
Finding Conflicting Instances of
Quantified Formulas in SMT

Andrew Reynolds
Cesare Tinelli

Leonardo De Moura
July 18, 2014

Outline of Talk

• SMT solvers:

– Efficient methods for ground constraints

– Heuristic methods for quantified formulas

 Can we reduce dependency on heuristic methods?

• New method for quantifiers in SMT

– Finds conflicting instances of quantified formulas

• Experimental results

• Summary and Future Work

Satisfiability Modulo Theories (SMT)

• SMT solvers
– Are efficient for problems over ground constraints G
– Determine the satisfiability of G using a combination of:

• Off-the-shelf SAT solver
• Efficient ground decision procedures, e.g.

– Uninterpreted Functions
– Linear arithmetic
– Arrays
– Datatypes
– …

• Used in many applications:
– Software/hardware verification
– Scheduling and Planning
– Automated Theorem Proving

f(3)  f(c)
c=2  c+1≤0

a+1 = read(A,b)
tail(l1)=cons(a,l2)

G

DPLL(T)-Based SMT Solver

SAT
Solver

f(a) =5  f(b)=f(c)
f(a)≥10  read(B, 5) ≤ f(c)

Ground
Theory
Solvers

SMT Solver

G

DPLL(T)-Based SMT Solver

SAT
Solver

f(a) =5  f(b)=f(c)
f(a)≥10  read(B, 5) ≤ f(c)

Ground
Theory
Solvers

G

f(a) =5
f(a)≥10

M “context”

UNSAT

unsat

sat

DPLL(T)-Based SMT Solver

SAT
Solver

f(a) =5  f(b)=f(c)
f(a)≥10  read(B, 5) ≤ f(c)

Ground
Theory
Solvers

G

UNSAT SAT

T-inconsistent

T-consistent

f(a) =5
f(a)≥10

M

f(a) =5  f(a)≥10

SMT + Quantified Formulas
• SMT solvers have limited support for:

– First-order universally quantified formulas Q

• Used in an increasing number of applications, for:
– Defining axioms for symbols not supported natively
– Encoding frame axioms, transition systems, …
– Universally quantified conjectures

• When universally quantified formulas Q are present,
problem is generally undecidable
– Approaches for G  Q in SMT are usually heuristic

f(a) =5  f(b)=f(c)
f(a)≥10  read(B, 5) ≤ f(c)

 x. f(x) < 0

G

Q

SMT Solver + Quantified Formulas

SAT
Solver

Ground
Theory
Solvers

Quantifiers
Module

 x. f(x) < 0

SMT solver

f(a) =5  f(b)=f(c)
f(a)≥10  read(B, 5) ≤ f(c) G Q

SMT Solver + Quantified Formulas

SAT
Solver

Ground
Theory
Solvers

Quantifiers
Module

 x. f(x) < 0f(a) =5  f(b)=f(c)
f(a)≥10  read(B, 5) ≤ f(c) G

M

Q

f(a) ≥10

f(b)=f(c)

• Find (T-consistent) context M

SMT Solver + Quantified Formulas

SAT
Solver

Ground
Theory
Solvers

Quantifiers
Module

 x. f(x) < 0f(a) =5  f(b)=f(c)
f(a)≥10  read(B, 5) ≤ f(c) G

M

Q

f(a) ≥10

f(b)=f(c)

• We must answer: “is M  Q consistent?”

– Problem is generally undecidable

T-sat

Quantifier Instantiation

SAT
Solver

Ground
Theory
Solvers

Quantifiers
Module

 x. f(x) < 0

M

Q

f(a) ≥10
f(b)=f(c)

• Instantiation-based approaches:
– Add instances of quantified formulas, based on some strategy

• E.g. based on patterns (known as “E-matching”)

f(a)<0 f(c)<0f(b)<0 …

f(a) =5  f(b)=f(c)
f(a)≥10  read(B, 5) ≤ f(c) G

UNSAT

Instantiation-Based Approaches

• Complete approaches:

– E.g. Complete instantiation, local theory extensions,
finite model finding, Inst-Gen

• Cons: only work for limited fragments

• General approaches:

– Heuristic E-matching

• Cons: only for UNSAT, highly heuristic, often inefficient

Motivation

• In this talk: new method for quantified formulas

– Goals:

• Reduce dependency on heuristic methods

• Applicable to arbitrary quantified formulas

– Not goals:

• Completeness (thus, focus only on UNSAT)

Ground Theories : Conflicts

SAT
Solver

Ground
Theory
Solvers

Quantifiers
Module

UNSAT

f(a)≥10

f(a)=5

…

• If M is inconsistent according to ground theory,

M

Ground Theories : Conflicts

SAT
Solver

Ground
Theory
Solvers

Quantifiers
Module

UNSAT

(f(a) ≥ 10  f(a)=5)

• Ground theory solver reports a single conflict clause
– Typically, can be determined efficiently

f(a)≥10

f(a)=5

…

Quantifiers : Heuristic Instantiation?

SAT
Solver

Ground
Theory
Solvers

Quantifiers
Module

x.f(x)<0

UNSAT

M is T-consistent

f(a) ≥ 10

f(c)=f(b)

…

• The decision problem for MQ is undecidable,

Quantifiers : Heuristic Instantiation?

SAT
Solver

Ground
Theory
Solvers

Quantifiers
Module

x.f(x)<0

UNSAT

E-matching
for (M, G)f(a)<0 f(c)<0f(b)<0 …

• Add a potentially large set of instances, heuristically
– This can overload the ground solver

f(a) ≥ 10

f(c)=f(b)

…

Conflicting Instances

 Can we make the quantifiers module behave
more like a theory solver?

• Idea: find cases when M  Q is UNSAT:

– Find grounding substitution s
• Such that M Qs

• Qs is a conflicting instance

Conflict-Based Instantiation

SAT
Solver

Ground
Theory
Solvers

Conflict-Based
Instantiation

UNSAT

f(a)<0
Heuristic

Instantiation

x.f(x)<0
f(a) ≥ 10

f(c)=f(b)

…

“conflicting instance”

• First, determine if a conflicting instance exists
– If not, resort to heuristic instantiation

Limit of Approach

• Caveat: No complete method will determine
whether a conflicting instance exists for (M,Q)

• Thus, our approach:

1. Uses an incomplete procedure to determine a
conflicting instance for (M, Q)

2. If not, resort to E-matching for (M, Q)

 In practice, Step 1 succeeds for a majority of (M, Q)

E-matching vs Conflicting Instances

x. f(x) = g(h(x))g(b)f(a)
b=h(a)

• In example, g(h(x)) matches ground term g(b)

– That is:

• M g(b)=g(h(x))s, for s = {xa}

 E-matching for (M,Q) returns s

M

Q

Ground term

Trigger term

E-matching vs Conflicting Instances

• In this example, for s = { xa }:

1. Ground terms match each sub-term from Q
• M g(b)=g(h(x))s

• M f(a)=f(x)s

2. …and the body of Q is falsified:
• M f(x)g(h(x))s

 M  Qs is UNSAT

x. f(x) = g(h(x)) g(b)f(a)
b=h(a) M

Q

E-matching vs Conflicting Instances

• In this example, for s = { xa }:

1. Ground terms match each sub-term from Q
• M g(b)=g(h(x))s

• M f(a)=f(x)s

2. …and the body of Q is falsified:
• M f(x)g(h(x))s

 M  Qs is UNSAT

x. f(x) = g(h(x)) g(b)f(a)
b=h(a) M

Q

In paper, limit T to EUF

E-matching vs Conflicting Instances

• Consider flat form of Q:

x. f(x) = g(h(x)) g(b)f(a)
b=h(a) M

Q

• Conflicting substitution s for (M, Q) is such that:

– M entails ms

– M entails Ys

x y1 y2 y3.
y1 = f(x)  y2 = g(y3)  y3 = h(x)  y1 = y2

Matching constraints m Flattened body Y

Equality-Inducing Instances

• What if we relax constraint 2?

– Modified example, for s = { xa }:
1. Ground terms match each sub-term from Q

– M g(b)=g(h(x))s

– M f(a)=f(x)s

2. …but the body of Q is not falsified:

– M f(x)g(h(x))s

x. f(x) = g(h(x))
g(b)c
d=f(a)
b=h(a)

M Q

Equality-Inducing Instances

• Still, it may be useful to add the instance Q { xa }

– In this example, Q { xa } entails g(b) = f(a)

{ xa } is an equality-inducing substitution

• Mimics T-propagation done by theory solvers

x. f(x) = g(h(x))
g(b)c
d=f(a)
b=h(a)

M Q

Instantiation Strategy

• Three configurations:

– cvc4 : step (3)

– cvc4+c : steps (1), (3)

– cvc4+ci : steps (1),(2),(3)

InstantiationRound(Q, M)
(1) Return a (single) conflicting instance for (Q, M)
(2) Return a set of equality-inducing instances for (Q, M)
(3) Return instances based on E-matching for (Q, M)

Experimental Results

• Implemented techniques in SMT solver CVC4

• UNSAT benchmarks from:

– TPTP

– Isabelle

– SMT Lib

• Solvers:

– cvc3, z3

– 3 configurations: cvc4, cvc4+c, cvc4+ci

UNSAT Benchmarks Solved

• Configuration cvc4+ci solves the most (14,445)
– Against cvc4 : 1,049 vs 235 (+807)
– Against z3: 1,998 vs 1,310 (+688)
– 359 that no implementation of E-matching (cvc3, z3,

cvc4) can solve

cvc3 z3 cvc4 cvc4+c cvc4+ci

TPTP 5234 6268 6100 6413 6616

Isabelle 3827 3506 3858 3983 4082

SMTLIB 3407 3983 3680 3721 3747

Total 12468 13757 13638 14117 14445

Instantiations for Solved Benchmarks

• cvc4+ci
– Solves the most benchmarks for TPTP and Isabelle
– Requires almost an order of magnitude fewer instantiations

• Improvements less noticeable on SMT LIB
– Due to encodings that make heavy use of theory symbols

• Method for finding conflicting instances is more incomplete

TPTP Isabelle SMT lib
Solved Inst Solved Inst Solved Inst

cvc3 5245 627.0M 3827 186.9M 3407 42.3M

z3 6269 613.5M 3506 67.0M 3983 6.4M

cvc4 6100 879.0M 3858 119.M 3680 60.7M

cvc4+c 6413 190.8M 3983 54.0M 3721 41.1M

cvc4+ci 6616 150.9M 4082 28.2M 3747 32.5M

Instances Produced

• Conflicting instances found on ~75% of IR
• cvc4+ci :

– Requires 3.1x more instantiation rounds w.r.t. cvc4
– Calls E-matching 1.5x fewer times overall

• As a result, adds 5x fewer instantiations

InstantiationRound(Q, M)
(1) conflicting instance for (Q, M)
(2) equality-inducing instances for (Q, M)
(3) E-matching for (Q, M)

E-matching Conflicting C-Inducing

IR IR # IR # IR #
smtlib cvc4 14032 100.0% 60.7M

cvc4+c 51696 24.3% 41.0M 75.7% 39.1K
cvc4+ci 58003 20.0% 32.3M 71.6% 41.5K 8.4% 51.5K

TPTP cvc4 71634 100.0% 879.0M
cvc4+c 201990 21.7% 190.1M 78.3% 158.2K
cvc4+ci 208970 20.3% 150.4M 76.4% 160.0K 3.3% 41.6K

Isabelle cvc4 6969 100.0% 119.0M
cvc4+c 18160 28.9% 54.0M 71.1% 12.9K
cvc4+ci 21756 22.4% 28.2M 64.0% 13.9K 13.6% 130.1K

Details on Solved Problems

• For the 30,081 benchmarks we considered:

– cvc4+ci solves more (14,445) than any other

– 359 are solved uniquely by cvc4+c or cvc4+ci

• Techniques increase precision of SMT solver

– cvc4+ci does not use E-matching 21% of the time

• 94 benchmarks unsolved by E-matching implementations

• Techniques reduce dependency on heuristic instantiation

Competitions : CASC J7
• Partly due to techniques:

– Won TFA division

– Finished only behind Vampire/E(s) in FOF division

Competitions : SMT COMP 2014

• Partly due to techniques:

– Official winner in 11 division with quantifiers

– (Unofficially) beat z3 in AUFLIA, UFLIA, UF, …

Summary and Future Work

• Conflict-based method for quantifiers in SMT

– Supplements existing techniques

– Improves performance, both in:

• Number of instantiations required for UNSAT

• Number of UNSAT benchmarks solved

• Future work:

– More incremental instantiation strategies

– Specialize techniques to other theories

• Handle quantified formulas containing (e.g.) linear arithmetic

– Completeness criteria

Thank You

• Solver is publicly available:

http://cvc4.cs.nyu.edu/

• Techniques enabled by option:

“cvc4 --quant-cf …”

