A Counterexample Based Approach for Quantifier Instantiation in SMT

Andrew Reynolds, University of Iowa
MVD, September 30, 2011
Overview

- Introduction to Satisfiability Modulo Theories (SMT)
- Extending SMT to Quantifiers
- Approaches to Quantifier Instantiation
 - E-Matching
 - Model-Based Quantifier Instantiation
 - New: Counterexample-Based Approach
- Current Work
Satisfiability Modulo Theories (SMT)

- SMT extends boolean satisfiability problems to theories

\[F = \{ (f(c) = a \lor c + 4 > a), (a = g(b)) \} \]

- Construct satisfying assignment \(M \) for set of clauses \(F \)
 - i.e. \(M = \{ f(c) = a, a = g(b) \} \)

- Is this assignment consistent according to theory reasoning?
DPLL(T) Architecture

- SMT uses DPLL(T) architecture
- Operates on states of the form \(M \parallel F \)
 - F is a set of clauses
 - M is a set of asserted theory literals “L”
 - Literals may be decisions “L^d”
DPLL(T) Architecture

- For a DPLL(T) state $M \parallel F$,
 - SMT solver can answer UNSAT if:
 - Some clause in F is falsified by M, and
 - M contains no decision literals L_d
 - SMT solver can answer SAT if:
 - Each clause in F is satisfied in M, and
 - M is T-consistent
DPLL(T) Architecture

- Clauses to add to F
- SAT Solver
- Theory Solvers

F is UNSAT

M is T-Inconsistent

Satisfying assignment M

M is T-Consistent

F is SAT

SAT
Role of Theory Solver T in SMT

- Accepts a set of theory literals M
 - Determine if M is T-consistent
 - If not, add lemmas C to F, where each C is T-valid
- Typically, use SMT for decidable logics
 - Quantifier-free UF, Linear Real Arithmetic, etc.
- Also may be interested in other logics
 - Non-linear arithmetic, quantified logics, etc.
Quantifiers in SMT

- Universal and existential quantifiers
 - $\forall x. \phi$, $\exists x. \phi$
 - Treated as literals by the SAT solver
- Relegate these literals to quantifiers module
 - Role is similar to theory solver
 - Checking T-consistency is undecidable
 - When $\forall x. \phi$ is asserted, cannot answer SAT
- When asked whether M is T-consistent, and there is a $\forall x. \phi$ asserted in M, either:
 - Answer UNKNOWN
 - Add (instantiation) clause ($\neg \forall x. \phi \lor \phi[s/x]$) to M
Quantifiers in SMT: Challenges

(1) Finding relevant instantiations
 ▸ How do we determine ground terms?

(2) Deciding when providing instantiations is no longer worthwhile
 ▸ When should we answer UNKNOWN?

(3) Determining if all necessary instantiations have been applied
 ▸ Can we answer SAT?
Related Work: E-matching

• **Address challenge (1)**
 - Find relevant instantiations by matching terms in quantifiers $t[x]$ to ground terms $t[s/x]$

• **To construct instantiation for $\forall x.\phi$:**
 - Find *trigger* t, where x is in $\text{FV}(t)$
 - Find ground term g
 - Find substitution $[s/x]$ such that $t[s/x]$ is equivalent to g modulo set of equalities E
 - “$t \text{ E-matches } g$”
 - Use s to instantiate $\forall x.\phi$
Related Work: Model-Based Quantifier Instantiation (MBQI)

- **Address challenges (1) and (3)**
 - Determine if some model satisfies all quantifiers. If so, answer SAT. Otherwise, use values for which model fails to instantiate quantifiers.

- **Given asserted quantified formula $\forall x. \phi$:**
 - Build explicit model M^I for ground clauses F
 - Replace uninterpreted symbols in ϕ to generate ϕ^I
 - Determine the satisfiability of $R \land \neg \phi^I[e/x]$
 - If UNSAT, then $\forall x. \phi$ is valid in current context
 - Otherwise, model for $R \land \neg \phi^I[e/x]$ is used to instantiate $\forall x. \phi$
 - Rules out M^I on subsequent iterations
MBQI Example

- Check satisfiability of $F \land \phi$

 F: $w \geq v + 2 \land f(v) \leq 1 \land f(w) \leq 3$

 ϕ: $\forall \ i \ j. \ (i \leq j \Rightarrow f(i) \leq f(j))$

- Model M^I for F:

 $v \rightarrow 0, w \rightarrow 2, f \rightarrow [0 \rightarrow 1, 2 \rightarrow 3, \text{else} \rightarrow 4]$

- Check satisfiability of $\neg \phi^I[e_i/i, e_j/j]$:

 $e_i \leq e_j \land \text{ite}(e_i=0, 1, \text{ite}(e_i=2, 3, 4)) = \text{ite}(e_j=0, 1, \text{ite}(e_j=2, 3, 4))$
Alternative Approach to MBQI

- MBQI builds explicit models M^l
 - Check sat for $R \land \neg \phi^l[e/x]$
- *Instead:* Reason about counterexample e directly
 - Add clause containing $\neg \phi[e/x]$ to SMT solver
- Potential advantages:
 - Do not need to generate explicit models M^l
 - Reason about $\neg \phi[e/x]$ incrementally, using the same instance of SMT solver
Counterexample Lemma

- Write \perp^ϕ to denote literal meaning:
 "a counterexample to ϕ exists"

- SMT solver finds satisfying assignment to:

 $$(\phi \lor \perp^\phi)$$

 "either ϕ holds or a ϕ has a counterexample"

 $$(\perp^\phi \iff \neg\phi[e/x])$$

 "ϕ has a counterexample if and only if its negation holds for some value e"
Configurations for Quantifier/CE Literal

- \(\phi \) is not asserted in \(M \)
 - We don’t care about \(\phi \)

- \(\phi^{(d)} \) and \((\bot \phi)^d \) are asserted in \(M \)
 - \(\phi \) is true but we might find a counterexample

- \(\phi^{(d)} \) and \(\neg\bot \phi \) are asserted in \(M \)
 - \(\phi \) is true and we know it does not have a counterexample

- Requirement: Never assert \(\neg(\bot \phi)^d \)
Recognizing SAT Instances with CE Literals

- If $\bot \phi$ is asserted negatively as a non-decision, then ϕ is valid in the current context
 - If this is true for all quantifiers ϕ, then we may answer SAT
- Conceptually: axiom ϕ does not apply in the current context

- Example: $a=0 \land (\forall x. \ a > 0 \Rightarrow P(\ a, \ x))$
 - $\bot \phi \iff (a > 0 \land \neg P(\ a, \ e))$
Features of Counterexample-Based Approach

- May be able to recognize SAT instances
 - Cases when no quantified axiom applies, i.e. counterexample is unsatisfiable

- Use information about “e” for finding relevant instantiations
 - Theory-specific information
After finding satisfying assignment to $\neg \phi[e/x]$

- Each theory solver has theory-specific information/constraints involving e

- How can we use this information?
 - Naively, find arbitrary model and use value of e to instantiate ϕ
Theory-Specific Instantiators

- Can we do better?
- For each theory, associate an *instantiator*
 - Has access to internal information stored in theory solver
Using Relationships between Triggers

- For EUF:
 - Search method for finding relevant instantiations
 - For literal $t[e/x] = s$, first try to find match $t[g/x]$ in the equivalence class of s
 - Criteria for judging relevance of instantiations
 - Do not consider instantiations g where $e = g$ is unsatisfiable
Quantifier Instantiation for EUF

- **Multiple Iterations:**
 1. Find if $e = s$ is entailed for some ground term s
 2. Find if there exists some s such that all requirements for e are entailed by $e = s$
 3. Find if there exists some s such that some requirements for e are (partially) matched by $e = s$
 4. Do E-matching

- Otherwise, see if (explicit) model can be constructed
Current Work

- Optimizations
 - Computing matches efficiently (i.e. indexing, caching)
- Using splitting on demand
 - Matching failed because c_1 and c_2 are not entailed to be equal
 - Add lemma ($c_1 = c_2 \lor c_1 \neq c_2$)
- Quantifier Instantiation for Arithmetic
- Recognizing Other SAT instances
 - If no matches can be found, construct explicit model M^l and see if MBQI succeeds
 - Construction of M^l based on information about e
- Backtracking decisions
 - If stuck, explore another part of the search space
Questions?