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Overview

» Introduction to Satisfiability Modulo Theories (SMT)
» Extending SMT to Quantifiers
» Approaches to Quantifier Instantiation

E-Matching

Model-Based Quantifier Instantiation

New: Counterexample-Based Approach

» Current Work



Satisifiability Modulo Theories (SMT)

» SMT extends boolean satisifiability problems to theories

F={(f(c)=avc+4 >a), (a=g(b))}

» Construct satisfying assignment M for set of clauses F
.e.M={f(c)=aa=g(b)}

» Is this assighment consistent according to theory
reasoning!?



DPLL(T) Architecture

» SMT uses DPLL(T) architecture
» Operates on states of the form

M| F
» F is a set of clauses

» M is a set of asserted theory literals “L’
Literals may be decisions “LY”



DPLL(T) Architecture

» For a DPLL(T) state M || F.
SMT solver can answer UNSAT if:

Some clause in F is falsified by M, and
M contains no decision literals L¢
SMT solver can answer SAT if:

Each clause in F is satisfied in M, and
M is T-consistent
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Role of Theory Solver T in SMT

» Accepts a set of theory literals M
Determine if M is T-consistent
If not, add lemmas C to F, where each C is T-valid

» Typically, use SMT for decidable logics

Quantifier-free UF, Linear Real Arithmetic, etc.

» Also may be interested in other logics
Non-linear arithmetic, quantified logics, etc.



Quantifiers in SMT

» Universal and existential quantifiers
Vx. ¢, Ix. ¢
Treated as literals by the SAT solver
» Relegate these literals to quantifiers module
Role is similar to theory solver
Checking T-consistency is undecidable
When Vx. ¢ is asserted, cannot answer SAT

» When asked whether M is T-consistent, and there is a
Vx. ¢ asserted in M, either:
Answer UNKNOWN
Add (instantiation) clause ( =Vx.® v ®[s/x] ) to M



Quantifiers in SMT: Challenges

(1) Finding relevant instantiations
How do we determine ground term s?
(2) Deciding when providing instantiations is no longer
worthwhile
When should we answer UNKNOWN?
(3) Determining if all necessary instantiations have been
applied

Can we answer SAT?



Related Work: E-matching

- Address challenge (1)

Find relevant instantiations by matching terms in quantifiers
t[x] to ground terms t[s/x]
- To construct instantiation for Vx.¢ :
Find trigger t, where x is in FV( t)
Find ground term g

Find substitution [s/x] such that t[s/x] is equivalent to g
modulo set of equalities E

“t E-matches g”
Use s to instantiate Vx.¢



Related Work: Model-Based Quantifier
Instantiation (MBQI)

» Address challenges (1) and (3)

Determine if some model satisfies all quantifiers. If so,
answer SAT. Otherwise, use values for which model fails to
instantiate quantifiers.

» Given asserted quantified formula Vx.¢:
Build explicit model M! for ground clauses F
Replace uninterpretted symbols in ¢ to generate ¢!
Determine the satisfiability of R A —'[e/X]
If UNSAT, then Vx.¢ is valid in current context

Otherwise, model for R A —¢'[e/x] is used to instantiate Vx.¢

Rules out M' on subsequent iterations



MBQI Example
» Check satisfiability of F A ¢

FFw>v+2Af(v)< I Af(w)<3

d: Vij(i<j=>f(i)<f(j))

» Model M! for F:
voOw—->2f>[0->1,2—> 3,else > 4]

» Check satisfiability of —'[e/i, e/j]:
e <e Aite( =0, |,ite( =2, 3,4)) = ite( =0, |,ite( &=2, 3,4))



Alternative Approach to MBQI

» MBQI builds explicit models M
Check sat for R A —¢'[e/x]

» Instead: Reason about counterexample e directly
Add clause containing —¢d[e/x] to SMT solver

» Potential advantages:

Do not need to generate explicit models M

Reason about —¢[e/x] incrementally, using the same
instance of SMT solver



Counterexample Lemma

» Write L ?to denote literal meaning:

“a counterexample to ¢ exists”

» SMT solver finds satisfying assighment to:

(b v L?)

“either ¢ holds or a ¢ has a counterexample”

(L = —dle/x])

“¢ has a counterexample if and only if its negation
holds for some value e”



Configurations for Quantifier /CE Literal

» ¢ is not asserted in M
We don’t care about ¢

» @ and (L% )9 are asserted in M

¢ is true but we might find a counterexample

» P @D and —1% are asserted in M

¢ is true and we know it does not have a counterexample

» Requirement: Never assert —(_L® )9
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Recognizing SAT Instances with C]
Literals

» If L% is asserted negatively as a non-decision, then ¢ is
valid in the current context

If this is true for all quantifiers ¢, then we may answer SAT

» Conceptually: axiom ¢ does not apply in the current
context

» Example: a=0 A (V x. a> 0= P(a,x))
1*< (a>0A—=P(ae))



Features of Counterexample-Based
Approach

» May be able to recognize SAT instances

Cases when no quantified axiom applies, i.e. counterexample is
unsatisifiable

» Use information about “e” for finding relevant
Instantiations

Theory-specific information



Theory-Specific Instantiators

» After finding satisfying assignment to —¢[e/x]

Each theory solver has theory-specify information/constraints
involving e

SMT Solver

T-Solver, - T-Solver,

» How can we use this information?

Naively, find arbitrary model and use value of e to instantiate ¢



Theory-Specific Instantiators

» Can we do better?
» For each theory, associate an instantiatior

» Has access to internal information stored in theory solver

SMT Solver

T-Solver, - T-Solver,

T-Instantiator, o T-Instantiator,,




Using Relationships between Triggers
» For EUF:

Search method for finding relevant instantiations

For literal t[e/x] = s, first try to find match t[g/x] in the equivalence
class of s

Criteria for judging relevance of instantiations

Do not consider instantiations g where e = g is unsatisifiable
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Quantifier Instantiation for EUF

» Multiple Iterations:
Find if e = s is entailed for some ground term s

Find if there exists some s such that all requirements for e
are entailed by e = s

Find if there exists some s such that some requirements for
e are (partially) matched by e ='s

Do E-matching

»  Otherwise, see if (explicit) model can be constructed



Current Work

» Optimizations
Computing matches efficiently (i.e. indexing, caching)

» Using splitting on demand
Matching failed because ¢, and ¢, are not entailed to be equal
Add lemma (¢, =c,vc #¢,)

» Quantifier Instantiation for Arithmetic

» Recognizing Other SAT instances

If no matches can be found, construct explicit model M! and
see if MBQI succeeds

Construction of M! based on information about e

» Backtracking decisions
If stuck, explore another part of the search space



Questions!



