Extending Satisfiability Modulo Theories to Quantified Formulas

Andrew Reynolds
University of Iowa
September 24, 2012
Overview

• Satisfiability Modulo Theories (SMT)
 – Challenge of quantifiers in SMT
• SMT approaches to quantifiers
 – Heuristic Instantiation/E-matching
 – Model-Based Quantifier Instantiation
 – Finite Model Finding
• Automated Theorem Proving
• Current Research
 – CVC4 + Finite Model Finding
Satisfiability Modulo Theories (SMT)

• SMT solvers:
 – Are powerful tools for determining satisfiability of ground formulas
 • Built-in decision procedures for many theories
 – Arithmetic, Arrays, BitVectors, Datatypes, ...
 – Have applications in:
 • Software/Hardware verification
 • Planning and scheduling
 • Design automation
 – Had significant performance improvement in past 10 years
 – Key to success of many industrial verification applications
Strengths of SMT Solvers

• Performance
 – Built on top of high performance SAT solvers
 – Use fast decision procedures for theories
 – Designed to work incrementally

• Usability
 – Enable rich encodings of problems
 – Accept SMT LIB v2 common language
 – Produce more than SAT/UNSAT answer:
 • Models, proofs, unsat cores, interpolants, ...
What is SMT?

\[(a = 5 \lor \text{select}(R, a) = b) \land g(5) \geq g(a) + 1 \]

- **Satisfiability Modulo Theories:**
 - Determine if there exists satisfying assignment
 - If so, return SAT
 - Return UNSAT if none can be found
 - Satisfying assignment must be T-consistent
\((a = 5 \lor \text{select}(R, a) = b) \land g(5) \geq g(a) + 1 \)

Abstract to boolean satisfiability problem

\((A \lor B) \land C \)
\((a = 5 \lor \text{select}(R, a) = b) \land g(5) \geq g(a) + 1\)

\[\downarrow\]

\((A \lor B) \land C\)

Find satisfying assignment: A, C
\[(a = 5 \lor \text{select}(R, a) = b) \land g(5) \geq g(a) + 1\]

\[\downarrow\]

\[\left(\begin{array}{c}
A \\
\lor \\
B \\
\land \\
C
\end{array} \right) \land \text{True} \land \text{True}\]

• **However, A and C are inconsistent according to theory**
 - \(a = 5\) and \(g(5) \geq g(a) + 1\) cannot both be true according to UF + Int
• Can add additional clause:
 \[(\neg A \lor \neg C)\]
\((a = 5 \lor \text{select}(R, a) = b) \land g(5) \geq g(a) + 1\)

downarrow

\((A \lor B) \land C \Rightarrow (A \lor B) \land C \land \neg A \lor \neg C\)

\Rightarrow \text{answer SAT}

DPLL(T) Architecture [Nieuwenhuis et al 03]

- Formula F
- F is SAT
- SAT Solver
- F is UNSAT
- UNSAT
- Theory Solvers
- Satisfying assignment M
- M is T-Consistent
- M is T-Inconsistent
- SAT
- Clauses to add to F
Challenge: Quantifiers in SMT

\(\forall x. f(x+1) \geq f(x) + 1 \land (f(2) = 5 \lor \text{select}(R, a) = b) \)

For all integers x...

- Treat each quantified formula as literal, as before
$\forall x. f(x+1) \geq f(x) + 1 \land (f(2) = 5 \lor \text{select}(R, a) = b)$

\downarrow

$\land (A \land \text{True}) \lor (B \lor \text{True})$

- Find satisfying assignment: A, B

$\Rightarrow \text{Problem: In general, determining consistency of quantified formulas is undecidable}$
Quantifier Instantiation

- Divide problem into:
 - Ground portion G, and quantified portion Q:

 $\ldots, f(2) = 5, \ldots$

 G

 $\ldots, \forall x. f(x+1) \geq f(x) + 1, \ldots$

 Q

- Determine if G is T-inconsistent
 - If not, *instantiate* Q with some set of ground terms
Quantifier Instantiation

- Check again if \(G \) is T-inconsistent
 - If not, repeat

\[
\begin{align*}
... & \quad f(2) = 5, \quad ... \\
f(1) & \geq f(0) + 1 \\
f(2) & \geq f(1) + 1 \\
f(3) & \geq f(2) + 1 \\
\end{align*}
\]

\[
\begin{align*}
... & \quad \forall x. f(x+1) \geq f(x) + 1, \quad ... \\
\end{align*}
\]

\(\Rightarrow \textit{Sound but incomplete procedure} \)
Instantiation-Based Approaches

• Given set of literals (G, Q):
 – Set of ground constraints G
 – Set of quantified assertions Q

• Questions:
 – (1) How to choose instantiations for Q
 – (2) When can we answer SAT?
Pattern-Based Quantifier Instantiation

[Detlefs et al 05]

• **Idea:** Determine instantiations heuristically
 – Find terms in Q with same shape as ground terms in G

• **Example:**

\[
a = b, \ f(a, a) \neq b, \ \forall x. \ f(x, b) = a
\]

– Consider \(f(x, b) \) as *trigger* term
– Determine if \(f(a, a) \) and \(f(x, b) \) match,
 • Modulo set of background equalities \(E = \{ a=b \} \)
– Here, \(f(x, b) \) \(E \)-matches \(f(a, a) \) with \(\{ x \rightarrow a \} \)
 • Add instantiation \([a/x]\) for quantifier
 – Adds constraint \(f(a, b) = a \), leading to T-inconsistency
Pattern-Based Quantifier Instantiation

• Challenges:
 – Trigger selection is highly non-trivial
 – Sensitive to syntactic changes in formulas
 – Matching loops can occur
 • Repeating pattern of generated terms, \(f(a), f(f(a)), f(f(f(a))), \ldots \)
 – # instantiations may explode
 – It is an incomplete procedure, i.e. cannot answer SAT

• As a result, tends to:
 – Discover easy conflicts if they exist
 – Otherwise, overloads SMT solver with instances
 • Run indefinitely or answer unknown
Model-Based Quantifier Instantiation (MBQI) [Ge, deMoura 08]

• **Idea:** Try to show that no instance of Q falsifies the current model M for G
• To check if an instance of $\forall x. F$ falsifies M:
 \Rightarrow Suffices to check if $\neg F^M[e/x]$ is satisfable
• If unsat, then no instance of $\forall x. F$ falsifies M
• Otherwise, we must refine M
 – Instantiate $\forall x. F$ using sat assignment to $\neg F^M[e/x]$
MBQI : Example

\[P(a, a), a \neq b, \forall z. \neg P(z, b) \]

Find model \(M \) : \(\{ a, b \} \), representatives

\[P^M := \lambda xy. (x=a \land y=a) \]

representations for uninterpreted symbols in \(Q \)
MBQI : Example

\[P(a, a), a \neq b, \forall z. \neg P(z, b) \]

\[G \]

\[Q \]

Find model \(M \): \{ a, b \},
\[P^M := \lambda xy. (x=a \land y=a) \]

\[\neg P^M(z, b) \equiv \neg(z=a \land b=a) \equiv true \]

- Is \((\neg true)[e/z]\) \(\equiv false\) satisfiable?
 \[\Rightarrow unsat, therefore Q does not falsify M \]
MBQI as Model Refinement

$$P(\ a, \ a), \ a \neq b, \ \forall z. \ \neg P(\ z, \ b)$$

\[G \quad Q \]

Find model $M' : \{ a, b \}$,

$$P^{M'} := \lambda xy . \ x = a$$

$$\neg P^{M'}(\ z, \ b) \equiv \neg (\ z = a)$$

• Is $\neg \neg (\ z = a)[e/z] \equiv (\ z = a)[e/z] \equiv (e = a)$ satisfiable?

\[\Rightarrow \text{sat with valuation} \{ e \rightarrow a \} \]

• Add instantiation $[a/z]$, add $\neg P(\ a, \ b)$ to G

– Guaranteed to rule out M' on subsequent iterations
Model-Based Quantifier Instantiation

• Challenges:
 – Hard to determine interpretations in M
 • Default values chosen heuristically
 – External model checking calls are expensive

• Typically:
 – Is effective at answering SAT for simple cases
 – Can be paired with E-matching to improve coverage
Finite Model Finding

• *Idea:* Build model for G that is small enough to test Q exhaustively

• Given set of literals (G, Q):
 – Find a “smallest” model for G
 • One with fewest # of ground equivalence classes
 – Try *every* instance of Q in the model
 • Feasible if the number of instances is *finite*
 – If every instance is true in model, answer SAT
Why Small Models?

• Easier to test against quantifiers
 – Given quantified formula $\forall x_1...x_n. F(x_1 ... x_n)$
 • Naively, we require k^n instantiations
 – Where k is the cardinality of sort($x_1 ... x_n$)
 – Feasible if either:
 • Both n and k are small
 • We can recognize redundant instantiations
 – Use Model-Based Quantifier Instantiation
SMT vs ATP

• SMT Solvers
 – Strengths:
 • Efficient decision procedures for theories
 • Theories increase expressivity
 – Weaknesses:
 • Ability to handle quantifiers is limited

• Automated Theorem Provers (ATP)
 – Strengths:
 • Advanced methods for quantified clauses
 – Weaknesses:
 • Nearly no support for theories
 – Omission is intentional, as this leads to undecidability
Resolution-Based Theorem Proving

\[
\begin{align*}
\frac{C \lor A \quad D \lor \neg B}{(C \lor D)\sigma} & \quad \text{Res} \\
\text{where } \sigma = \text{mgu}(A, B). \\
\hline
\frac{C \lor A \lor B}{(C \lor A)\sigma} & \quad \text{Factor} \\
\text{where } \sigma = \text{mgu}(A, B).
\end{align*}
\]

• Sound and complete
 – If input is unsat, we will eventually derive \(\bot \)
 – When clause set is saturated wrt rules, input is sat
• Additional rules for equational reasoning
 – Paramodulation, superposition
• Optimizations
 – Term Indexing
 – Redundancy Elimination (i.e. clause subsumption)
ATP Approaches

• Deciding fragments of first-order logic (EPR):
 – Model evolution calculus [Baumgartner, Tinelli 03]
 • Darwin [Fuchs et al 04]
 – Inst-Gen [Korovin, Ganzinger 03]
 • iProver [Korovin 06]

• Finite model finding:
 – SEM-style model finding [Zhang, Zhang 96]
 – MACE-style model finding [McCune 94]
 • Paradox [Clausen, Sorenson 03]
MACE-Style Model Finding

• *Idea:* Check for models of fixed size by generating a corresponding ground queries

• Given \((G, Q)\):
 – First, create ground problem \(G, F_{G,Q,1}\)
 • If sat, then model of size 1 exists
 – If unsat, create ground problem \(G, F_{G,Q,2}\)
 • If sat, then model of size 2 exists
 • ...

• Will eventually find *finite* model, if one exists
MACE-Style Model Finding: Example

\[a \neq b, \ b = c, \ \forall x. f(x) = x \]

- No model of size 1 can be found...
- Generate ground problem \(G, F_{G,Q,2} \):
 - *Use domain constants* \(d_1, d_2 \)

\[
\begin{align*}
 a \neq b, \ b &= c, \\
 (a = d_1 \lor a = d_2), &... \\
 (f(d_1) = d_1 \lor f(d_1) = d_2), \\
 (f(d_2) = d_1 \lor f(d_2) = d_2), \\
 f(d_1) = d_1, \ f(d_2) = d_2
\end{align*}
\]

\[Q \text{ is true for all } d_i \]

\[\Rightarrow SAT \]
MACE-Style Model Finding

• Challenges:
 – Introducing constants leads to value symmetries
 • Find identical models modulo renaming of constants
 ⇒ Can use static symmetry breaking techniques
 – May produce large # of clauses
 • Must test all instances of quantified clauses
 ⇒ Use sort inference to determine a subset of instances that are relevant
 ⇒ Use clause splitting to reduce # variables per clause
My Current Research

• New approaches to quantifiers in SMT
• *In this talk:* Finite Model Finding in CVC4
• Approach for (G, Q) consists of:
 – Finding minimal models for G
 – Model checking Q by exhaustive instantiation
Finite Model Finding for SMT

• Similar to MACE-style approaches for \((G, Q)\),
 – Search for models of size 1, 2, 3, etc.
 – Naively, test all instances of \(Q\) for fixed model size
• In contrast to MACE-style approaches,
 – Search for models is integrated into DPLL(T)
 – Do not introduce domain constants explicitly
 • Use internal union-find data structure in SMT solver
Finite Model Finding in SMT: Example

\[
\begin{align*}
\neg a & \neq b, \quad b = c, \\
\forall x. f(x) &= x
\end{align*}
\]

- Using DPLL(T), we find smallest model for \(G \), equivalence classes: \{ \(a \) \}, \{ \(b, c \) \}
- Instantiate \(Q \) with all representative terms:
 - \(f(a) = a, f(b) = b \) added to \(G \)
- Afterwards: \{ \(a, f(a) \) \}, \{ \(b, c, f(b) \) \}
 - All instances are true in model \(\Rightarrow \) answer SAT
Finite Model Finding

- To find small models:
 - Where “smallest” model for sort S means:
 - Fewest # equivalence classes of sort S
 - Try to find models of size 1, 2, 3, ... etc.
 - Impose \textit{cardinality constraints}
 - Requires:
 - Control the DPLL(T) search for postulating cardinalities
 - Theory solver for equality + cardinality constraints
Solver for Eq + Cardinality Constraints

- Maintain disequality graph
 - Nodes are equivalence classes
 - Edges are disequalities
- For cardinality k, interested whether graph is k-colorable

- Partition disequality graph of the solver into regions where the edge density is high
 - Discover cliques local to regions
 - Suggest relevant terms to identify
Finite Model Finding for SMT

Formula F

SAT Solver

Satisfying assignment M (with quantifiers)

Theory Solvers

M is T-Consistent

M is minimal

Exhaustive Quant. Instantiation

No new instantiations

Filter Based on Model

cardinality conflicts

relevant instantiations

T-conflicts

SAT

UNSAT
CVC4 + Finite Model Finding

• Implemented in SMT solver CVC4 [Barrett et al 10]
 – State of the art solver developed by NYU/Iowa

• Preliminary Results
 – Successful as backend to Intel’s DVF Tool [Goel et al 12]
 • Effective at finding small countermodels (SAT cases)
 • Added ability to discharge VC’s (UNSAT cases)
 – Orthogonal to other approaches
 • Answers SAT in cases where no other solver can
Ongoing Work

• For Equality + Cardinality Constraint Solver:
 – Improved clique finding and reporting

• For Quantifier Instantiation:
 – Incorporate heuristic instantiation
 – Use of iProver’s Inst-Gen calculus
 • Require weaker condition for answering SAT
 • Eliminate the need for exhaustive instantiation
• Questions?