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Overview
� Introduction to Satisfiability Modulo Theories (SMT)
� Extending SMT to Quantifiers
� Approaches to Quantifier Instantiation

� E-Matching
� Model-Based Quantifier InstantiationModel-Based Quantifier Instantiation
� New:  Counterexample-Based Approach

� Current Work



Satisifiability Modulo Theories (SMT)
� SMT extends boolean satisifiability problems to theories

F = { ( f( c ) = a ∨ c + 4  > a ),  ( a = g( b ) ) }

� Construct satisfying assignment M for set of clauses F� Construct satisfying assignment M for set of clauses F
� i.e. M = { f( c ) = a, a = g( b ) }

� Is this assignment consistent according to theory 
reasoning?



DPLL(T) Architecture

� SMT uses DPLL(T) architecture
� Operates on states of the form

M ║ F
� F is a set of clauses� F is a set of clauses
� M is a set of asserted theory literals “L”

� Literals may be decisions “Ld”



DPLL(T) Architecture

� For a DPLL(T) state M ║ F,
� SMT solver can answer UNSAT if:

� Some clause in F is falsified by M, and
� M contains no decision literals Ld

SMT solver can answer SAT if:� SMT solver can answer SAT if:
� Each clause in F is satisfied in M, and
� M is T-consistent
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Role of Theory Solver T in SMT

� Accepts a set of theory literals M
� Determine if M is T-consistent
� If not, add lemmas C to F, where each C is T-valid

� Typically, use SMT for decidable logics� Typically, use SMT for decidable logics
� Quantifier-free UF, Linear Real Arithmetic, etc.

� Also may be interested in other logics
� Non-linear arithmetic, quantified logics, etc.



Quantifiers in SMT

� Universal and existential quantifiers
� ∀x. ϕ, ∃x. ϕ
� Treated as literals by the SAT solver

� Relegate these literals to quantifiers module
� Role is similar to theory solver� Role is similar to theory solver
� Checking T-consistency is undecidable

� When ∀x. ϕ is asserted, cannot answer SAT

� When asked whether M is T-consistent, and there is a 
∀x. ϕ asserted in M, either:
� Answer UNKNOWN
� Add (instantiation) clause ( ¬∀x.ϕ ∨ ϕ[s/x] ) to M



Quantifiers in SMT: Challenges
(1) Finding relevant instantiations

� How do we determine ground term s?

(2) Deciding when providing instantiations is no longer 
worthwhile
� When should we answer UNKNOWN?� When should we answer UNKNOWN?

(3) Determining if all necessary instantiations have been 
applied
� Can we answer SAT?



Related Work: E-matching

• Address challenge (1)
– Find relevant instantiations by matching terms in quantifiers 
t[x] to ground terms t[s/x]

• To construct instantiation for ∀x.ϕ :
– Find trigger t, where x is in FV( t )

ϕ
– Find trigger t, where x is in FV( t )
– Find ground term g
– Find substitution [s/x] such that t[s/x] is equivalent to g 
modulo set of equalities E
• “t E-matches g”

– Use s to instantiate ∀x.ϕ



Related Work: Model-Based Quantifier 
Instantiation (MBQI)

� Address challenges (1) and (3)
� Determine if some model satisfies all quantifiers.  If so, 
answer SAT.  Otherwise, use values for which model fails to 
instantiate quantifiers.

� Given asserted quantified formula ∀x.ϕ:� Given asserted quantified formula ∀x.ϕ:
� Build explicit model MI for ground clauses F
� Replace uninterpretted symbols in ϕ to generate ϕI

� Determine the satisfiability of R ∧ ¬ϕI[e/x]
� If UNSAT, then ∀x.ϕ is valid in current context

� Otherwise, model for R ∧ ¬ϕI[e/x] is used to instantiate ∀x.ϕ
� Rules out MI on subsequent iterations



MBQI Example
� Check satisfiability of F ∧ ϕ
F:  w ≥ v + 2 ∧ f( v ) ≤ 1 ∧ f( w ) ≤ 3 

ϕ:  ∀ i j. ( i ≤ j⇒ f( i ) ≤ f( j ) )

� Model MI for F:� Model MI for F:
v → 0, w → 2, f → [ 0 → 1, 2 → 3, else → 4 ]

� Check satisfiability of ¬ϕI[ei/i, ej/j]:
ei ≤ ej ∧ ite( ei=0, 1, ite( ei=2, 3, 4)) = ite( ej=0, 1, ite( ej=2, 3, 4))



Alternative Approach to MBQI

� MBQI builds explicit models MI

� Check sat for R ∧ ¬ϕI[e/x]

� Instead: Reason about counterexample e directly
� Add clause containing ¬ϕ[e/x] to SMT solver

� Potential advantages:
ϕ

� Potential advantages:
� Do not need to generate explicit models MI

� Reason about ¬ϕ[e/x] incrementally, using the same 
instance of SMT solver



Counterexample Lemma

� Write ⊥ϕ to denote literal meaning:

“a counterexample to ϕ exists”
� SMT solver finds satisfying assignment to:

( ∨ ⊥ϕ)
ϕ ϕ

( ∨ ⊥ϕ)
“either ϕ holds or a ϕ has a counterexample”

(⊥ϕ ⇔ ¬ [e/x])
“ϕ has a counterexample if and only if its negation 

holds for some value e”



Configurations for Quantifier/CE Literal

�ϕ is not asserted in M
� We don’t care about ϕ

�ϕ(d) and (⊥ϕ )d are asserted in M
ϕ

ϕ ϕ

ϕ
ϕ

ϕ and (⊥ϕ ) are asserted in M
� ϕ is true but we might find a counterexample

�ϕ (d) and ¬⊥ϕ are asserted in M
� ϕ is true and we know it does not have a counterexample

� Requirement:  Never assert ¬(⊥ ϕ )d



Recognizing SAT Instances with CE 
Literals
� If ⊥ϕ is asserted negatively as a non-decision, then ϕ is 
valid in the current context
� If this is true for all quantifiers ϕ, then we may answer SAT

� Conceptually: axiom ϕ does not apply in the current 
context

ϕ

� Example:  a=0 ∧ (∀ x.  a > 0 ⇒ P( a, x ))
� ⊥ ϕ ⇔ ( a > 0 ∧ ¬P( a, e ) )



Features of Counterexample-Based 
Approach

� May be able to recognize SAT instances
� Cases when no quantified axiom applies, i.e. counterexample is 
unsatisifiable

� Use information about “e” for finding relevant 
instantiationsinstantiations
� Theory-specific information



Theory-Specific Instantiators

� After finding satisfying assignment to ¬ϕ[e/x]
� Each theory solver has theory-specify information/constraints 
involving e

SMT Solver

� How can we use this information?
� Naively, find arbitrary model and use value of e to instantiate ϕ

T-Solver1 T-Solvern…



Theory-Specific Instantiators

� Can we do better?
� For each theory, associate an instantiatior

� Has access to internal information stored in theory solver

SMT Solver

T-Solver1 T-Solvern…

T-Instantiator1 T-Instantiatorn…



Using Relationships between Triggers
� For EUF:

� Search method for finding relevant instantiations
� For literal t[e/x] = s, first try to find match t[g/x] in the equivalence 
class of s

� Criteria for judging relevance of instantiations
� Do not consider instantiations g where e = g is unsatisifiable� Do not consider instantiations g where e = g is unsatisifiable



Quantifier Instantiation for EUF
� Multiple Iterations:

(1) Find if e = s is entailed for some ground term s
(2) Find if there exists some s such that all requirements for e 

are entailed by e = s
(3) Find if there exists some s such that some requirements for 

e are (partially) matched by e = se are (partially) matched by e = s
(4) Do E-matching

� Otherwise, see if (explicit) model can be constructed



Current Work
� Optimizations

� Computing matches efficiently (i.e. indexing, caching)
� Using splitting on demand

� Matching failed because c1 and c2 are not entailed to be equal
� Add lemma ( c1 = c2 ∨ c1 ≠ c2 )

� Quantifier Instantiation for Arithmetic� Quantifier Instantiation for Arithmetic
� Recognizing Other SAT instances

� If no matches can be found, construct explicit model MI and 
see if MBQI succeeds

� Construction of MI based on information about e
� Backtracking decisions

� If stuck, explore another part of the search space



Questions?


