
Finite Model Finding for SMT

Andrew Reynolds
University of Iowa

April 26, 2012

Acknowledgments

• Intel Corporation
• University of Iowa
• New York University

CVC4: SMT Solver

• SMT Solver
• Support for many theories
– Equality + Uninterpreted Functions
– Integer/Real arithmetic
– Bit Vectors, Arrays, Datatypes– Bit Vectors, Arrays, Datatypes

• Other features: Proofs
• Work in progress: Quantifiers
– Pattern-based instantiation
– Model-based instantiation
– Rewrite Rules
– Finite Model Finding

Quantifiers in SMT

• SMT solvers
– Powerful tools for determining satisfiability of

ground formulas
• DPLL(T) for finding SAT assignments to ground formulas• DPLL(T) for finding SAT assignments to ground formulas
• Answer UNSAT if no model can be found

– However, difficult to answer SAT in the presence
of universal quantifiers

Quantifiers in SMT

• Given set of literals (G, F):
– Set of ground constraints G
– Set of quantified assertions F

• Questions:• Questions:
– (1) How to chose instantiations for F
– (2) When can we answer SAT?

Other approaches

• Pattern-Based Instantiation
– Determine instantiations heuristically

• Based on finding ground terms in G with same shape as terms in F
– Usually these methods cannot answer SAT

• Complete Instantiation
Determine sufficient set F of instantiations– Determine sufficient set F* of instantiations

– If F* is satisfiable, we know F is satisfiable
• Only applicable to some fragments of first-order logic

• Model-Based Instantiation
– Determine instantiations based on possible

counterexamples (from F) to current model for G
– Can answer SAT if counterexamples are proven impossible

Finite Model Finding

• Finite Model Finding (for EUF)

– Find smallest model for ground constraints
• Instantiate exhaustively with terms in this model

– Answer SAT if exhaustive instantiation is – Answer SAT if exhaustive instantiation is
consistent with model
• Practical if small models exist
• Can extend to quantifiers over finite sorts

» Finite Datatypes, BitVectors, …

Finite Model Finding: Overview

• Wish to find reasonably small models
– Impose cardinality constraints on (uninterpreted) sorts
– Try models of size 1, 2, 3, … etc.

• What this requires:
– Control to DPLL(T) search for postulating cardinalities– Control to DPLL(T) search for postulating cardinalities
– Solver for UF+cardinality constraints
– Strategy for instantiating quantifiers exhaustively

• May reduce # instantiations
– Only try instantiations that are relevant to the model

UF+Cardinality Constraints

• Extend UF to handle literals of the form:

CS, k

• Meaning “the cardinality of sort S is less than
or equal to (integer) k”or equal to (integer) k”
– i.e., at most k equivalence classes of sort S exist

DPLL(T) for UF+Cardinality
• Idea: try to find models of size 1, 2, 3…etc.

– Choose CS, 1
d as first decision literal

– If fail, then try CS, 2
d , etc.

CS, 1
d ¬CS, 1

Search for
models
of size=1

If none exist,
search for

models
of size=2

etc.

CS, 2
d ¬CS, 2

CS, 3
d ¬CS, 3

UF+Cardinality Constraints

• For each sort S, maintain disequality graph DS = (V, E)
– V are equivalence classes of sort S
– E are disequalities between terms of sort S

• DS induced by asserted set of literals
– So, f(a) ≠ a, f(a) ≠ c, f(c) = c becomes:– So, f(a) ≠ a, f(a) ≠ c, f(c) = c becomes:

f(a)

a

f(c), c

UF+Cardinality Constraints

• Must extend theory solver for UF
– Determine when no models of size k exist
– If benchmark contains no function symbols

• Can use k-colorability algorithm• Can use k-colorability algorithm

– More difficult with function symbols
– In either case, problem is NP-hard

UF+Cardinality Constraints

• Assume a single sort S with cardinality constraint k
– We are interested in whether DS is k-colorable

• If no, then we have a conflict (ψ⇒ ¬CS,k)
– where ψ is explanation of sub-graph of DS that is not k-colorable

• If yes, then we cannot be sure a model of size k exists• If yes, then we cannot be sure a model of size k exists
– Identifying elements may have consequences for theories
– Example: congruence axioms in UF

f(a)

a

f(c), c
k = 2

UF+Cardinality Constraints
• Solution: must explicitly shrink model
• Use splitting on demand

– Add lemma (a = f(c) ∨ a ≠ f(c))
– Explore the branch a = f(c) first

• If successful,
– We shrink # of equivalence classes by one– We shrink # of equivalence classes by one

• If unsuccessful,
– A theory conflict/backtrack will occur

» May or may not involve cardinality constraints

f(a)

a

f(c), c
k = 2

UF+Cardinality Constraints

• Strategy for UF+Cardinality must be:
– Able to recognize when DS is not k-colorable
– Helpful for suggesting relevant splits

• Solution: use a region-based approach• Solution: use a region-based approach
– Partition nodes in regions with high edge density

• Likely to find cliques
• Can suggest relevant splits

• Partition nodes V of DS into regions

Region-Based Approach

• For cardinality k, we maintain the invariant:
– No clique of size k+1 exists containing nodes from multiple

regions
• Thus, we only need to search for cliques local to regions

– Region can be ignored if it has ≤ k terms

k = 2

Region-Based Approach

3 2

• Within each region with size > k:
– Maintain a watched set N of k+1 nodes
– Record pairs of nodes in N that are not linked

• If this set is empty, N is a clique ⇒ report a conflict clause
• Otherwise, guess equalities over unlinked nodes in N

1 4

k = 2

Region-Based Approach

3 2

• Merging nodes 1 and 2 may:
– Lead to a theory conflict
– Lead to a cardinality conflict (force a clique), or
– Succeed

1 4

k = 2

Region-Based Approach

3 1,2

• When merge is successful,
– Continue guessing equalities until all regions have ≤ k

nodes

4

k = 2

Region-Based Approach

1,2

3,4

• All regions have ≤ k nodes
– At this point, we are ensured k-colorability
– However, still unsure a model of size k exists

• Again, due to possible theory conflicts
– Must shrink model explicitly

3,4

k = 2

Region-Based Approach

1,2

3,4

• Combine regions based on heuristics
– For example, # edges between regions

3,4

k = 2

Region-Based Approach

1,2, …

3,4,…

• Continue combining regions, guessing equalities until
we have until ≤ k nodes overall
– When this is the case, we have model of size k for S

3,4,…

k = 2

UF+Cardinality Constraints Summary

• For cardinality k, maintain a partition into regions
– At weak effort check,

• If any cliques of size k+1 exist:
– report them as conflicts clauses

– At strong effort check,
• If # representatives for sort S ≤ k:

– return SAT
• Otherwise, if there is any region R, R > k:

– add splitting lemma between terms within R
• Otherwise:

– combine regions, repeat strong effort check

• Both checks can be performed quickly

Finite Model Finding

• Use DPLL(T) to guide search for small models
– Use solver for UF+cardinality constraints

• Why small models?
– Easier to test against quantifiers– Easier to test against quantifiers

• Assuming model is small,
– Instantiate quantifiers w all combinations of representatives
– If we have same model after instantiation,

» Model satisfies quantifiers, able to answer SAT

Instantiation: Example 1

• Assertions:
a ≠ c, f(c) ≠ b, ∀xy. f(x) ≠ g(y)

a c

f(c) b

Instantiation: Example 1

• Assertions:
a ≠ c, f(c) ≠ b, ∀xy. f(x) ≠ g(y)

• Find minimal model M, cardinality 2:

M

a

f(c)

c

b

Instantiation: Example 1

• Assertions:
a ≠ c, f(c) ≠ b, ∀xy. f(x) ≠ g(y)

• Instantiate quantified formula with reps a, c:

M

a

f(c)

c

b

f(a) g(a)

f(a) g(c)

f(c) g(a)

f(c) g(c)

Instantiation: Example 1

• Assertions:
a ≠ c, f(c) ≠ b, ∀xy. f(x) ≠ g(y)

• Reapply UF+cardinality solver:

M

a
f(a)
f(c)

c
b

g(a)
g(c)

• Success:
M satisfies ∀xy. f(x) ≠ g(y)

• Answer SAT

Possible Improvements

• Exhaustive instantiation
– Instantiate quantifiers F with all combinations of representatives

• Advantages:
– If successful, we are ensured that F is satisfied by M

• Disadvantages:
– Produces many instantiations– Produces many instantiations
– Even small models may cause many instantiations

• Quantifiers over n variables, # instantiations is O(kn)

• Improvement: Determine tight over-approximation of
relevant instantiations to test

Instantiation: Improvements

• Example 1 revised:
a ≠ c, f(c) ≠ b, ¬P(a), ∀xy. (P(x) ⇒f(x) ≠ g(y))

• Since ¬P(a), our set is:

M

a

f(c)

c

b

x -> { c },
y -> { a, c }

f(c) g(a)

f(c) g(c)

Instantiation: Improvements

• Possible approaches:
– Compute over-approximation of relevant instantiations

• Complete the candidate model M
– Give interpretation to predicates and functions
– Define default values heuristically

• Do not consider instantiations that are already true in the model
– P(x) in the formula ∀xy. (P(x) ⇒f(x) ≠ g(y))– P(x) in the formula ∀xy. (P(x) ⇒f(x) ≠ g(y))

» Do not consider { x → a } if ¬P(a)
• Advantage: may be fast to compute, reduces # inst

– Compute exact set of relevant instantiations
• Complete the candidate model M
• Use model-based quantifier instantiation
• Try values for which the negation of the body of quantifier is satisfied
• Advantage: only try instantiations that affect model

Results

• Experiments in Progress
• Tested 6762 TPTP benchmarks in 39 categories

– smt2 format, quantifiers over non-arithmetic sorts
– z3 vs cvc4+fmf

• SAT answers:
– 418 SAT by z3– 418 SAT by z3

» 161 where cvc4+fmf cannot
– 351 SAT by cvc4+fmf

» 93 where z3 cannot
• cvc4+fmf wins more categories (11 to 6)

– Current implementation uses naïve instantiation
• Exhaustive instantiation using all combinations of terms

– Interestingly, cvc4+fmf answers unsat where z3/cvc3 cannot
• 75 benchmarks

Conclusion

• Finite model finding in CVC4
– Uses solver for UF + cardinality constraints
– Finds minimal models for ground constraints
– Uses exhaustive instantiation– Uses exhaustive instantiation

• Practical approach for SMT problems
– Can answer SAT quickly in cases
– Orthogonal to other approaches to quantifiers

Questions?

