Generating Small Countermodels using SMT

Andrew Reynolds
Intel
August 30, 2012
Acknowledgements

• Intel Corporation
 – Amit Goel, Sava Krstic

• University of Iowa
 – Cesare Tinelli, Francois Bobot

• New York University
 – Clark Barrett, Morgan Deters, Dejan Jovanovic
Overview

• SMT-Based System Verification
 – Deductive Verification Framework (DVF)

• SMT Overview

• Challenge of quantifiers in SMT

• Finite Model Finding:
 – Searching for small models
 – Checking models against quantifiers

• Experimental Results
SMT-Based System Verification

System + Specifications → System Verifier

Verification Condition

SMT solver

All verification conditions hold

Some verification condition fails
DVF

• Deductive Verification Framework
• Used for:
 – Architecture Validation
 – SOC Security Validation
• Language tailors to constraints SMT solvers can handle
 – Arithmetic, arrays, datatypes (enumerations, sum types, …)
• This allows:
 – Tight integration with SMT solver
 • DVF program annotations can help SMT solver
 • SMT solver responses correspond to original program
DVF Example

Definitions

type resource
const resource null
type process
var array(resource, bool) valid = mk_array[resource](false)
var array(resource, int) count
var array(process, resource) ref = mk_array[process](null)
...
module S = Set<type process>

Transition System

transition create (resource r)
require (r != null, !valid[r]){
 valid[r] := true;
count[r] := 0;
}
...
def bool prop = forall (process p) (ref[p] != null => valid[ref[p]])
def bool refs_non_zero = forall (process p) (ref[p] != null => count[ref[p]] > 0)
...
goal main = invariant prop assuming refs_non_zero
...
goal rnz = formula (... && prop && ... => refs_non_zero)

Properties

Goals
Goals translated into (possibly multiple) SMT queries
- Example: base/induction cases for proofs
Definitions

- $S, P, R : \text{type}$
- $null : R$
- $valid: \text{Array}(R, \text{Bool})$
- $count: \text{Array}(R, \text{Int})$
- $ref: \text{Array}(P, R)$
- $empty : S$
- $mem: (S, P) \rightarrow \text{Bool}$
- $add, remove : (S, P) \rightarrow S$

Axioms

- $\forall x : R. \text{count}[x] > 0 \Rightarrow \text{valid}[x]$
- $\forall x : P. \neg \text{mem}(\text{empty}, x)$
- $\forall x : S, y, z : P. \text{mem}(\text{add}(x, y), z) \Rightarrow (z = y \lor \text{mem}(x, z))$
- $\forall x : S, y, z : P. \text{mem}(\text{remove}(x, y), z) \Rightarrow (z \neq y \land \text{mem}(x, z))$

Property to verify

$\neg (\ldots \forall x. (\text{ref}[x] \neq \text{null} \Rightarrow \text{valid}[\text{ref}[x]]) \ldots)$
SMT for Verification Conditions

Verification Condition for property P

SMT solver

Property P is verified

Model

Concrete counterexample for Property P

Proof (optional)

UNSAT

SAT
Satisfiability Modulo Theories (SMT)

• SMT solvers:
 – Are powerful tools for determining satisfiability of ground formulas
 • Built-in decision procedures for many theories
 – Have applications in:
 • Software/Hardware verification
 • Planning and scheduling
 • Design automation
 – Had significant performance improvement in past 10 years
 – Many solvers use standard format
 • SMT LIB initiative
CVC4 : SMT Solver

- Support for many theories
 - Equality + Uninterpreted Functions
 - Integer/Real arithmetic
 - Bit Vectors
 - Arrays
 - Datatypes

- Work in progress: Quantifiers
 - Pattern-based instantiation
 - Model-based instantiation
 - Rewrite Rules
 - Finite Model Finding

- Highly competitive
 - Won multiple divisions of SMT COMP 2012
What is SMT?

\[(a = 5 \lor \text{select}(R, a) = b) \land g(5) \geq g(a) + 1 \]

- **Satisfiability Modulo Theories:**
 - Determine if there exists satisfying assignment
 - If so, return SAT
 - Return UNSAT if none can be found
 - Satisfying assignment must be \(T \)-consistent
$\left(a = 5 \lor \text{select}(R, a) = b \right) \land g(5) \geq g(a) + 1$

Convert to boolean satisfiability problem

\downarrow

$\left(A \lor B \right) \land C$
\[(a = 5 \lor \text{select}(R, a) = b) \land g(5) \geq g(a) + 1\]

\[
\downarrow
\]

\[(A \lor B) \land C\]

Find satisfying assignment ... A, C
• **However, A and C are inconsistent according to theory:**
 - \(a = 5 \) and \(g(5) \geq g(a) + 1 \) cannot both be true according to UF + Int
 - Must add additional clause:
 \((\neg A \lor V \neg C) \)
\[(a = 5 \lor \text{select}(R, a) = b) \land g(5) \geq g(a) + 1\]
DPLL(T) Architecture

SAT Theory

Satisfying assignment M for F

M is T-Consistent

F is SAT

F is UNSAT

SAT Solver

Theory Solvers

M is T-Inconsistent

UNSAT

Clauses to add to F

Formula F
Why Quantifiers?

• Quantifiers exist in verification conditions:

Definitions

S, P, R : type
null : R
valid: Array(R, Bool)
count: Array(R, Int)
ref: Array(P, R)
empty : S
mem : (S, P) -> Bool
add : (S, P) -> S

Axioms

∀x : R. count[x] > 0 ⇒ valid[x]
∀x : P. ¬ mem(empty, x)
∀x : S, y, z : P. mem(add(x, y), z) ⇒ (z = y ∨ mem(x, z))
∀x : S, y, z : P. mem(remove(x, y), z) ⇒ (z ≠ y ∧ mem(x, z))
...

¬ (... ∀x. (ref[x] != null => valid[ref[x]]) ...)

Property to verify
Handling Verification Conditions

Verification Condition for property P

CVC4

UNSAT

Property P is verified

SAT

Model

Concrete counterexample for Property P
Challenge: Quantifiers in SMT

\[\forall x. f(x+1) \geq f(x) + 1 \land (f(2) = 5 \lor \text{select}(R, a) = b) \]

For all integers x...

- Treat each quantified formula as literal, as before
\(\forall x. f(x+1) \geq f(x) + 1 \land (f(2) = 5) \lor \text{select}(R, a) = b \)
Quantifier Instantiation

• Divide problem into:
 – Ground portion G, and quantified portion Q:

$$\ldots, f(2) = 5, \ldots$$

$$G$$

$$\ldots, \forall x. f(x+1) \geq f(x) + 1, \ldots$$

$$Q$$

• Determine if G is T-inconsistent
 – If not, instantiate Q with some set of ground values
Quantifier Instantiation

- Check again if G is T-inconsistent
 - If not, repeat

\[\ldots, f(2) = 5, \ldots \]
\[f(1) \geq f(0) + 1 \]
\[f(2) \geq f(1) + 1 \]
\[f(3) \geq f(2) + 1 \]

\[\ldots, \forall x. f(x+1) \geq f(x) + 1, \ldots \]

G

Q

\Rightarrow Sound but incomplete procedure
Quantifiers in SMT

• Given set of literals \((G, Q)\):
 – Set of ground constraints \(G\)
 – Set of quantified assertions \(Q\)

• Questions:
 – (1) How to choose instantiations for \(Q\)
 – (2) When can we answer SAT?
Current Approaches for Quantifiers

• *Most widely used*: Pattern-Based Instantiation
 – Determine instantiations heuristically
 • Based on finding ground terms in G with same shape as terms in Q

\[\ldots, b \neq a, f(a) = b, \ldots, \forall x. f(x) = x\]

\[\Rightarrow \text{instantiate } [a/x]: f(a) = a, \]

\[T\text{-inconsistent : } a = f(a) = b \neq a\]

• However, *If pattern matching fails, must answer “unknown”*
Handling Verification Conditions

Verification Condition for property P

CVC4

UNSAT → Property P is verified

Unknown → Candidate Model

Manual Inspection
Handling Verification Conditions

Verification Condition for property P

CVC4

UNSAT SAT

Property P is verified

Candidate Model

Manual Inspection

⇒ Need method for answering SAT
Finite Model Finding

• Method to answer SAT in presence of quantifiers

• Given set of literals (G, Q):
 – Find a “smallest” model for G
 – Try every instantiation of Q in the model
 • Feasible if the domain we need to consider is finite
 – If every instantiation true in model, answer SAT
Finite Model Finding (for EUF)

• For now, consider quantifiers over uninterpreted sorts:
 \[\forall x : S. \neg \text{mem}(\text{empty}, x) \]

 for all x of type S...

 – Example uses:

 • Values, Addresses, Processes, Resources, Sets, ...
Finding Small Models

• What is a small model?
 – SMT solvers maintain a set of equivalence classes internally
 – “Smallest” model for sort S means:
 • Fewest # equivalence classes of sort S

• To find small models:
 – Impose \textit{cardinality constraints} on (uninterpreted) sorts S
 • Predicate $C_{S, k}$, meaning “sort S has at most k equivalence classes”
 – Try to find models of size 1, 2, 3, ... etc.

• What this requires:
 – Control to DPLL(T) search for postulating cardinalities
 – Solver for UF + cardinality constraints
UF + Cardinality Constraints

• Given \((G, C_{S, k})\)
 – Set of ground constraints \(G\) over sort \(S\)
 – Cardinality constraint \(C_{S, k}\)

• Maintain disequality graph \(D_S = (V, E)\)
 – \(V\) are equivalence classes of sort \(S\)
 – \(E\) are disequalities between terms of sort \(S\)

• \(D_S\) induced by asserted set of literals in \(G\)
 – So, \(f(a) \neq a, f(a) \neq b, b = f(b)\) becomes:
UF + Cardinality Constraints

• We are interested in whether D_S is k-colorable
 – If no, then we have a conflict ($F \Rightarrow \neg C_{S,k}$)
 • where F is explanation of sub-graph of D_S that is not k-colorable
 – If yes, then we merge nodes with same color

\[
\begin{array}{c}
 f(a) \\
 \stackrel{_____}{a} \\
 _____ \\
 f(b) \\
 b, f(b) \\
\end{array}
\]

$k = 2$
UF + Cardinality Constraints

• Challenges:
 – Determining k-colorability is NP-hard
 – Analysis must be incremental

• Solution: use a *region-based approach*
 – Partition nodes in *regions* with high edge density
 – *Quickly* recognize when D_S is *not* k-colorable
 – Helpful for suggesting relevant nodes to merge
Region-Based Approach

- Partition nodes V of D_S into regions

- Invariant: need only search for $(k+1)$-cliques local to regions
- Region can be ignored if it has $\leq k$ terms

$k = 2$
Region-Based Approach

• Within each region with size > k:
 – Maintain a watched set N of $k+1$ nodes
 – Record pairs of nodes in N that are not linked
 • If this set is empty, N is a clique \Rightarrow report conflict
 • Otherwise, merge unlinked nodes in N
Region-Based Approach

• Merging nodes may lead to T-inconsistency
 – For example, congruence axioms in UF:

\[f(a) \]

\[\Rightarrow \text{In this case, we cannot merge } a = b \]
Region-Based Approach

- Merging nodes 1 and 2 may:
 - Lead to T-inconsistency
 - Lead to a cardinality conflict (force a clique), or
 - Succeed
Region-Based Approach

- In the case we succeed:
 - All regions $\leq k$ nodes
 - We are ensured k-colorability
 - However, still unsure a model of size k exists
 - Due to possible T-inconsistency
 \Rightarrow *Must shrink model explicitly*
Region-Based Approach

3,4 1,2

k = 2

5

6

k = 2
Region-Based Approach

• Merge until we have until \(\leq k \) nodes overall
 \(\Rightarrow \) Guaranteed a model of size \(k \) exists

\[k = 2 \]
Finite Model Finding

- Given set of literals (G, Q):
 1. Find smallest model M for G
 - i.e. M with smallest # of equivalence classes
 2. Instantiate Q with all combinations of terms in M
 3. If all instantiations are true in model, and model size did not grow, then answer SAT
Finite Model Finding : Example

\[a \neq b, \ b = c, \ \forall x. f(x) = x \]

1. Smallest model for \(G \), size 2 : \{ a \}, \{ b, c \}
2. Instantiate \(Q \) with \([a/x, b/x]\):
 - \(f(a) = a, \ f(b) = b \) added to \(G \)
3. After instantiation : \{ a, f(a) \}, \{ b, c, f(b) \}
 - All instantiations are true, model size did not grow
 \(\Rightarrow \) answer SAT
Why Small Models?

• Easier to test against quantifiers
 – Given quantified formula $\forall x_1...x_n. F(x_1 ... x_n)$
 • Naively, we require $O(k^n)$ instantiations
 – Where k is the cardinality of sort($x_1 ... x_n$)
 – Feasible if either:
 • Both n and k are small
 • We can recognize/eliminate redundant instantiations
 – *Use Model-Based Quantifier Instantiation* [Ge/deMoura 09]
Model-Based Quantifier Instantiation (MBQI)

• Idea: Do not consider instantiations that are already true in current model

• Strategy for (G, Q):

1. Build model M for G, consisting of:
 – Set of representatives R
 – Interpretation for all symbols in Q

2. For all quantifiers \(\forall x. F[x] \) in Q:
 – Construct \(F^M[x] \) according to interpretations in M
 – Add instantiations \(F[t] \) to G, for all \(t \in R \) such that:
 • \(F^M[t] \) is not true in M
MBQI : Example

\(P(a, a), a \neq b, \forall x. \neg P(x, b) \)

Find model \(M : \{ a \}, \{ b \}, \)

\(P^M := \lambda xy. (x=a \land y=a) \)

\(\neg P^M(x, b) \equiv \neg(x=a \land b=a) \equiv true \)

\(\Rightarrow All \ instantiations \ of \ Q \ are \ true \ in \ M \)
Anatomy of Finite Model Finding

Verification Condition for property P

SAT Solver

Theory conflicts

Theory Solvers

Satisfying assignment M
(with quantifiers)

M is T-Inconsistent

M is T-Consistent

UNSAT
Anatomy of Finite Model Finding

Verification
Condition for property P

SAT Solver

Satisfying assignment M (with quantifiers)

UNSAT

Theory Solvers

M is T-Consistent

UF + Cardinality Solver

M is not minimal

M is minimal

Cardinality conflicts, splits

...
Anatomy of Finite Model Finding

SAT Solver

Verification Condition for property P

UNSAT

Satisfying assignment M (with quantifiers)

SAT

Theory Solvers

M is T-Consistent

UF + Cardinality Solver

M is minimal

Exhaustive Quant. Instantiation

No new instantiations

Filter Based on Model

Relevant instantiations
Other Instantiation Strategies

• Sometimes, # instantiations is still very large

• Other strategies:
 – Non-exhaustive instantiation:
 • Only add small # instantiations each round
 – Pro: (possibly) less instantiations added
 – Con: usually slower convergence to model
 – Exhaustive instantiation restricted to non-axioms
 • Rely on other methods for instantiating axioms, e.g...
 – Pattern-Based instantiation
FMF + Pattern-Based Instantiation

• Idea:
 – First see if instantiations based on patterns exist
 – If not, resort to exhaustive instantiation

• May lead to:
 – Answering UNSAT more often
 • Discover easy conflicts, if they exist
 – Arriving at model faster
 • Instantiations rule out spurious models
FMF + Pattern-Based Instantiation

Satisfying assignment \(M \) (with quantifiers)

SAT Solver

Theory Solvers

\(M \) is \(T \)-Consistent

UF + Cardinality Solver

\(M \) is minimal

Pattern Based Quant. Instantiation

No new instantiations

Exhaustive Quant. Instantiation

No new instantiations

Filter Based on Model

SAT

UNSAT

Verification Condition for property \(P \)
Experimental Results

• DVF Benchmarks
 – Taken from real DVF examples
 – Both SAT/ UNSAT benchmarks
 • SAT benchmarks generated by removing necessary pf assumptions
 – Many theories: UF, arithmetic, arrays, datatypes

• TPTP Benchmarks
 – Taken from ATP community
 – Heavily quantified
 – Unsorted logic
Results: DVF

<table>
<thead>
<tr>
<th>UNSAT</th>
<th>german</th>
<th>refcount</th>
<th>agree</th>
<th>apg</th>
<th>bmk</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>cvc4</td>
<td>145</td>
<td>40</td>
<td>600</td>
<td>304</td>
<td>244</td>
<td>1333</td>
</tr>
<tr>
<td>cvc4+fmf</td>
<td>145</td>
<td>40</td>
<td>604</td>
<td>294</td>
<td>236</td>
<td>1319</td>
</tr>
<tr>
<td>z3</td>
<td>145</td>
<td>40</td>
<td>604</td>
<td>304</td>
<td>244</td>
<td>1337</td>
</tr>
<tr>
<td></td>
<td>145</td>
<td>40</td>
<td>604</td>
<td>304</td>
<td>244</td>
<td>1337</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SAT</th>
<th>german</th>
<th>refcount</th>
<th>agree</th>
<th>apg</th>
<th>bmk</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>cvc4</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>cvc4+fmf</td>
<td>45</td>
<td>6</td>
<td>62</td>
<td>16</td>
<td>36</td>
<td>165</td>
</tr>
<tr>
<td>z3</td>
<td>45</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>6</td>
<td>62</td>
<td>19</td>
<td>37</td>
<td>169</td>
</tr>
</tbody>
</table>

- 60 second timeout
Results per Inst Strategy (cvc4+fmf)

<table>
<thead>
<tr>
<th>UNSAT</th>
<th>german</th>
<th>refcount</th>
<th>agree</th>
<th>apg</th>
<th>bmk</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>naïve</td>
<td>145</td>
<td>40</td>
<td>583</td>
<td>272</td>
<td>222</td>
<td>1262</td>
</tr>
<tr>
<td>mbqi</td>
<td>145</td>
<td>40</td>
<td>579</td>
<td>292</td>
<td>238</td>
<td>1294</td>
</tr>
<tr>
<td>mbqi+pattern-based inst</td>
<td>145</td>
<td>40</td>
<td>604</td>
<td>294</td>
<td>236</td>
<td>1319</td>
</tr>
<tr>
<td></td>
<td>145</td>
<td>40</td>
<td>604</td>
<td>304</td>
<td>244</td>
<td>1337</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SAT</th>
<th>german</th>
<th>refcount</th>
<th>agree</th>
<th>apg</th>
<th>bmk</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>naïve</td>
<td>45</td>
<td>6</td>
<td>62</td>
<td>18</td>
<td>33</td>
<td>164</td>
</tr>
<tr>
<td>mbqi</td>
<td>45</td>
<td>6</td>
<td>60</td>
<td>15</td>
<td>36</td>
<td>162</td>
</tr>
<tr>
<td>mbqi+pattern-based inst</td>
<td>45</td>
<td>6</td>
<td>62</td>
<td>16</td>
<td>36</td>
<td>165</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>6</td>
<td>62</td>
<td>19</td>
<td>37</td>
<td>169</td>
</tr>
</tbody>
</table>

⇒ Each SAT benchmark is solved by at least one configuration
Example Model from CVC4

Information regarding sorts

(declare-sort R 0)
; cardinality of R is 2
(declare-sort P 0)
; cardinality of P is 1
(declare-sort S 0)
; cardinality of S is 2

Definitions of functions and predicates in model

(define-fun null () R r2)
(define-fun empty () S s1)
(define-fun mem ((x1 P) (x2 S)) BOOL
 (ite (= x1 p1) (ite (= x2 s2) Truth Falsity) Falsity))
(define-fun add ((x1 P) (x2 S)) S s2)
(define-fun remove ((x1 P) (x2 S)) S s1)
(define-fun cardinality ((x1 S)) Int (ite (= x1 s1) 0 1))
(define-fun count () (Array R Int) (store count r1 0))
(define-fun ref () (Array P R) (store ref p1 r1))
(define-fun valid () (Array R BOOL) (store valid r1 Truth))
(define-fun destroyr () R r1)
(define-fun valid1 () (Array R BOOL) (store valid r1 Truth))
Results: TPTP

• 10 second timeout

• 11613 UNSAT benchmarks:
 – z3: 5471 solved
 – cvc4: 4868 solved
 – cvc4+fmf: 2246 solved, but orthogonal
 • 288 solved that cvc4 w/o finite model finding cannot
 – Either cvc4 or cvc4+fmf: 5158 solved

• 1933 SAT benchmarks:
 – z3: 866 solved
 – cvc4+fmf: 920 solved

• Model-Based Quantifier Instantiation is essential
Summary

• Finite model finding in CVC4
 – Uses solver for UF + cardinality constraints
 – Finds minimal models for ground constraints
 – Uses exhaustive instantiation to test models
 • Instantiations filtered by MBQI
 – Optionally, uses pattern-based instantiation
Conclusions

• Finite Model Finding:
 – Practical approach for SMT + quantifiers
 – Can answer SAT quickly
 • Generate simple counterexamples for DVF
 – Improves coverage in UNSAT cases
 • Increased ability to discharge verification conditions
 – Orthogonal to other approaches
Future Work

• Rewrite rules for axiom sets
 – Use rewriting system instead of quant instantiation

• Improvements to MBQI
 – Use ATP techniques for constructing model
 – Model interpretation for theories
 • Equality, Bit Vectors, Arithmetic, etc.

• Encode relationships between cardinalities

• Improvements for Model Output
 – Focus on human readability