(y) < y)$$

• Focus on techniques for establishing *T-satisfiability* of formulas with:

$$(\forall x.P(x) \lor f(b) = b+1) \land \exists y. (\neg P(y) \land f(y) < y)$$

- Focus on techniques for establishing *T-satisfiability* of formulas with:
 - Boolean structure

$$(\forall x.P(x) \lor f(b)=b+1) \land \exists y. (\neg P(y) \land f(y) < y)$$

- Focus on techniques for establishing *T-satisfiability* of formulas with:
 - Boolean structure
 - Constraints in a background theory T, e.g. UFLIA

$$(\forall x.P(x) \lor f(b)=b+1) \land \exists y. (\neg P(y) \land f(y) < y)$$

- Focus on techniques for establishing *T-satisfiability* of formulas with:
 - Boolean structure
 - Constraints in a background theory T, e.g. UFLIA
 - Existential and Universal Quantifiers

Outline

- Background
- SMT solver architecture

...and how it extends to \forall reasoning via quantifier instantiation:

$$\forall x. \psi[x] \Rightarrow \psi[t]$$

- Recent strategies for quantifier instantiation:
 - E-matching, conflict-based, model-based, counterexample-guided
- Challenges, future work

Quantified formulas ∀ in SMT

- Are of importance to applications:
 - Automated theorem proving:
 - Background axioms $\{\forall x.g(e,x)=g(x,e)=x, \forall x.g(x,g(y,z))=g(g(x,y),x), \forall x.g(x,i(x))=e\}$
 - Software verification:
 - Unfolding $\forall x. foo(x) = bar(x+1)$, code contracts $\forall x. pre(x) \Rightarrow post(f(x))$
 - Frame axioms $\forall x . x \neq t \Rightarrow A'(x) = A(x)$
 - Function Synthesis:
 - Conjectures ∀i:input.∃o:output.R[o,i]
 - Planning:
 - Specifications ∃p:plan.∀t:time.F[P,t]

Quantified formulas ∀ in SMT

- Are of importance to applications:
 - Automated theorem proving:
 - Background axioms $\{\forall x.g(e,x)=g(x,e)=x, \forall x.g(x,g(y,z))=g(g(x,y),x), \forall x.g(x,i(x))=e\}$
 - Software verification:
 - Unfolding $\forall x. foo(x) = bar(x+1)$, code contracts $\forall x. pre(x) \Rightarrow post(f(x))$
 - Frame axioms $\forall x.x \neq t \Rightarrow A'(x) = A(x)$
 - Function Synthesis:
 - Conjectures ∀i:input.∃o:output.R[o,i]
 - Planning:
 - Specifications ∃p:plan.∀t:time.F[P,t]
- Are very challenging in theory:
 - Establishing T-satisfiability of formulas with ∀ is generally undecidable

Quantified formulas ∀ in SMT

- Are of importance to applications:
 - Automated theorem proving:
 - Background axioms $\{\forall x.g(e,x)=g(x,e)=x, \forall x.g(x,g(y,z))=g(g(x,y),x), \forall x.g(x,i(x))=e\}$
 - Software verification:
 - Unfolding $\forall x. foo(x) = bar(x+1)$, code contracts $\forall x. pre(x) \Rightarrow post(f(x))$
 - Frame axioms $\forall x . x \neq t \Rightarrow A'(x) = A(x)$
 - Function Synthesis:
 - Conjectures ∀i:input.∃o:output.R[o,i]
 - Planning:
 - Specifications ∃p:plan.∀t:time.F[P,t]
- Are very challenging in theory:
 - Establishing T-satisfiability of formulas with ∀ is generally undecidable
- Can be handled well in practice:
 - Efficient decision procedures for decidable fragments, e.g. Bernays-Shonfinkel
 - Heuristic techniques have high success rates in the general case

Background: *Theory*

- A *theory* T is a pair (Σ_T , I_T), where:
 - Σ_T is set of function symbols, the *signature* of T
 - E.g. $\Sigma_{LIA} = \{+, -, <, \leq, >, \geq, 0, 1, 2, 3, ...\}$
 - I_T is a set of *interpretations*
 - E.g. each $I \in I_{LIA}$ interpret functions in Σ_{LIA} in standard way:
 - 1+1=2, 1+2=3, 1>0=T, $0>1=\bot$, ...
 - Interpretation of free constants chosen arbitrarily
- A formula Ψ is T-satisfiable if there is an $\mathbf{I} \in \mathbf{I}_\mathsf{T}$ that interprets Ψ as T
 - We call I a *model* of Ψ
 - E.g the formula (a+1>b) is LIA-satisfiable with a model I where I (a) =2 and I (b) =0

Background: Quantifiers

Universal quantification:

$$\forall x:Int.P(x)$$

 ${\mathbb P}$ is true for all integers ${\mathbb X}$

• Existential quantification:

$$\exists x: Int. \neg Q(x)$$

Background: Quantifiers

Universal quantification:

$$\forall x: Int.P(x)$$

 ${\mathbb P}$ is true for all integers ${\mathbb X}$

• Existential quantification:

$$\exists x: Int. \neg Q(x) \rightarrow \neg \forall x: Int. Q(x)$$

⇒ For consistency, assume existential quantification is rewritten as universal quantification

Theoretical Complexity

Checking T-satisfiability of:

$$(\forall x.P(x) \lor Q(x) \lor x=a) \land P(b) \land Q(c)$$

• Bernays-Shonfinkel (function-free + equality) is decidable (NEXPTIME)

$$(\forall xy.\exists z.x+y+z>2 \lor 0 \le z+x)$$

• Case of \forall in pure theories is often decidable, e.g. linear arithmetic

$$(\forall x.P(x) \Rightarrow P(x+1)) \land P(a) \land \neg P(b) \land a < b$$

However, general case is undecidable!

First order theorem provers focus on ∀ reasoning
 ...but have been extended in the past decade to theory reasoning

• SMT solvers focus mostly on ground theory reasoning ...but have been extended in the past decade to ∀ reasoning

- First order theorem provers focus on ∀ reasoning ...but have been extended in the past decade to theory reasoning:
 - Vampire, E, SPASS
 - First-order resolution + superposition [Robinson 65, Nieuwenhuis/Rubio 99, Prevosto/Waldman 06]
 - AVATAR in Vampire [Voronkov 14, Reger et al 15]
 - iProver
 - InstGen calculus [Ganzinger/Korovin 03]
 - Princess, Beagle, ...
- SMT solvers focus mostly on ground theory reasoning ...but have been extended in the past decade to ∀ reasoning:

- First order theorem provers focus on ∀ reasoning ...but have been extended in the past decade to theory reasoning:
 - Vampire, E, SPASS
 - First-order resolution + superposition [Robinson 65, Nieuwenhuis/Rubio 99, Prevosto/Waldman 06]
 - AVATAR in Vampire [Voronkov 14, Reger et al 15]
 - iProver
 - InstGen calculus [Ganzinger/Korovin 03]
 - Princess, Beagle, ...
- SMT solvers focus mostly on ground theory reasoning ...but have been extended in the past decade to ∀ reasoning:
 - Z3, CVC4, VeriT, Alt-Ergo
 - Some superposition-based [deMoura et al 09]
 - Mostly instantiation-based [Detlefs et al 03, deMoura et al 07, Ge et al 07, ...]

- First order theorem provers focus on ∀ reasoning ...but have been extended in the past decade to theory reasoning:
 - Vampire, E, SPASS
 - First-order resolution + superposition [Robinson 65, Nieuwenhuis/Rubio 99, Prevosto/Waldman 06]
 - AVATAR in Vampire [Voronkov 14, Reger et al 15]
 - iProver
 - InstGen calculus [Ganzinger/Korovin 03]
 - Princess, Beagle, ...
- SMT solvers focus mostly on ground theory reasoning ...but have been extended in the past decade to ∀ reasoning:
 - Z3, CVC4, VeriT, Alt-Ergo
 - Some superposition-based [deMoura et al 09]
 - Mostly instantiation-based [Detlefs et al 03, deMoura et al 07, Ge et al 09, ...]

 \Rightarrow Focus of this talk

$$(P(a) \lor f(b) = a+1)$$

$$(\neg \forall x. P(x) \lor \forall y. \neg P(y) \lor R(y))$$

$$(\forall x. f(x) = g(x) + h(x) \lor \neg R(a))$$

⇒ Given the above input

$$(P(a) \lor f(b) > a+1)$$

$$(\neg \forall x. P(x) \lor \forall y. \neg P(y) \lor R(y))$$

$$(\forall x. f(x) = g(x) + h(x) \lor \neg P(a))$$

- Consider the propositional abstraction of the formula
 - Atoms may encapsulate quantified formulas with Boolean structure
 - E.g. ∀y.¬P(y) ∨R(y)

• Find propositional satisfying assignment via off-the-shelf SAT solver

Find propositional satisfying assignment via off-the-shelf SAT solver

⇒ Consider original atoms

$$(P(a) \lor f(b) > a+1)$$

$$(\neg \forall x.P(x) \lor \forall y.\neg P(y) \lor R(y))$$

$$(\forall x.f(x) = g(x) + h(x) \lor \neg P(a))$$

$$SAT Solver$$

$$P(a), f(b) > a+1, \neg \forall x.P(x), \forall x.f(x) = g(x) + h(x), \forall y.\neg P(y) \lor R(y)$$

$$M$$

- \Rightarrow Propositional assignment can be seen as a set of T-literals M
 - Must check if M is T-satisfiable

 \Rightarrow Distribute ground literals to T-solvers, \forall literals to quantifiers module

⇒ These solvers may choose to add conflicts/lemmas to clause set

DPLL(T₁+..+T_n)+Quantifiers: Overview

- \Rightarrow Each of these components may:
- Report M is T-unsatisfiable by reporting conflict clauses
- Report lemmas if they are unsure

[Nieuwenhuis/Oliveras/Tinelli 06]

DPLL(T₁+..+T_n)+Quantifiers: Overview

 \Rightarrow If no component adds a lemma, then it must be the case that \mathbb{M} is $T_1+...+T_n$ -satisfiable

[Nieuwenhuis/Oliveras/Tinelli 06]

DPLL(T₁+..+T_n)+Quantifiers: Overview

T-Clauses F

Satisfying

Unlike the ground case where decision procedures exist for T_1 , ..., T_n , ..., there is **no general decision procedure** for \forall -formulas \mathbb{Q} , thus:

unsat

...when F is propositionally unsatisfiable

- This procedure may not terminate!
- Regardless, we want techniques that:
 - Are refutation-sound ("unsat" can be trusted)
 - Are model-sound ("sat" can be trusted)
 - Terminate for many F

→ sat

....<mark>w</mark>vhen M is T₁+...+T_n-satisfiable

 \Rightarrow The remainder of the talk will discuss how the quantifiers module is implemented

DPLL(T)+Quantifiers, further simplified

DPLL(T)+Quantifiers, further simplified

Which lemmas do we add: Basics

Which lemmas do we add: Basics

- Existential quantification (negated universals) handled by Skolemization
 - Introduce a fresh witness \mathbf{k} , lemma says $\exists x . \neg P(x)$ implies $\neg P(\mathbf{k})$
 - Need only be applied once

Which lemmas do we add: Basics

- Universal quantification handled by Instantiation
 - Choose ground term(s) t, lemma(s) say $\forall x \cdot f(x) = g(x) + h(x)$ implies f(t) = g(t) + h(t)
 - ⇒ May be applied ad infinitum!

Quantifiers Module: Recurrent Questions

- Which instances do we add?
 - E-matching [Detlefs et al 03]
 - Conflict-based quantifier instantiation [Reynolds et al FMCAD14]
 - Model-based quantifier instantiation [Ge,de Moura CAV09]
 - Counterexample-guided quantifier instantiation [Reynolds et al CAV15]

• ...

Quantifiers Module: Recurrent Questions

- Which instances do we add?
 - E-matching [Detlefs et al 03]
 - Conflict-based quantifier instantiation [Reynolds et al FMCAD14]
 - Model-based quantifier instantiation [Ge,de Moura CAV09]
 - Counterexample-guided quantifier instantiation [Reynolds et al CAV15]
 - ...
- How do we know $\mathbb{E} \cup \mathbb{Q}$ is satisfiable?
 - For some strategies and fragments, saturation $\Rightarrow E \cup Q$ is satisfiable
 - E.g. model-based, counterexample-guided

Quantifiers Module: Recurrent Questions

- Which instances do we add?
 - E-matching [Detlefs et al 03]
 - Conflict-based quantifier instantiation [Reynolds et al FMCAD14]
 - Model-based quantifier instantiation [Ge,de Moura CAV09]
 - Counterexample-guided quantifier instantiation [Reynolds et al CAV15]
 - ...
- How do we know $E \cup Q$ is satisfiable?
 - For some strategies and fragments, saturation $\Rightarrow E \cup Q$ is satisfiable
 - E.g. model-based, counterexample-guided
- When do we invoke the quantifiers module?
 - Eagerly, during the DPLL(T) search [Detlefs et al 03, deMoura/Bjorner CAV07], or
 - Lazily, only if $E \cup Q$ is a *complete* satisfying assignment

Techniques for Quantifier Instantiation: Overview

Techniques for Quantifier Instantiation: Overview

- Introduced in Nelson's Phd Thesis [Nelson 80]
 - Implemented in early SMT solvers, e.g. Simplify [Detlefs et al 03]
- Most widely used and successful technique for quantifiers in SMT
 - Software verification
 - Boogie/Dafny, Leon, SPARK, Why3
 - Automated Theorem Proving
 - Sledgehammer
- Variants implemented in numerous solvers:
 - Z3 [deMoura et al 07], CVC3 [Ge et al 07], CVC4, Princess [Ruemmer 12], VeriT, Alt-Ergo

Conflict-Based

E-matching

Model Based

Conflict-Based

E-matching

Model Based

⇒ Idea: choose instances based on pattern matching

 \Rightarrow In E-matching, Pattern *matching* takes into account equalities in E

Conflict-Based

E-matching

Model Based

Conflict-Based

E-matching

Model Based

... E implies $P(a, c) \Leftrightarrow P(f(b), c)$

Conflict-Based E-matching Model Based

Given:

- Set of ground T-literals \mathbb{E}
- Quantified formula $\forall \mathbf{x} \cdot \Psi$, where \mathbf{x} is a tuple of variables
- A pattern p contain all variables in x
- A ground term g from E
- Formally:
 - We say g matches p modulo E under the substitution $\{x \rightarrow t\}$ if $E \models_T g = p\{x \rightarrow t\}$

Given:

- Set of ground T-literals ${\mathbb E}$
- Quantified formula $\forall \mathbf{x} \cdot \Psi$, where \mathbf{x} is a tuple of variables
- A pattern p contain all variables in x
- A ground term g from E

Formally:

• We say g matches p modulo E under the substitution $\{x \rightarrow t\}$ if $E \models_T g = p\{x \rightarrow t\}$

usually restricted such that **T** is theory of equality

Conflict-Based E-matching Model Based

Given:

- Set of ground T-literals \mathbb{E}
- Quantified formula $\forall \mathbf{x} \cdot \Psi$, where \mathbf{x} is a tuple of variables
- A pattern p contain all variables in x
- A ground term g from E

Formally:

- We say g matches p modulo E under the substitution $\{x \rightarrow t\}$ if $E \models_T g = p\{x \rightarrow t\}$
- E-matching:
 - 1. Chooses (a set) of patterns p_1 , ..., p_m for $\forall x$. Ψ
 - 2. Computes sets of pairs ($\{x \rightarrow t_{j1}\}$, g_{j1}),..., ($\{x \rightarrow t_{jn}\}$, g_{jn}) where g_{ji} matches p_{j} modulo E
 - 3. Returns the instances $(\forall \mathbf{x} . \Psi \Rightarrow \Psi \{\mathbf{x} \rightarrow \mathbf{t}_{11}\}), ..., (\forall \mathbf{x} . \Psi \Rightarrow \Psi \{\mathbf{x} \rightarrow \mathbf{t}_{nm}\})$

- Say E-matching returns the instance $(\forall x . \Psi \Rightarrow \Psi \{x \rightarrow t\})$
 - ⇒ Why is this instance useful?

- Say E-matching returns the instance $(\forall x . \Psi \Rightarrow \Psi \{x \rightarrow t\})$ \Rightarrow Why is this instance useful?
- We are interested in satisfiability of $E \cup Q$

- Say E-matching returns the instance $(\forall x . \Psi \Rightarrow \Psi \{x \rightarrow t\})$ \Rightarrow Why is this instance useful?
- We are interested in satisfiability of $E \cup Q$
- Assume pattern p is a subterm of Ψ , e.g. $\forall \mathbf{x} \cdot \Psi[p]$

- Say E-matching returns the instance $(\forall x . \Psi \Rightarrow \Psi \{x \rightarrow t\})$ \Rightarrow Why is this instance useful?
- We are interested in satisfiability of $E \cup Q$
- Assume pattern p is a subterm of Ψ , e.g. $\forall \mathbf{x} \cdot \Psi[p]$
- E-matching finds a ground term g from E, where $g=p\{x\rightarrow t\}$ is implied by E

- Say E-matching returns the instance $(\forall x . \Psi \Rightarrow \Psi \{x \rightarrow t\})$ \Rightarrow Why is this instance useful?
- We are interested in satisfiability of $E \cup Q$
- Assume pattern p is a subterm of Ψ , e.g. $\forall \mathbf{x} \cdot \Psi[p]$
- E-matching finds a ground term g from E, where $g=p\{x\rightarrow t\}$ is implied by E
- Thus: $\Psi[g]$ is implied by $\mathbb{E} \cup \{\Psi[p] \{x \rightarrow t\}\}$

- Say E-matching returns the instance $(\forall x . \Psi \Rightarrow \Psi \{x \rightarrow t\})$ \Rightarrow Why is this instance useful?
- We are interested in satisfiability of $E \cup Q$
- Assume pattern p is a subterm of Ψ , e.g. $\forall \mathbf{x} \cdot \Psi[p]$
- E-matching finds a ground term g from E, where $g=p\{x \rightarrow t\}$ is implied by E
- Thus: $\Psi[g]$ is implied by $E \cup \{\Psi[p] \{x \rightarrow t\}\}$
 - \Rightarrow In other words, from Q, we learn information $\Psi[g]$ about a term g from E

- Say E-matching returns the instance $(\forall x . \Psi \Rightarrow \Psi \{x \rightarrow t\})$ \Rightarrow Why is this instance useful?
- We are interested in satisfiability of $E \cup Q$
- Assume pattern p is a subterm of Ψ , e.g. $\forall \mathbf{x} \cdot \Psi[p]$
- E-matching finds a ground term g from E, where $g=p\{x \rightarrow t\}$ is implied by E
- Thus: $\Psi[g]$ is implied by $\mathbb{E} \cup \{ \Psi[p] \{x \rightarrow t \} \}$
 - \Rightarrow In other words, from Q, we learn information $\Psi[g]$ about a term g from E

```
P(a,c) \Rightarrow g(b) = c \text{ is implied by}
\{P(a,c), f(b) = a\} \cup \{P(f(b),c) \Rightarrow g(b) = c\}
E \qquad \text{with} \qquad \text{new instance}
```

Conflict-Based

E-matching

Model Based

Ground
Solver $\frac{P(a,c)}{f(b)=a}$ $\frac{\forall x.g(x) \neq c}{\forall x.y.P(f(x),y) \Rightarrow g(x)=y}$

$$(\forall xy.P(f(x),y) \Rightarrow g(x)=y) \Rightarrow$$

 $P(f(b),c) \Rightarrow g(b)=c$

$$Q = \begin{cases} \forall x.g(x) \neq c \\ \forall xy.P(f(x),y) \Rightarrow g(x) = y \end{cases}$$

From this instance, we learn g(b) = c

Conflict-Based

E-matching

Model Based

Ground Solver

```
P(a,c)
f(b) = a
\forall x.g(x) \neq c
\forall xy.P(f(x),y) \Rightarrow g(x) = y
\neg (\forall xy.P(f(x),y) \Rightarrow g(x) = y) \lor \neg P(f(b),c) \lor g(b) = c
```

E-matching

$$Q = \begin{cases} \forall x.g(x) \neq c \\ \forall xy.P(f(x),y) \Rightarrow g(x) = y \end{cases}$$

Conflict-Based

E-matching

Model Based

E-matching

$$Q = \begin{cases} \forall x.g(x) \neq c \\ \forall xy.P(f(x),y) \Rightarrow g(x) = y \end{cases}$$

Conflict-Based

E-matching

Model Based

Ground Solver

$$P(a,c)$$

$$f(b) = a$$

$$\forall x.g(x) \neq c$$

$$\forall xy.P(f(x),y) \Rightarrow g(x) = y$$

$$\neg(\forall xy.P(f(x),y) \Rightarrow g(x) = y) \lor \neg P(f(b),c) \lor g(b) = c$$

⇒ New terms lead to new instances

Conflict-Based

E-matching

Model Based

Ground Solver P(a,c) f(b) = a $\forall x.g(x) \neq c$ $\forall xy.P(f(x),y) \Rightarrow g(x) = y$ $\neg (\forall xy.P(f(x),y) \Rightarrow g(x) = y) \lor \neg P(f(b),c) \lor g(b) = c$ $\neg (\forall x.g(x) \neq c) \lor g(b) \neq c$

E (a,c) f(b)=a g(b)=c

E-matching

$$Q = \begin{cases} \forall x.g(x) \neq c \\ \forall xy.P(f(x),y) \Rightarrow g(x) = y \end{cases}$$

Conflict-Based

E-matching

Model Based

E-matching

E-matching: Challenges

- E-matching has no standard way of selecting patterns
- E-matching generates too many instances
 - Many instances may overload the ground solver
- E-matching is incomplete
 - It may be non-terminating
 - When it terminates, we generally cannot answer " $E \cup Q$ is T-satisfiable"
 - Although for some fragments+variants, we may guarantee (termination ⇔ model)
 - Decision Procedures via Triggers [Dross et al 13]
 - Local Theory Extensions [Bansal et al 15]
 - ⇒ Typically are established by a separate pencil-and-paper proof

E-matching: Pattern Selection

- In practice, pattern selection can is done either by:
 - The user, via annotations, e.g. (! ... :pattern ((P x)))
 - The SMT solver itself
- Recurrent questions:
 - Which terms be we permit as patterns? Typically, applications of UF:
 - Use f (x, y) but not x+y for \forall xy.f(x, y) =x+y
 - What if multiple patterns exist? Typically use all available patterns:
 - Use both P(x) and R(x) for $\forall x . P(x) \lor R(x)$
 - What if no appropriate term contains all variables? May use "multi-patterns":
 - $\{R(x,y),R(y,z)\}$ for $\forall xyz.(R(x,y)\land R(y,z)) \Rightarrow R(x,z)$
- Pattern selections may impact performance significantly [Leino et al 16]

- Typical problems in applications:
 - F contains 1000s of clauses

- Typical problems in applications:
 - F contains 1000s of clauses
 - Satisfying assignments contain 1000s of terms in \mathbb{E} , 100s of \forall in \mathbb{Q}

Conflict-Based

E-matching

Model Based

- Typical problems in applications:
 - F contains 1000s of clauses
 - Satisfying assignments contain 1000s of terms in \mathbb{E} , 100s of \forall in \mathbb{Q}
 - Leads to 100s

- Typical problems in applications:
 - F contains 1000s of clauses
 - Satisfying assignments contain 1000s of terms in \mathbb{E} , 100s of \forall in \mathbb{Q}
 - Leads to 100s, 1000s

Conflict-Based

E-matching

Model Based

- Typical problems in applications:
 - F contains 1000s of clauses
 - Satisfying assignments contain 1000s of terms in \mathbb{E} , 100s of \forall in \mathbb{Q}
 - Leads to 100s, 1000s, 10000s of instances

E-matching: Too Many Instances E-matching **OVERLOADED** $F_1 F_2 F_2$ ~100000 ~10000 ~100

⇒ Ground solver is overloaded, loop becomes slow, ...solver times out

# Instances	cvc3		cvc4		z3	
	#	%	#	%	#	%
1-10	1464	13.49%	1007	8.87%	1321	11.43%
10-100	1755	16.17%	1853	16.31%	2554	22.11%
100-1000	3816	35.16%	3680	32.40%	4553	39.41%
1000-10k	1893	17.44%	2468	21.73%	1779	15.40%
10k-100k	1162	10.71%	1414	12.45%	823	7.12%
100k-1M	560	5.16%	607	5.34%	376	3.25%
1M-10M	193	1.78%	330	2.91%	139	1.20%
>10M	10	0.09%	0	0.00%	8	0.07%

(for 8 of benchmarks z3 solves, its E-matching procedure adds more than 10M instances)

- Evaluation on 33032 SMTLIB, TPTP, Isabelle benchmarks
 - E-matching often requires many instances (Above, 16.6% required >10k, max 19.5M by z3 on a software verification benchmark from TPTP)


```
E = \begin{cases} a=f(a) \\ a=f(b) \\ P(a,\ldots,a) \end{cases} return
```

Q
$$= \begin{bmatrix} \forall x_1 \dots x_{32} . P(f(x_1), \dots, f(x_{32})) \end{bmatrix}$$

```
\begin{array}{c}
- \Rightarrow P(\ldots, f(\mathbf{a}), f(\mathbf{a})) \\
- \Rightarrow P(\ldots, f(\mathbf{a}), f(\mathbf{b})) \\
- \Rightarrow P(\ldots, f(\mathbf{b}), f(\mathbf{a})) \\
- \Rightarrow P(\ldots, f(\mathbf{b}), f(\mathbf{b}))
\end{array}
```

- \Rightarrow In fact, E-matching may be *exponential*, above produces 2^{32} instances
 - Thus, we limit # matches per ground term/pattern pair

E-matching

⇒ E-matching may be non-terminating

Conflict-Based

E-matching

Model Based

Conflict-Based

E-matching

Model Base

Conflict-Based

E-matching

Model Base

Conflict-Based

E-matching

Model Base

Conflict-Based

E-matching

Model Based

 $\forall x.f(f(x)) = f(x)$

Conflict-Based

E-matching

Model Based

- Various ways to avoid matching loops, e.g. by:
 - Restricting pattern selection
 - Fair instantiations strategies (track "levels")

E-matching: Incompleteness

⇒ E-matching is an incomplete procedure

E-matching: Incompleteness

 \Rightarrow If E-matching produces no instances, this *does not guarantee* $E \cup Q$ *is T-satisfiable*

E-matching: Summary

- Using matching ground terms from E against patterns in Q:
 - From Q, learn constraints about ground terms g from E

E-matching: Summary

- Using matching ground terms from $\mathbb E$ against patterns in $\mathbb Q$:
 - From Q, learn constraints about ground terms g from E
- Challenges
 - What can we do when there too many instances to add?
 - What can we do when there are no instances to add, problem is "sat"?

E-matching: Summary

- Using matching ground terms from E against patterns in Q:
 - From Q, learn constraints about ground terms g from E
- Challenges
 - What can we do when there too many instances to add?
 - ⇒Use conflict-based instantiation [Reynolds/Tinelli/deMoura FMCAD14]
 - What can we do when there are no instances to add, problem is "sat"?
 - ⇒Use model-based instantiation [Ge/deMoura CAV09]

- Implemented in solvers:
 - CVC4 [Reynolds et al 14], recently in VeriT [Barbosa16]
- Basic idea:
 - 1. Try to find a "conflicting" instance such that $E \cup \Psi \{x \rightarrow t\}$ implies \bot (by contrast, E-matching does not distinguish such instances)
 - 2. If one such instance can be found, return that instance only (and do not run E-matching)
- ⇒ Leads to fewer instances, improved ability of ground solver to answer "unsat"

Conflict-Based

E-matching

Model Based

 \Rightarrow E-matching would produce $\{x \rightarrow a\}$, $\{x \rightarrow b\}$, $\{x \rightarrow c\}$, $\{x \rightarrow d\}$, $\{x \rightarrow e\}$

⇒ Consider what we learn from these instances:

By \mathbb{E} , we know $\mathbf{P}(\mathbf{a}) \Leftrightarrow \mathbf{T}$

$$E,Q,P(a) \lor R(a)$$
 = T
 $E,Q,P(b) \lor R(b)$ = $P(b) \lor R(b)$
 $E,Q,P(c) \lor R(c)$ = $P(c) \lor R(c)$
 $E,Q,P(d) \lor R(d)$ = $P(d) \lor R(d)$
 $E,Q,P(e) \lor R(e)$ = $P(e) \lor R(e)$

$$E,Q,P(a) \lor R(a)$$
 | T
 $E,Q,P(b) \lor R(b)$ | $\bot \lor R(b)$ | We know $P(b) \Leftrightarrow \bot$
 $E,Q,P(c) \lor R(c)$ | $P(c) \lor R(c)$
 $E,Q,P(d) \lor R(d)$ | $P(d) \lor R(d)$
 $E,Q,P(e) \lor R(e)$ | $P(e) \lor R(e)$

$$E,Q,P(a) \lor R(a)$$
 | T
 $E,Q,P(b) \lor R(b)$ | R(b) | We know P(c) $\Leftrightarrow \bot$
 $E,Q,P(c) \lor R(c)$ | R(c)
 $E,Q,P(d) \lor R(d)$ | P(d) $\lor R(d)$
 $E,Q,P(e) \lor R(e)$ | P(e) $\lor R(e)$

$$E,Q,P(a) \lor R(a)$$
 | T
 $E,Q,P(b) \lor R(b)$ | $R(b)$ | We know $R(d) \Leftrightarrow T$
 $E,Q,P(c) \lor R(c)$ | $R(c)$
 $E,Q,P(d) \lor R(d)$ | T
 $E,Q,P(e) \lor R(e)$ | $P(e) \lor R(e)$

⇒ Consider what we learn from these instances:

$$E,Q,P(a) \lor R(a) = T$$
 $E,Q,P(b) \lor R(b) = R(b)$
 $E,Q,P(c) \lor R(c) = R(c)$
 $E,Q,P(d) \lor R(d) = T$
 $E,Q,P(e) \lor R(e) = P(e)$

We know $R(e) \Leftrightarrow \bot$

⇒ Consider what we learn from these instances:

E,Q,P(a)
$$\vee$$
R(a) = T
E,Q,P(b) \vee R(b) = R(b)
E,Q,P(c) \vee R(c) = \bot
E,Q,P(d) \vee R(d) = T
E,Q,P(e) \vee R(e) = P(e)

We know $R(c) \Leftrightarrow \bot$

$$E,Q,P(a) \lor R(a) = T$$
 $E,Q,P(b) \lor R(b) = R(b)$
 $E,Q,P(c) \lor R(c) = \bot$
 $E,Q,P(d) \lor R(d) = T$
 $E,Q,P(e) \lor R(e) = P(e)$

⇒ Consider what we learn from these instances:

$$E,Q,P(a) \lor R(a) = T$$
 $E,Q,P(b) \lor R(b) = R(b)$
 $E,Q,P(c) \lor R(c) = \bot$
 $E,Q,P(d) \lor R(d) = T$
 $E,Q,P(e) \lor R(e) = P(e)$

Since $P(c) \vee R(c)$ suffices to derive \bot , return *only* this instance

- Why are conflicts important?
 - As with the ground case, they prune the search space of DPLL(T)
 - Given a conflicting instance for (E, Q) is added to the clause set F
 - Solver is forced to choose a new sat assignment (E¹, Q¹)

E-matching

Model Based


```
a \neq c, f(b) = b,
g(b) = a, f(a) = a,
h(f(a)) = d, h(b) = c

CBQI

Q = A \neq c, f(b) = b,
G(b) = a, f(a) = a,
G(b) = a,
G(b
```

- \Rightarrow Consider the instance $\forall x \cdot f(g(x)) = h(f(x)) \Rightarrow f(g(b)) = h(f(b))$
 - Is this conflicting for (\mathbb{E}, \mathbb{Q}) ?

$$E = \begin{cases} a \neq c, f(b) = b, \\ g(b) = a, f(a) = a, \\ h(f(a)) = d, h(b) = c \end{cases}$$

$$CBQI$$

$$Q = \begin{cases} \forall x. f(g(x)) = h(f(x)) \end{cases}$$

$$E,Q,f(g(b))=h(f(b)) = f(g(b))=h(f(b))$$

$$E = \begin{cases} a \neq c, f(b) = b, \\ g(b) = a, f(a) = a, \\ h(f(a)) = d, h(b) = c \end{cases}$$

$$CBQI = \begin{cases} a = g(b) = f(a) \\ c = h(b) \end{cases}$$

$$Consider the equivalence classes of Equivalen$$

Consider the *equivalence classes* of \mathbb{E}

$$E,Q,f(g(b))=h(f(b)) \models_{E} f(g(b))=h(f(b))$$

$$E = \begin{cases} a \neq c, f(b) = b, \\ g(b) = a, f(a) = a, \\ h(f(a)) = d, h(b) = c \end{cases}$$

$$CBQI$$

$$Q = \begin{cases} \nabla x \cdot f(g(x)) = h(f(x)) \end{cases}$$

$$CBQI$$

Build partial definitions for functions in terms of representatives

$$E,Q,f(g(b))=h(f(b)) \models_{E} f(g(b))=h(f(b))$$

Conflict-Based

E-matching

Model Based

$$E = \begin{cases} a \neq c, f(b) = b, \\ g(b) = a, f(a) = a, \\ h(f(a)) = d, h(b) = c \end{cases}$$

$$CBQI$$

$$CBQI$$

$$C = h(b)$$

$$C = h(b)$$

$$C = h(f(a))$$

$$E,Q,f(g(b))=h(f(b)) = f(g(b))=h(f(b))$$

Conflict-Based

E-matching

Model Based

$$E = \begin{cases} a \neq c, f(b) = b, \\ g(b) = a, f(a) = a, \\ h(f(a)) = d, h(b) = c \end{cases}$$

$$CBQI$$

$$E,Q,f(g(b))=h(f(b)) |_{E} f(g(b))=h(b)$$

E-matching

Model Based

b=f(b)

$$a \neq c, f(b) = b,$$
 $g(b) = a, f(a) = a,$
 $h(f(a)) = d, h(b) = c$

$$Q = \forall x.f(g(x)) = h(f(x))$$

$$c=h(b)$$
 $d=h(f(a))$

$$E,Q,f(g(b))=h(f(b))|_{E}f(g(b))=$$

Conflict-Based

E-matching

Model Based

$$a \neq c, f(b) = b,$$
 $g(b) = a, f(a) = a,$
 $h(f(a)) = d, h(b) = c$

$$Q = \forall x.f(g(x)) = h(f(x))$$

$$a=g(b)=f(a)$$

$$b=f(b)$$

$$d=h(f(a))$$

$$E,Q,f(g(b))=h(f(b))|_{E}f(a)=c$$

Conflict-Based

E-matching

Model Based

$$a \neq c, f(b) = b,$$
 $g(b) = a, f(a) = a,$
 $h(f(a)) = d, h(b) = c$

CBQI

$$a=g(b)=f(a)$$

$$b=f(b)$$

$$d=h(f(a))$$

$$Q = \forall x.f(g(x)) = h(f(x))$$

$$E,Q,f(g(b))=h(f(b)) \models_{E}$$

Conflict-Based

E-matching

Model Based

$$E = \begin{cases} a \neq c, f(b) = b, \\ g(b) = a, f(a) = a, \\ h(f(a)) = d, h(b) = c \end{cases}$$

$$Q = \forall x.f(g(x)) = h(f(x))$$

b=f(b)

$$E,Q,f(g(b))=h(f(b))=E$$
 a=c

Conflict-Based

E-matching

b=f(b)

$$a \neq c, f(b) = b,$$
 $g(b) = a, f(a) = a,$
 $h(f(a)) = d, h(b) = c$

$$Q = \forall x.f(g(x)) = h(f(x))$$

d=h(f(a))

$$E,Q,f(g(b))=h(f(b)) \models_{E}$$

Conflict-Based

E-matching

Model Based

$$a \neq c, f(b) = b,$$
 $g(b) = a, f(a) = a,$
 $h(f(a)) = d, h(b) = c$

$$Q = \forall x.f(g(x)) = h(f(x))$$

c=h(b)

b=f(b)

$$E,Q,f(g(b))=h(f(b)) \models_{E}$$

f (g (b)) =h (f (b)) is a conflicting instance for
$$(E,Q)$$
!

- ⇒ Consider the same example, but where we don't know a≠c
 - Is the instance f (g (b)) = h (f (b)) still useful?

CBQI

Conflict-Based

E-matching

Model Based

$$E = \begin{cases} ..., f(b) = b, \\ g(b) = a, f(a) = a, \\ h(f(a)) = d, h(b) = c \end{cases}$$

$$Q = \forall x.f(g(x)) = h(f(x))$$

Build partial definitions

E-matching

Model Based

E
$$\frac{(b)=b}{g(b)=a,f(a)=a,}$$
h(f(a))=d,h(b)=c

$$Q = \forall x.f(g(x)) = h(f(x))$$

$$b=f(b)$$

$$d=h(f(a))$$

$$E,Q,f(g(b))=h(f(b)) \models_E f(g(b))=h(f(b))$$
 Check entailment

Conflict-Based

E-matching

Model Based

E
$$\begin{cases} (b) = b, \\ g(b) = a, f(a) = a, \\ h(f(a)) = d, h(b) = c \end{cases}$$

CBQI

$$CBQI$$

$$E,Q,f(g(b))=h(f(b)) \models_E a=c$$

b=f(b)

$$E = \begin{cases} ..., f(b) = b, \\ g(b) = a, f(a) = a, \\ h(f(a)) = d, h(b) = c \end{cases}$$

$$Q = \forall x.f(g(x)) = h(f(x))$$

$$a=g(b)=f(a)$$

$$c=h(b)$$
 $d=h(f(a))$

 $E,Q,f(g(b))=h(f(b)) |_{E} a=c$

Instance is *not conflicting*, but *propagates* an equality between two existing terms in \mathbb{E}

Conflict-Based

E-matching

Model Based

$$E = \begin{cases} ..., f(b) = b, \\ g(b) = a, f(a) = a, \\ h(f(a)) = d, h(b) = c \end{cases}$$

$$Q = \forall x.f(g(x)) = h(f(x))$$

CBQI

$$a=g(b)=f(a)$$

$$b=f(b)$$

$$c=h(b)$$

$$d=h(f(a))$$

$$f(g(b) = h(f(b)) is a$$

propagating instance for (E, Q)

 \Rightarrow These are also useful

$$E,Q,f(g(b))=h(f(b)) |_{E} a=c$$

Conflict-Based E-matching Model Based

Given:

- Set of ground T-literals ${\mathbb E}$
- Quantified formulas Q

Conflict-based instantiation:

- 1. If there exists a conflicting instance \mathbb{E} , $\Psi\{x \rightarrow t\} \models_{\mathsf{T}} \bot$
 - Returns $\{\forall x. \Psi \Rightarrow \Psi \{x \rightarrow t\}\}$ only
- 2. If there exists *propagating instance(s)*, \mathbb{E} , $\Psi_{\mathbf{i}}\{\mathbf{x} \rightarrow \mathbf{t}_{\mathbf{i}}\} \models_{\mathsf{T}} s_{\mathbf{i}} = u_{\mathbf{i}}$, for i=1,...,n
 - Returns $\{\forall x. \Psi_1 \Rightarrow \Psi_1 \{x \rightarrow t_1\}, ..., \forall x. \Psi_n \Rightarrow \Psi_n \{x \rightarrow t_n\} \}$ only
- 3. Otherwise:
 - Returns "unknown" (and the quantifiers module will resort to E-matching)

Given:

- ullet Set of ground T-literals ${\mathbb E}$
- Quantified formulas Q

E-matching Model Based

usually restricted such that T is theory of equality

Conflict-based instantiation:

- 1. If there exists a conflicting instance \mathbb{E} , $\Psi\{x \rightarrow t\} \models_{\mathsf{T}} t$
 - Returns $\{\forall x. \Psi \Rightarrow \Psi \{x \rightarrow t\}\}$ only
- 2. If there exists propagating instance(s), \mathbb{E} , $\Psi_{\mathbf{i}}\{\mathbf{x} \rightarrow \mathbf{t}_{\mathbf{i}}\} \models_{\mathbf{T}} \mathbf{s}_{\mathbf{i}} = \mathbf{u}_{\mathbf{i}}$, for $\mathbf{i} = 1, ..., n$
 - Returns $\{\forall x. \Psi_1 \Rightarrow \Psi_1 \{x \rightarrow t_1\}, ..., \forall x. \Psi_n \Rightarrow \Psi_n \{x \rightarrow t_n\} \}$ only
- 3. Otherwise:
 - Returns "unknown" (and the quantifiers module will resort to E-matching)

Conflict-Based Instantiation: Impact

 Using conflict-based instantiation (cvc4+ci), require an order of magnitude fewer instances for showing "UNSAT" wrt E-matching alone

Reported number of instances.

(taken from [Reynolds et al FMCAD14], evaluation On SMTLIB, TPTP, Isabelle benchmarks)

Conflict-Based Instantiation: Impact

Conflict-Based

E-matching

Model Based

- Conflicting instances found on ~75% of rounds (IR)
- Configuration cvc4+ci:
 - Calls E-matching 1.5x fewer times overall
 - As a result, returns 5x fewer instantiations

			E-matching		Conflict Inst.		Propagating Inst.	
		IR	% IR	# Inst	% IR	# Inst	% IR	# Inst
TPTP	cvc4	71,634	100.0	878,957,688				
	cvc4+ci	208,970	20.3	150,351,384	76.4	159,696	3.3	415,772
Isabelle	cvc4	6,969	100.0	119,008,834		12		
	cvc4+ci	21,756	22.4	28,196,846	64.0	13,932	13.6	130,864
SMT-LIB	cvc4	14,032	100.0	60,650,746				
	cvc4+ci	58,003	20.0	32,305,788	71.6	41,531	8.4	51,454

Conflict-Based Instantiation: Impact

E-matching

Model Based

- CVC4 with conflicting instances cvc4+ci
 - Solves the most benchmarks for TPTP and Isabelle
 - Requires almost an order of magnitude fewer instantiations

	TF	PTP	Isal	pelle	SMT-LIB		
	Solved	Inst	Solved	Inst	Solved	Inst	
cvc3	5,245	627.0M	3,827	186.9M	3,407	42.3M	
z 3	6,269	613.5M	3,506	67.0M	3,983	6.4M	
cvc4	6,100	879.0M	3,858	119.0M	3,680	60.7M	
cvc4+ci	6,616	150.9M	4,082	28.2M	3,747	32.4M	

 \Rightarrow A number of hard benchmarks can be solved without resorting to E-matching at all

- How do we *find* conflicting instances?
- What about conflicts involving multiple quantified formulas?
- What if our quantified formulas that contain theory symbols?

Conflict-Based

E-matching

Model Based

How do we *find* conflicting instances?

- How do we find conflicting instances?
 - Naively:
 - 1. Produce all instances Ψ_1 , ..., Ψ_n via E-matching for (\mathbb{E},\mathbb{Q})
 - 2. For i=1, ..., n, check if Ψ_i is a conflicting instance for (E,Q)

- How do we find conflicting instances?
 - Naively:
 - 1. Produce all instances Ψ_1 , ..., Ψ_n via E-matching for (\mathbb{E},\mathbb{Q})
 - 2. For i=1, ..., n, check if Ψ_i is a conflicting instance for (\mathbb{E},\mathbb{Q})
 - \Rightarrow but n may be very large!

- How do we find conflicting instances?
 - Naively:
 - 1. Produce all instances Ψ_1 , ..., Ψ_n via E-matching for (\mathbb{E},\mathbb{Q})
 - 2. For i=1, ..., n, check if Ψ_i is a conflicting instance for (\mathbb{E},\mathbb{Q})
 - In practice: it can be done more efficiently:
 - Basic idea: construct instances via a stronger version of matching
 - Intuition: for $\forall x . P(x) \lor Q(x)$, will only match P(x) with $P(t) \Leftrightarrow \bot$ (For technical details, see [Reynolds et al FMCAD2014])

What about conflicts involving multiple quantified formulas?

$$E = \begin{bmatrix} P_0(a) \\ \neg P_{100}(a) \end{bmatrix} \qquad Q = \begin{bmatrix} \forall x . P_0(x) \Rightarrow P_1(x) \\ \forall x . P_1(x) \Rightarrow P_2(x) \\ \cdots \\ \forall x . P_{99}(x) \Rightarrow P_{100}(x) \end{bmatrix}$$

What about conflicts involving multiple quantified formulas?

$$E = \begin{bmatrix} P_0(a) \\ \neg P_{100}(a) \end{bmatrix} \qquad Q = \begin{bmatrix} \forall x. P_0(x) \Rightarrow P_1(x) \\ \forall x. P_1(x) \Rightarrow P_2(x) \\ & \cdots \\ \forall x. P_{99}(x) \Rightarrow P_{100}(x) \end{bmatrix}$$

Want to find:

$$E, P_0(a) \Rightarrow P_1(a), P_1(a) \Rightarrow P_2(a), \ldots, P_{99}(a) \Rightarrow P_{100}(a) \models_{E} \bot$$

⇒ Current implementations would take 100 rounds to infer this

What about quantified formulas that contain theory symbols?

E
$$f(1)=5$$
 Q $\forall xy.f(x+y)>x+2*y$

What about quantified formulas that contain theory symbols?

E
$$f(1)=5$$
 Q $\forall xy.f(x+y)>x+2*y$

• Want to find, e.g.:

• E, f(
$$-3+4$$
)> $-3+2*4$ | UFLIA f($-3+4$)> $-3+2*4$

What about quantified formulas that contain theory symbols?

E
$$f(1)=5$$
 Q $\forall xy.f(x+y)>x+2*y$

• Want to find, e.g.:

• E,
$$f(-3+4) > -3+2*4 \models_{UFLIA} f(1) > 5$$

What about quantified formulas that contain theory symbols?

E
$$f(1)=5$$
 Q $\forall xy.f(x+y)>x+2*y$

• Want to find, e.g.:

• E, f
$$(-3+4) > -3+2*4 \models UFLIA 5 > 5$$

By E, we know f(1) = 5

Conflict-Based Instantiation: Challenges

What about quantified formulas that contain theory symbols?

E
$$f(1)=5$$
 Q $\forall xy.f(x+y)>x+2*y$

• Want to find, e.g.:

• E, f
$$(-3+4) > -3+2*4$$
 | UFLIA \perp

Conflict-Based Instantiation: Challenges

What about quantified formulas that contain theory symbols?

E
$$f(1)=5$$
 Q $\forall xy.f(x+y)>x+2*y$

• Want to find, e.g.:

• E, f(
$$-3+4$$
)> $-3+2*4$ | UFLIA \perp

 \Rightarrow In practice, finding such instances cannot be done efficiently

Conflict-Based Instantiation: Summary

- Instantiation technique for (\mathbb{E}, \mathbb{Q}) , where:
 - \Rightarrow From Q, derive conflicts \perp , and equalities $g_1 = g_2$ between ground terms g_1 , g_2 from E
- Run with higher priority to E-matching
 - Resort to E-matching only if no conflicting or propagating instances can be found
- Leads to fewer instances, greater ability to answer "unsat"

Conflict-Based

E-matching

Model-Based

Conflict-Based

E-matching

Model-Based

 \Rightarrow What if $E \cup Q$ is satisfiable?

Use model-based quantifier instantiation (MBQI)

- Implemented in solvers:
 - Z3 [Ge et al CAV09], CVC4 [Reynolds et al CADE13]
- Basic idea:
 - 1. Build interpretation M for all uninterpreted functions in the signature
 - e.g. $P^{M} \Leftrightarrow \lambda x.ite(x>0, T, \bot)$
 - 2. If this interpretation satisfies all formulas in Q, answer "sat"
 - e.g. interpretation M satisfies $\forall x.x>4 \Rightarrow P(x)$
- ⇒ Ability to answer "sat"

Conflict-Based

E-matching

Model-Based

Build interpretation M of predicates

This interpretation must satisfy E

This interpretation must satisfy E

Missing values may be filled in arbitrarily

- \Rightarrow Does M satisfy Q?
- Check (un)satisfiability of: $\exists x. \neg (P^{M}(x) \lor R^{M}(x))$

E-matching

Check:
$$\exists x.\neg (P^{M}(x) \lor R^{M}(x))$$

Check: $\neg (P^{M}(\mathbf{k}) \lor R^{M}(\mathbf{k}))$

⇒ Skolemize

ite($k=b, \perp, ite(k=c, \perp, \perp)$))

T)))

MBQI

Q $\forall x.P(x) \lor R(x)$ Check: $\neg (k \neq a \lor \bot)$

 \Rightarrow Simplify

上)))

Check: k=a

⇒ Simplify

Check: **k=a**

 \Rightarrow Satisfiable! There are values k for which M does not satisfy Q

Conflict-Based

E-matching

Model-Based

Conflict-Based

E-matching

Model-Based

Conflict-Based

E-matching

Model-Based

 \Rightarrow Subsequent models must satisfy $P(x) \lor R(x)$ for $x \rightarrow a$

Conflict-Based

E-matching

Model-Based

Check: $\exists x. \neg (P^{M''}(x) \lor R^{M''}(x))$

Model-Based

```
\neg P(a)
                               M′′
                             MBQI
 R(a)
 P(C)
\forall x . P(x) \lor R(x)
       Check: k=a \land k\neq a
```

```
P^{M''} \Leftrightarrow
ite (x=a, \perp,
ite (x=b, T,
ite (x=c, T,
```

```
\mathbb{R}^{M''} \Leftrightarrow
\lambda x.
ite (x=a, T,
ite (x=b, \perp,
ite (\mathbf{x}=\mathbf{c}, \perp,
```


Check: k=a ∧ k≠a

 $\forall x.P(x) \lor R(x)$

 \implies Unsatisfiable, there are no values k for which M " does not satisfy Q

T)))

上)))

Conflict-Based

E-matching

Model-Based

- Seen techniques for which:
 - Ground Solver may answer unsat
 - Quantifiers Module (+ model-based instantiation) may answer

Under what conditions are these techniques terminating?

Conflict-Based

E-matching

Model-Based

- Seen techniques for which:
 - Ground Solver may answer unsat
 - Quantifiers Module (+ model-based instantiation) may answer
- Under what conditions are these techniques terminating?
 - A. If the domains of \forall are interpreted as finite
 - E.g. quantified bitvectors [Wintersteiger et al 13]

Conflict-Based

E-matching

Model-Based

- Seen techniques for which:
 - Ground Solver may answer unsat
 - Quantifiers Module (+ model-based instantiation) may answer

sat

- Under what conditions are these techniques terminating?
 - A. If the domains of \forall are interpreted as finite
 - E.g. quantified bitvectors [Wintersteiger et al 13]
 - B. If the domains of \forall may be interpreted as finite in a model
 - Finite model finding [Reynolds et al 13]

Conflict-Based

E-matching

Model-Based

- Seen techniques for which:
 - Ground Solver may answer unsat
 - Quantifiers Module (+ model-based instantiation) may answer

sat

- Under what conditions are these techniques terminating?
 - A. If the domains of \forall are interpreted as finite
 - E.g. quantified bitvectors [Wintersteiger et al 13]
 - B. If the domains of \forall may be interpreted as finite in a model
 - Finite model finding [Reynolds et al 13]
 - C. If the domains of \forall are infinite
 - ...but it can be argued that only finitely many instances will be generated
 - E.g. essentially uninterpreted fragment [Ge+deMoura 09], ...

Model-based Instantiation: Impact

- 1203 satisfiable benchmarks from the TPTP library
 - Graph shows # instances required by exhaustive instantiation
 - E.g. $\forall xyz:U.P(x,y,z)$, if |U|=4, requires $4^3=64$ instances

Conflict-Based

E-matching

Model-Based

Model-based Instantiation: Impact

Conflict-Based

E-matching

Model-Based

- CVC4 Finite Model Finding + Exhaustive instantiation
 - Scales only up to ~150k instances with a 30 sec timeout

Model-based Instantiation: Impact

- CVC4 Finite Model Finding + Model-Based instantiation [Reynolds et al CADE13]
 - Scales to >2 billion instances with a 30 sec timeout, only adds fraction of possible instances

Model-based Instantiation: Challenges

Model-based Instantiation: Challenges

- How do we build interpretations M?
 - Typically, build interpretations f^{M} that are almost constant:
 - e.g. $f^{M} := \lambda x$. ite $(x=t_1, v_1, ite(x=t_2, v_2, ..., ite(x=t_n, v_n, v_{def}) ...))$

Model-based Instantiation: Challenges

Conflict-Based

E-matching

Model-Based

- How do we build interpretations M?
 - Typically, build interpretations f^{M} that are almost constant:

• e.g.
$$f^{M} := \lambda x$$
. ite $(x=t_1, v_1, ite(x=t_2, v_2, ..., ite(x=t_n, v_n, v_{def}) ...))$

...but models may need to be more complex when theories are present:

$$\forall xy: Int. (f(x,y) \ge x \land f(x,y) \ge y)$$

$$f^{M} := \lambda xy.ite(x \ge y, x, y)$$

$$\forall x: Int.3*g(x)+5*h(x)=x$$

$$g^{M} := \lambda x . 5 * x$$
$$h^{M} := \lambda x . -3 * x$$

$$\forall xy: Int.u(x+y) + 11*v(w(x)) = x+y$$

3.3.

Putting it Together

- Input:
 - Ground literals E
 - Quantified formulas Q

P(a), where $E, \neg P(a) \not\models \bot$

E∧**Q** is unsat

E∧Q is unsat

pattern matching

P(a), where E, $\neg P(a) = \bot$

pattern matching

 $E \land Q$ is unsat

P(d),P(e),P(f),...

P(b), P(c),

M is not a model for Q

P(z), where $M \not\models P(z)$

E-matching, Conflict-Based, Model-based:

- Common thread: satisfiability of \forall + UF + theories is hard!
 - E-matching:
 - Pattern selection, matching modulo theories
 - Conflict-based:
 - Matching is incomplete, entailment tests are expensive
 - Model-based:
 - Models are complex, interpreted domains (e.g. Int) may be infinite

E-matching, Conflict-Based, Model-based:

- Common thread: satisfiability of \forall + UF + theories is hard!
 - E-matching:
 - Pattern selection, matching modulo theories
 - Conflict-based:
 - Matching is incomplete, entailment tests are expensive
 - Model-based:
 - Models are complex, interpreted domains (e.g. Int) may be infinite
- \Rightarrow But reasoning about \forall + *pure* theories isn't as bad:
 - Classic ∀-elimination algorithms are decision procedures for ∀ in:
 - LRA [Ferrante+Rackoff 79, Loos+Wiespfenning 93], LIA [Cooper 72], datatypes, ...

E-matching, Conflict-Based, Model-based:

- Common thread: satisfiability of \forall + UF + theories is hard!
 - E-matching:
 - Pattern selection, matching modulo theories
 - Conflict-based:
 - Matching is incomplete, entailment tests are expensive
 - Model-based:
 - Models are complex, interpreted domains (e.g. Int) may be infinite
- \Rightarrow But reasoning about \forall + *pure* theories isn't as bad:
 - Classic ∀-elimination algorithms are decision procedures for ∀ in:
 - LRA [Ferrante+Rackoff 79, Loos+Wiespfenning 93], LIA [Cooper 72], datatypes, ...
 - Can classic ∀-elimination algorithms be implemented in an SMT context?
 - Yes: [Monniaux 2010, Bjorner 2012, Komuravelli et al 2014, Reynolds et al 2015, Bjorner/Janota 2016]

Techniques for Quantifier Instantiation

Techniques for Quantifier Instantiation

- Variants implemented in number of tools:
 - Z3 [Bjorner 2012, Bjorner/Janota 2016]
 - Tools using Z3 as backend: SPACER [Komuravelli et al 2014] UFO [Fedyukovich et al 2016]
 - Yices [Dutertre 2015]
 - CVC4 [Reynolds et al 2015]
- High-level idea:
 - Quantifier elimination (e.g. for LIA) says: $\exists x . \psi[x] \Leftrightarrow \psi[t_1] \lor ... \lor \psi[t_n]$ for finite n

- Variants implemented in number of tools:
 - Z3 [Bjorner 2012, Bjorner/Janota 2016]
 - Tools using Z3 as backend: **SPACER** [Komuravelli et al 2014] **UFO** [Fedyukovich et al 2016]
 - Yices [Dutertre 2015]
 - CVC4 [Reynolds et al 2015]
- High-level idea:
 - Quantifier elimination (e.g. for LIA) says: $\forall x . \neg \psi[x] \Leftrightarrow \neg \psi[t_1] \land ... \land \neg \psi[t_n]$ for finite n (consider the dual)

- Variants implemented in number of tools:
 - Z3 [Bjorner 2012, Bjorner/Janota 2016]
 - Tools using Z3 as backend: **SPACER** [Komuravelli et al 2014] **UFO** [Fedyukovich et al 2016]
 - Yices [Dutertre 2015]
 - CVC4 [Reynolds et al 2015]
- High-level idea:
 - Quantifier elimination (e.g. for LIA) says: $\forall x . \neg \psi[x] \Leftrightarrow \neg \psi[t_1] \land ... \land \neg \psi[t_n]$ for finite n
 - Enumerate these instances lazily, via a counterexample-guided loop, that is:
 - Terminating: enumerate at most n instances
 - Efficient in practice: typically terminates after m<<n instances

 \Rightarrow Consider \forall in the theory of linear integer arithmetic LIA:

$$\exists abc. (a=b+5 \land \forall x. (x>a \lor x$$

 $\exists abc$. (a=b+5 $\land \forall x$. (x>a $\lor x < b \lor x - c < 3$)

Outermost existentials a, b, c are treated as free constants

⇒ Use counterexample-guided instantiation

⇒With respect to *model-based instantiation*:

• Similar: check satisfiability of $\exists \mathbf{k} \cdot \neg (\mathbf{k} > \mathbf{a} \lor \mathbf{k} < \mathbf{b} \lor \mathbf{k} - \mathbf{c} < 3)$

⇒With respect *to model-based instantiation*:

- Similar: check satisfiability of $\exists k.\neg (k>a \lor k<b \lor k-c<3)$
- Key difference: use the same (ground) solver for F and counterexample k for Q

CE-Guided Instantiation

C is a fresh Boolean variable:

"A counterexample k exists for $\forall x$. (x>a \lor x<b \lor x-c<3)"

• Three cases:

- Three cases:
 - 1. F is unsatisfiable

⇒ answer "unsat"

2. F is satisfiable, $\neg C \in E$ for all assignments E

⇒ answer "sat"

2. F is satisfiable, $\neg C \in E$ for all assignments E

⇒ answer "sat"

• Three cases:

3. F is satisfiable, C∈E for *some* assignment E

 \Rightarrow add an instance to **F**

- 1. F is unsatisfiable
- 2. F is satisfiable, $\neg C \in E$ for all assignments E
- \exists . \vdash is satisfiable, \vdash ∈ \vdash for some assignment \vdash

- ⇒ answer "unsat"
- ⇒ answer "sat"
- \Rightarrow add an instance to \mathbb{F}

- 1. F is unsatisfiable
- 2. F is satisfiable, $\neg C \in E$ for all assignments E
- \exists . \vdash is satisfiable, \vdash ∈ \vdash for some assignment \vdash

- ⇒ answer "unsat"
- \Rightarrow answer "sat"
- \Rightarrow add **an instance** to \mathbb{F} (...which t?)

 \forall x.(x>a \vee x<b \vee x-c<3)

Build model M for \mathbb{E}

Take lower bounds of k in \mathbb{E}

Compute their value in M

Add instance for lower bound that is maximal in M

CEGQI

 $k \ge c + 3$

 $\forall x. (x>a \lor x<b \lor x-c<3)$

Take lower bounds of k in E

Compute their value in M

Add instance for lower bound that is maximal in M

Add instance for lower bound that is maximal in M

 $\forall x. (x>a \lor x<b \lor x-c<3)$

$$\Rightarrow \exists abc. (a=b+5 \land \forall x. (x>a \lor x **is LIA-satisfiable**$$

- Decision procedure for ∀ in various theories:
 - Linear real arithmetic (LRA)
 - Maximal lower (minimal upper) bounds
 - [Loos+Wiespfenning 93]
 - Interior point method:
 - [Ferrante+Rackoff 79]
 - Linear integer arithmetic (LIA)
 - Maximal lower (minimal upper) bounds (+c)
 - [Cooper 72]
 - Bitvectors/finite domains
 - Value instantiations
 - Datatypes, ...

$$\begin{array}{ccc} \textbf{l}_1 < k \text{,...,} \textbf{l}_n < k & \rightarrow \{\textbf{x} \rightarrow \textbf{l}_{\text{max}} + \delta \} \\ & ... \textit{may involve virtual terms } \delta, \infty \\ \\ \textbf{l}_{\text{max}} < k < \textbf{u}_{\text{min}} & \rightarrow \{\textbf{x} \rightarrow (\textbf{l}_{\text{max}} - \textbf{u}_{\text{min}}) / 2 \} \end{array}$$

$$l_1 < k, ..., l_n < k \rightarrow \{x \rightarrow l_{max} + c\}$$

$$F[k] \rightarrow \{x \rightarrow k^{M}\}$$

 \Rightarrow **Termination argument for each**: enumerate at most a finite number of instances

$$\forall \mathbf{x} . \mathbf{\psi}[\mathbf{x}]$$

- Can be used for:
 - Quantifier elimination

$$\psi[t_1] \wedge ... \wedge \psi[t_n]$$
 is (un)sat

- $\exists x . \neg \psi[x]$ is equivalent to $\neg \psi[t_1] \lor ... \lor \neg \psi[t_n]$
- Function Synthesis

$$\psi[t_1] \wedge ... \wedge \psi[t_n]$$
 is unsat

• λx .ite ($\psi[t_1]$, t_1 , ..., ite ($\psi[t_{n-1}]$, t_{n-1} , t_n) ...) is a solution for f in $\forall x$. $\psi[f(x)]$

• Challenge:

Challenge: does not work in presence of uninterpreted functions!

 \Rightarrow a is still the maximal lower bound in M!

- \Rightarrow Unlike the pure arithmetic case:
 - Instance does not suffice to rule out a as maximal lower bound

Summary

- SMT solvers handle quantifiers+theories via combination of:
 - DPLL(T)-based ground solver
 - Instantiation via:
 - Conflict-based, E-matching, Model-Based Instantiation
 - Effective in practice for \forall +UF, \forall +UFLIA, \forall +UFLRA, ...
 - Can be decision procedure for limited fragments, e.g. Bernays-Shonfinkel
 - Conflict-Based, E-matching are useful for "unsat"
 - Model-Based is useful for "sat"
 - Counterexample-guided Instantiation
 - Decision procedure for \forall +LRA, \forall +LIA, \forall +BV, ...

In practice: Distribute ∀ to proper strategy

Summary: DPLL(T)+Instantiation

Summary: DPLL(T)+Instantiation

Other Important Aspects of ∀ Not Covered

- Eager Quantifier Instantiation
- Relevancy
- Preprocessing
- Rewriting

Future Challenges

- Improve performance and precision of existing approaches
 - Many engineering challenges when implementing E-matching, conflict-based instantiation
- Develop new approaches for ∀+UF+theories that:
 - Are efficient in practice
 - E-matching is efficient for \forall +UF, ce-guided approaches are efficient for \forall + theories
 - Under what conditions, and to what degree, can these techniques be combined?
 - Are decision procedures for various fragments
 - Extensions of Bernays-Shonfinkel
 - Array Property fragments
 - Local theory extensions
 - ∀ over pure theories that emit quantifier elimination

Thanks for listening

•Questions?