Finding Conflicting Instances of
Quantified Formulas in SMT

Andrew Reynolds
Cesare Tinell
Leonardo De Moura
July 18, 2014

Outline of Talk

SMT solvers:

— Efficient methods for ground constraints
— Heuristic methods for quantified formulas
= Can we reduce dependency on heuristic methods?

New method for quantifiers in SMT

— Finds conflicting instances of quantified formulas

Experimental results
Summary and Future Work

Satisfiability Modulo Theories (SMT)

SMT solvers

— Are efficient for problems over ground constraints G

— Determine the satisfiability of G using a combination of:
e Off-the-shelf SAT solver
 Efficient ground decision procedures, e.g.

— Uninterpreted Functions f(3) = f(c) n

— Linear arithmetic c=2 v c+1=<0

— grrays a+l = read(A,b) G
— Datatypes tail(l,)=cons(a,l,) _

Used in many applications:

— Software/hardware verification
— Scheduling and Planning

— Automated Theorem Proving

DPLL(T)-Based SMT Solver

f(a) =5 v f(b)=f(c) C
f(a)>10 v read(B, 5) <f(c)

SMT Solver

Ground

Theory
Solvers

DPLL(T)-Based SMT Solver

f(a) =5 v f(b)=f(c) C
f(a)>10 v read(B, 5) < f(c)
} M “context”

unsat

SAT Ground

UNSAT

Theory
Solvers

Solver

DPLL(T)-Based SMT Solver

Ground
Theory
Solvers

SMT + Quantified Formulas

SMT solvers have limited support for:
— First-order universally quantified formulas O

f(a) =5 v f(b)=f(c)
f(a)210 v read(B,5)<f(c) | | ©
VvV x. f(x) <0 0

Used in an increasing number of applications, for:

— Defining axioms for symbols not supported natively

— Encoding frame axioms, transition systemes, ...

— Universally quantified conjectures
When universally quantified formulas Q are present,
problem is generally undecidable

— Approaches for G U Q in SMT are usually heuristic

SMT Solver + Quantified Formulas

f(a) =5 v f(b)=f(c) Y x_ f(x) < 0
f(@)>10 v read(B, 5) < f(c) } G X. f(x) }Q

SMT solver

Quantifiers
\Yi[eYe [V][=

Theory
Solvers

Ground |

SMT Solver + Quantified Formulas

f(a)zq(g):?e\;;((blg,:;(?ﬁ f(c) } G f

"""""""ﬂ;);}a'};"M' """""""
— f(b)=f(c)

Ground
Theory

Quantifiers

\Yi[eYe [V][=

Solvers

* Find (T-consistent) context M

SMT Solver + Quantified Formulas

VvV x. f(x) <0 }Q

f(a) 210 } M
f(b)=fc) T-sat

Ground
SAT
Theory
Solvers

Solver

Quantifiers
\Yi[eYe [V][=

* We must answer: “is M ' Q consistent?”

— Problem is generally undecidable

Quantifier Instantiation

VvV x. f(x) <0 }Q

f(a) 210
f(b)=f(c)

Ground
Theory

|
|
|
|
|
|
|
| -
! Quantifiers
|

UNSAT Module

Solvers

f(a)<0 | f(b)<O | f(c)<O

* |Instantiation-based approaches:

— Add instances of quantified formulas, based on some strategy
* E.g. based on patterns (known as “E-matching”)

Instantiation-Based Approaches

* Complete approaches:

— E.g. Complete instantiation, local theory extensions,
finite model finding, Inst-Gen

* Cons: only work for limited fragments

* General approaches:

— Heuristic E-matching
e Cons: only for UNSAT, highly heuristic, often inefficient

Motivation

* |n this talk: new method for quantified formulas

— Goals:
* Reduce dependency on heuristic methods
* Applicable to arbitrary quantified formulas

— Not goals:
 Completeness (thus, focus only on UNSAT)

Ground Theories : Conflicts

f(a)=10
---------------- f(a)=5

Ground
SAT
Theory
Solvers

Quantifiers

\Yi[eYe [V][=

|
|
|
|
|
|
|
|
|
|
A Solver
|
|
|
|
|
|
|
|

e |f Mis inconsistent according to ground theory,

Ground Theories : Conflicts

f(a)=10
"""""""""" f(a)= (""" """"7-

Ground
>Al Theory

Quantifiers

Solver \Yi[eYe [V][=

Solvers

| . :
* Ground theory solver reports a single conflict clause

— Typically, can be determined efficiently

Quantifiers : Heuristic Instantiation?

f(a) 210 Vx.f (x)<0
f (c)=£f (b)

M is T-consistent

Ground

Quantifiers

UNSAT
Module

Theory
Solvers

* The decision problem for MUQ is undecidable,

Quantifiers : Heuristic Instantiation?

f(a) 210
f(c)=£f (b)

Vx.f (x)<0

I I
I I
I I
I I
I I
|
| Ground — i
UNSAT <— Theory :/?gdlullzrs :
|
: Solvers |
| |
|
: E-matching :
, f(a)<0| £(b)<0 | £(c)<0 for (M, G) |
I } I
L e e e e e e e e e e e e — o N J

* Add a potentially large set of instances, heuristically
— This can overload the ground solver

Conflicting Instances

—> Can we make the quantifiers module behave
more like a theory solver?

* |dea: find cases when M U Q is UNSAT:

— Find grounding substitution o
 SuchthatM =71 —Qo

* Qo is a conflicting instance

Conflict-Based Instantiation

Vx.f (x)<0

f(a) 210
"""""" f(e)=f£(Mb) | """ """ """~

|

|

|

|

|

|

: Ground Conflict-Based

' Instantiation
Theory

|

| Solvers

:

|

! Heuristic

| . ..

l “conflicting instance” Instantiation

|

|

* First, “determine if a conflicting instance exists
— If not, resort to heuristic instantiation

Limit of Approach

 Caveat: No complete method will determine
whether a conflicting instance exists for (1,Q)

* Thus, our approach:

1. Uses an incomplete procedure to determine a
conflicting instance for (I, Q)

2. If not, resort to E-matching for (M, Q)
= In practice, Step 1 succeeds for a majority of (M, Q)

E-matching vs Conflicting Instances

Ground term

glb)zfla) | vx. f(x) = g(h(x) ©
b=h(a) M —

] Trigger term

* |n example, g(h(x)) matches ground term g(b)

— That is:
* M = g(b)=g(h(x))o, for c = {x—>a}

= E-matching for (M,Q) returns o

E-matching vs Conflicting Instances

g(b)zf(a) | Vx. f(x) = g(h(x)) | - ©
b=h(a) "

—

* |n this example, forc ={x—a }:

1. Ground terms match each sub-term from Q

* M =, g(b)=g(h(x))o
« M =1 f(a)=f(x)o

2. ..and the body of Q is falsified:
* M =7 f(x)zg(h(x))o

=M v Qois UNSAT

E-matching vs Conflicting Instances

g(b)zf(a) | Vx. f(x) = g(h(x)) | - ©
b=h(a) "

—

* |n this example, forc ={x—a }:

1. Ground terms match each sub-term from Q

* M =, g(b)=g(h(x))o
« M =1 f(a)=f(x)o

2. ..and the body of Q is falsified:
* M =1 f(x)2g(h(x))o
.— In paper, limit T to EUF

=M v Qois UNSAT

E-matching vs Conflicting Instances

g(b)zf(a) | Vx. f(x) = g(h(x)) | - ©
b=h(a) "

—

e Consider flat form of Q:

VXYY, Ys
Yy, =f(x) Ay, =8lys) Ays=h(x) =y, =y,
\]

| ——

Matching constraints u Flattened body ¥

e Conflicting substitution o for (M, Q) is such that:
— M entails uo
— Mentails =WYoo

Equality-Inducing Instances

—_

g(b)=c
d=f(a) -M [V f(x)=g(h(x)) | -©

b=h(a) —
 What if we relax constraint 2?

— Modified example, for o = { x—a }:
1. Ground terms match each sub-term from Q
— M =7 8(b)=g(h(x))o
— M T f(a)=f(x)o
2. ..but the body of Q is not falsified:
- M 7 f(x)=g(h(x)o

Equality-Inducing Instances

g(b)#c
d=f(a)
b=h(a)

—_

v x. f(x) = g(h(x))

-0

e Still, it may be useful to add the instance Q { x—a }
— In this example, Q { x—a } entails g(b) = f(a)

—{ x—a } is an equality-inducing substitution

* Mimics T-propagation done by theory solvers

Instantiation Strategy

InstantiationRound(Q, M)

(1) Return a (single) conflicting instance for (Q, M)

(2) Return a set of equality-inducing instances for (Q, M)
(3) Return instances based on E-matching for (Q, M)

Three configurations:

— cvcd : step (3)

— cvcd+c : steps (1), (3)

— cvcd+ci : steps (1),(2),(3)

Experimental Results

Implemented techniques in SMT solver CVC4

UNSAT benchmarks from:
— TPTP

— Isabelle

— SMT Lib

Solvers:

—cvce3, z3
— 3 configurations: cvc4, cvcd+c, cvcd+ci

UNSAT Benchmarks Solved

cvc3 23 cvcd cvcd+c cvcd+ci

TPTP 5234 6268 6100 6413 @ 6616
Isabelle | 3827 3506 3858 3983 = 4082
SMTLIB 3407 3983 3680 3721 3747

Total 12468 13757 13638 14117 14445

e Configuration cvcd+ci solves the most (14,445)
— Against cvc4 : 1,049 vs 235 (+807)
— Against z3: 1,998 vs 1,310 (+688)

— 359 that no implementation of E-matching (cvc3, z3,
cvcd) can solve

Instantiations for Solved Benchmarks

TPTP Isabelle SMT lib
Solved Inst Solved Inst | Solved Inst
cve3 5245 627.0M 3827 186.9M 3407 42.3M
z3 6269 613.5M 3506 67.0M 3983 6.4M
cvcad 6100 879.0M 3858 119.M 3680 60.7M
cvca+c 6413 190.8M 3983 54.0M 3721 41.1M
cvcad+ci 6616 150.9M 4082 28.2M 3747 32.5M

* cvci+ci

— Solves the most benchmarks for TPTP and Isabelle

— Requires almost an order of magnitude fewer instantiations
* |Improvements less noticeable on SMT LIB

— Due to encodings that make heavy use of theory symbols
* Method for finding conflicting instances is more incomplete

InstantiationRound(Q, M)
(1) conflicting instance for (Q, M)

I n Sta n Ce S P ro d u Ce d (2) equality-inducing instances for (Q, M)

(3) E-matching for (Q, M)

E-matching Conflicting C-Inducing
IR IR # IR # IR #
smtlib cvcd 14032 | 100.0% 60.7M
cvca+c 51696 24.3% 41.0M | 75.7% 39.1K
cvcd+ci 58003 20.0% 323M | 71.6% 41.5K 8.4% 51.5K
TPTP cvcd 71634 | 100.0% 879.0M
cvca+c 201990 | 21.7% 190.1M | 78.3% 158.2K
cvcd+ci 208970 | 20.3% 150.4M | 76.4% 160.0K | 3.3% 41.6K
Isabelle cvcd 6969 100.0% 119.0M
cvcd+c 18160 28.9% 540M | 71.1% 12.9K
cvca+ci 21756 22.4% 28.2M | 64.0% 139K | 13.6% 130.1K

Conflicting instances found on ~75% of IR

cvcd+ci :
— Requires 3.1x more instantiation rounds w.r.t. cvcd

— Calls E-matching 1.5x fewer times overall
* As a result, adds 5x fewer instantiations

Details on Solved Problems

 For the 30,081 benchmarks we considered:
— cvcd+ci solves more (14,445) than any other
— 359 are solved uniquely by cvcd+c or cvcd+ci
* Techniques increase precision of SMT solver

— cvcd+ci does not use E-matching 21% of the time
* 94 benchmarks unsolved by E-matching implementations
* Techniques reduce dependency on heuristic instantiation

Solved2m

Competitions : CASCJ7

* Partly due to techniques
— Won TFA division
— Finished only behind Vampire/E(s) in FOF division

5 |SPASS+T|ISPASS+T| Beagle |(Zipperpos
2119 1210 0.9 0.4-TFF
173200 17320 80200

Av. CPU Time

Solutions

pEfficiency
SOTAC

Core Usage

3.57

New Solved

Av. CPU Time

Solutions

pEfficiency

SOTAC

Core Usage

New Solved

leanCoP | Prover? (ZipperpoiMuscadet| Princess

12 11092 0.4-FOF 14 140704
321400 158300 93400 73400 32400 134400
22 88 3515 41.45 28.81 19.74 69.31
321a0m 15830 93400 73400 30400)
129 119 73 47 17
0.14 0.14 0.13 0.12 0.13
1.00 1.00 1.00 0.99 1.22
D D O 0 D

Competitions : SMT COMP 2014

* Partly due to techniques:

— Official winner in 11 division with quantifiers
— (Unofficially) beat z3 in AUFLIA, UFLIA, UF, ...

UF

Division COMPLETE: The winner is CVC4

Solver |Errors | Solved [Not Solved [Remaining scol:lnﬂ.l;]egi;:setéﬁges} E;g:‘:idgﬂ%gal score
Llcvea [) o 2732 98 0 87682.16 3.217
[Z23] 0| 1802 1028 0 21936.93 1.400
CVC3 0| 1682 1148 0 31862 .96 1.219
veriT 0| 1410 1420 0 7880.76 0.857

Summary and Future Work

* Conflict-based method for quantifiers in SMT
— Supplements existing techniques
— Improves performance, both in:

 Number of instantiations required for UNSAT
* Number of UNSAT benchmarks solved

e Future work:
— More incremental instantiation strategies
— Specialize techniques to other theories

* Handle quantified formulas containing (e.g.) linear arithmetic

— Completeness criteria

Thank You

* Solver is publicly available:
http://cvcd.cs.nyu.edu/

* Techniques enabled by option:

7

“cvcd —--quant-cf ..

