Fast and Flexible Proof
Checking with LFSC

Andrew Reynolds

University of Iowa

University of lowa

New York University ACkn OWIGd g e ments

e LFSC proof checking technology for SMT

— University of lowa
* Aaron Stump
* Duckki Oe
* Andrew Reynolds
e Cesare Tinelli

— New York University
e Liana Hadarean
* Yeting Ge
e Clark Barrett

University of lowa

New York University Ove rV i eW

Logical Framework with Side Conditions as:

1. Framework for defining SMT proof systems
2. Optimized Proof Checker

3. Proof System for Linear Real Arithmetic

4. Interpolant Generator via Type Inference

University of lowa

- Proof Checking: Motivation

 SMT solvers are difficult to verify
— Code may be complex (10k+ loc)
— Code is subject to change

Alternatively....
* Solvers can justify answers with proofs
* There is need for third party certification

— Must ensure that proof is valid

4

University of lowa

New York University P ro Of C h eCki n g : OverVieW

Solver

Proof of Unsatisfiability

Proof Valid Proof Invalid

5

University of lowa

New York University Proof Checking: Challenges

* Speed
— Practical for use with solvers
— Measured time against solving time
* Flexibility
— Different solvers have different needs
— Solvers can change over time

— Many different theories

Nework Unvereiy Proof Checking in LFSC

* Edinburgh Logical Framework (LF) [Harper et al 1993]
— Based on type theory
— Meta framework for defining logical systems

* LF with side conditions (LFSC) [Stump et al 2008]
— Meta-logical proof checker
— Side Conditions
— Support for Integer, Rational arithmetic
— |If proof term type-checks,
Then proof is considered valid

University of lowa

- Example proof rule

1 Yo
Y1 A Yo

(declare and intro
(! £f1 formula
(! £2 formula
(! pP1 (proof f£f1)
(! P2 (proof £2)
(proof (and £f1 £2)))))))

University of lowa

New York University PfOOf rUIe With Side Condition

P22 (ple, e #0)

(declare ineq contradiction
(! p poly
(! pl (proof (> p 0))
(! s (* (is_positive (simplify p)) f£ff)
(proof false)))))

University of lowa

New York University PfOOf rUIe With Side Condition

P22 (ple, e #0)

* Side conditions
— Written in simply typed functional

simplify ((p poly)) real
(match p
((poly c' 1)
(match (is_zero 1')
(tt c¢')
(££f fail)))))

anguage

10

University of lowa

New York University Why Side COnditiOnS?

* Mirror high-performance solver inferences
* More Efficient

— Smaller Proof Size
— Faster Checking time

e Amount can be fine tuned

Fully Declarative €2 Fully Computational

11

University of lowa

Proof Systems for LRA

e LFSC for arithmetic [Reynolds et al 10]

* Proofs in Linear Real Arithmetic (LRA)
— Rules require computational side conditions
ceg (t+(t+t))=((t;+t) +t,)
— Use of side conditions for normalization
. e.g.(t1+(t2+t3))¢p1, ((t3+t1)+t2)¢ P,
* Verify p, = p, using side conditions

12

Proof Systems for LRA

e Use SMT solver CVC3 to generate proofs

— Module to convert proofs to LFSC format

* Flexibility: Multiple Signatures for LRA

— Declarative

e Rewrite calculus, native format used by CVC3
* Rulesof form ¥, < V¥,

— Computational
» Take advantage of LFSC side condition features
* Rules involving polynomial atoms

University of lowa

New York University Com paCtion frOm CVC3 tO LFSC

* Theory lemmasin QF LRA
— Ex: = 2x>2y) v —(y>x+5)
— Can be done by finding set of coefficients

Vo' 2X > 2y
1y >x+95

X+y>y+x+35
U
0>5

University of lowa

Proof transformation
2 =00 26 > 208-T >4
T >y i = +0 _
T >+ 0 r>r+o& L
I

Theory
SAT
Proof Proof

15

University of lowa

Proof transformation

Theory
Theory Pf

Pf

SAT
Proof

16

University of lowa

Experimental results

* Configurations

— Literal translation (Lit)
 Faithful encoding of CVC3’s native format

— Liberal translation (Lib)

e Capitalize on side conditions

Declarative €——@—————-@-@——==3 Computational
Lit Lib

University of lowa

New York University P rOOf Ch eCki n g ti m e

* For theory lemmas: 3x faster proof checking time

— Theory lemma proofs 5x smaller in size on average

Lit vs Lib

1.00
%)
Q
)
-
0
2 0.50
O
| T
(a8
o)
S
0.00 .
0.00 0.50 1.00
Lit Pf Check (sec)

18

University of lowa

New York University Proof checking vs Solving

Solving s Lit Solving s Lib

2.00

2.00

1.00

1.00

Lit Pf Check (sec)

Lib Pf Check (sec)

0.00 1.00 2.00 0.00 1.00 2.00

CVC3 Solve (sec) CVC3 Solve (sec)

* Proof checking ~10x faster than solving

19

University of lowa

New York University I nte rp0|ati0n

* |n addition to proofs of unsatisfiability,
use LFSC for richer proof calculi

lifting
¢ Extended Proof EEIXIE

* Interpolant generating proofs [Reynolds et al 11]
— Theory of uninterpretted functions with equality (EUF)

20

University of lowa

New York University I nte rp0|ati0n

* For theory T, a T-interpolant | for (A,B)
(1) A=y I
(2) B,I =1 1
(3) L(I) € L(A) N L(B)
* In some cases, may be efficiently generated from
proofs

* Applications
— Model Checking, Predicate Abstraction, ...
e Use LFSC to generate certified interpolants

21

University of lowa

New York University Proof Checking: Interpolants

formula A A B

Solver
unsat, interpolant /

* Since LFSC is meta-framework, we can extend
signature to type-check proofs about interpolants

22

University of lowa

NR— Proof Checking: Interpolants

formula A A B

Solver

unsat, interpolant /

Extended
Signature

LFSC Pf Checker

pf valid pf invalid

23

University of lowa

New York University Proof Checking: Interpolants

(check

(% ...
(% a (proof A)
(% b (proof B)

<:

))...)

* Checkif Pis of type (interpolant 4 B I),
for formulas 4, B, 1
* |f so, then Iis a certified interpolant for (4, B)

24

University of lowa

New York University Proof Checking: Interpolants

 SMT solver produces interpolant + proof

e LFSC verifies that proof:
(1) Successfully type checks, and
(2) Shows claimed interpolant is an interpolant.

* Solver + Checker must agree on the interpolant

25

University of lowa Interpolant Generation via Proof

New York University

Checking

e Alternatively:
Use proof checker as the interpolant generator

* Solver writes proof in same signature
— Constructs proof of type (interpolant ABI),

* for some value of /, unknown a priori

— Value of / computed by type inference

26

University of lowa Interpolant Generation via Proof

New York University

Checking

o

e LFSC proofs may contain hole symbols

* For example:

| | |

(trans (= t; t,) (= t, t3))

T

* Allow proof checker fill in value for interpolant

— Certified correct by construction

27

University of lowa Interpolant Generation via Proof

New York University

Checking

(check

(% o o

(% a (proof A)

($ b (proof B)
(:
'

))...)
* The interpolant field left unspecified “_”

* If Pisof type (interpolant A BI),

— Value of I is given to user
— l'is a certified interpolant for (4, B)

28

University of lowa Interpolant Generation via Proof

New York University

Checking

formula A A B

Solver

Extended
Signature

LFSC Pf Checker

pf valid, pf invalid
interpolant |

University of lowa

New York University Re S U ItS

* Tested configurations
— euf: proof checking
— eufi: proof checking with interpolant generation

* Proof checking fast w.r.t to solving
— euf 11x faster than solving
— eufi 5x faster than solving

* |Interpolants come at small overhead
— eufi 22% overhead with respect to solving + pf generation

30

Other Optimizations

* Optimizations for LFSC

—Incremental Checking

* Proof is checked while it is parsed
— Instead of being read into memory

— Optimized boolean resolution checking
* Resolvent clauses produced lazily

—Sighature Compilation [Oe et al 09]

* Side conditions run directly in compiled C++
— Instead of using an interpreter

University of lowa

New York University Signature Compilation

proof.plf

LFSC signature.plf proof.plf

Proof
Valid/Invalid

University of lowa

New York University Signature Compilation

proof.plf

LFSC
code base

» scc_code.h/.cpp

LFSC —gen-scc signature.plf

Proof : LFSC —run-scc proof.plf LESC
Valid/Invalid signature.plf

33

[ej1dw o]

e York Univeret Future Work

* Integration into CVC4

— Extensions to other theories
* Datatypes, Bit Vectors, Arrays, etc.

* New release of LFSC
— Usability of user-defined signatures

—Improved performance

34

