Quantifier Instantiation Techniques
for Finite Model Finding in SMT

Andrew Reynolds, Cesare Tinelli
Amit Goel, Sava Krstic
Morgan Deters, Clark Barrett

Satisfiability Modulo Theories (SMT)

 SMT solvers are powerful tools
— Used in many formal methods applications

— Support many background theories
e Arithmetic, bitvectors, arrays, datatypes, ...

— May generate:

* Proofs

— Theorem proving, software/hardware verification

e Models

— Failing instances of aforementioned applications
— Invariant synthesis, scheduling, test case generation

SMT: Limitations

 SMT solvers effective handling ground formulas

— Fast decision procedures for UF, arithmetic, ...

* Ongoing challenge: quantified formulas
— Heuristic methods for answering “unsat”
— Limited capability of answering “sat”

e Often will return “unknown” after some effort

Contributions

Finite Model Finding in SMT

— Different from ATP finite model finders:
* Native support for background (ground) theories

— Different from SMT solvers:
* Increased ability to answer “satisfiable”

New techniques for:
— Constructing good candidate models
— Efficiently checking candidate models

DPLL(T) Architecture

Satisfying assignment A for F

Fis sat

F' is unsat SAT Th eo ry A is T-Consistent
Solver Solvers

Clausestoadd to F A is T-Inconsistent

DPLL(T) Architecture : Challenge

Satisfying assignment A for F°

Fis sat

F is unsat SAT Theory A is T-Consistent

UNSAT, Solver Solvers SAT,
proof model

Clausesto add to F

A is T-Inconsistent

* Challenge: What if determining the consistency of A is difficult?
* For quantified formulas, determining consistency is undecidable

Heuristic Instantiation for O

Fis sat

F is unsat

UNSAT,
proof

Instances of Q
toaddto F

Satisfying assignment A for F°

Consistency of A is
unknown

(containing Q)

* If sat assignment contains quantified formula Q,

— Heuristically add instances of Q to F

* Typically based on pattern matching

— May discover refutation, if right instances are added

Why Models are Important

Verification
Condition (with quantifiers)
for P

SMT
solver
Unknown

Candidate
\Yi[eYo =)

\EIIVEL
Inspection

Why Models are Important

Verification
Condition (with quantifiers)
for P

SMT
solver

UNSAT SAT

Unknown

Candidate
\Yi[eYo =)

"l N

Mconual
Inspec.'on

T

Model-Based Approach for Quantifiers

* Given:
— Set of ground formulas F
— Set of universally quantified formulas O

* To determine the satisfiability of & A O,

— Construct candidate models for Q, based on satisfying
assignments for F

 Model-Based Quantifier Instantiation (MBQ)
— [Ge/deMoura 2009]

DPLL(T) Architecture (Extended)

Quantified

Ground

Formulas .
P Satisfying

assignment Als Candidate
AforF T-Consistent | model M

Formulas
Q

Fis sat

SAT Theory
Solver Solvers

Model
Verifier

M is a model
for O

Clauses to
addto F

When can we represent/check models for Q?

* Focus of talk: Finite Model Finding

— Limited to quantifiers over:

* Uninterpreted sorts

— Can represent memory addresses, values, sets, etc.

e Other finite sorts
— Fixed width bitvectors, datatypes, ...

e Useful in applications:
— Software/hardware verification

Constructing/Checking Candidate Finite Models

(Finite)

Candidate
: \ model M Q
—— 7
UNSAT, -
ot DN Ground Solver Model
/\ Verifier
Instances of Q to SAT,
addto F model M

1. How do we construct good candidate models M?

2. How do we efficiently check if M is a model for Q7
— If we fail, which instances do we add to F'?

Constructing Good Candidate Models

Constructing Good Candidate Models

* Naively, to determine whether M is model for Q:
— Check if M satisfies all instances S of O

 Challenge: S can be very large
— For Q with n variables, domain size d, |S| can be O(d")

e Solutions:

— Find models with small domain sizes
* Use theory of finite cardinality constraints [CAV 2013]
— Only consider instances of Q that are false in M

» Construct Msuch that most instances of Q are true

Constructing Models : Example

person,, person,, person, : Person
NewYork, Boston, Seattle : City

salesman: Person — Bool

travels : Person x City — Bool

F
distinct(NewYork, Boston, Seattle) ¥ x:Person,y : City.
travels(person,, Boston) salesman(x) = travels(x,y)

—salesman(person,)
salesman(person;,)

Constructing Models : Example

person,, person,, person, : Person
NewYork, Boston, Seattle : City

salesman: Person — Bool

travels : Person x City — Bool
F Y 0
distinct(NewYork, Boston, Seattle) ¥ x:Person,y : City.
travels(person,, Boston) salesman(x) = travels(x,y)

—salesman(person,)
salesman(person;,)

Interpretation of “salesman”: Interpretation of “travels”:
salesman(person,) = 1, travels(person,, Boston) = T,
salesman(person;) = T, travels(x;, x,)= L

salesman(x;)= L

Model Representation

* Represent functions/predicates using defining maps

* Given sort S with domain V,
— A defining map for £ : Sx..xS— S is:
 Set of equations A; of the form £(t,, ..., t,) = v, where

—v eV
— Each t, is either a unique variable or in V
e Ift,=vyand t, = v, € A, unifiable with mgu o, then:
— o is hon-empty
— t,o=v e A forsome v

* f(xqy ..., X,)=v e A forsome v

Interpretation in Model

* Interpretation £(t,, ..., £,) is v, where:
—t=veA;
— t is most specific generalization of £(t,, ..., £,)

among LHS in A
* Guaranteed to exist and be unique

Constructing Models

* Defining map A- is a union of:
— Entailed ground equalities

— Non-ground equalities for defining default values

e How to chose default values?

— Guided by sat assignment for distinguished elements
* See how one instance is satisfied, generalize this for all

Constructing Models : Example

person,, person,, person; : Person

NewYork, Boston, Seattle : City
salesman: Person — Bool

F travels : Person x City — Bool
distinct(NewYork, Boston, Seattle) ¥ x:Person,y: City.
—travels(person,, Boston) salesman(x) = travels(x,y)

—salesman(person,)

salesman(person,)

salesman(person,) = travels(person,, NewYork)

* Instantiate Q with distinguished elements

Constructing Models : Example

person,, person,, person; : Person

NewYork, Boston, Seattle : City
salesman: Person — Bool

F travels : Person x City — Bool Q
distinct(NewYork, Boston, Seattle) ¥ x:Person,y: City.
—travels(person,, Boston) salesman(x) = travels(x,y)

—salesman(person,)
salesman(person;,)

salesman(person,) = travels(person,, NewYork) } T

* Choose defaults based on distinguished instance
— Analagous to Inst Gen Calculus [Korovin 2008]

Asalesman: A
{ salesman(person,) =1, { travels(person;, NewYork) =T

travels*

salesman(person,) = T, travels(person,, Boston) = L,
salesman(x;)=T} travels(x,, x,)= T }

Efficiently Checking Candidate Models

Checking Candidate Models

(Finite)
F Candidate
model M

Q

Ground Model
Solver Verifier

Instances of Q to
addto F SAT,

M isa
model for Q

model M

* To check if M is a model for Q:
— Naively, add every instance of Qto F

— Alternatively, only add instances that are false in M
* Identify sets of instances of Q that are equisatisfiable

Checking Candidate Models

person,, person,, person; : Person

NewYork, Boston, Seattle : City
salesman: Person — Bool

F travels : Person x City — Bool Q
distinct(NewYork, Boston, Seattle) ¥ x:Person, y: City.
—travels(person,, Boston) salesman(x) = travels(x,y)

—salesman(person,)

salesman(person;)

salesman(person,;) = travels(person;, NewYork)

Asalesman’ Q[person,, NewYork]
{ salesman(person,) = 1, Q[person,, Boston]
salesman(person;) = T, Q[person,, Seattle]
salesman(x,)~ T} Qlperson,, NewYork]
Q[person,, Boston]
Atravels: Q[person,, Seattle]
{ travels(person;, NewYork) =T Q[person,, NewYork]

Q[person,, Boston]

travels(person,, Boston) = L,
Q[person,, Seattle]

travels(x,, x,)= T }

Checking Candidate Models

person,, person,, person; : Person

NewYork, Boston, Seattle : City
salesman: Person — Bool

F travels : Person x City — Bool Q
distinct(NewYork, Boston, Seattle) ¥ x:Person, y: City.
—travels(person,, Boston) salesman(x) = travels(x,y)

—salesman(person,)
salesman(person;)

salesman(person,;) = travels(person;, NewYork)

A :
salesman Q[person,, NewYork true
{ salesman(person,) = 1, Q[person,, Boston] false
salesman(person,) =T, Q[person,, Seattle] true
- Q[person,, NewYork]
salesman(x;)=T} 2 _ true
Atravels: _J
{ travels(person;, NewYork) =T Q[person,, NewYork]
— ftrue
travels(person,, Boston) = L,

travels(x,, x,)= T }

Enhancement: Heuristic Instantiation

|dea:
— First see if instantiations based on heuristics exist
— If not, resort to model-based instantiation

May lead to:
— Discovering easy conflicts, if they exist

— Arriving at model faster
* |nstantiations rule out spurious models

Experiments
e DVF Benchmarks

— Taken from verification tool DVF used by Intel
— Both SAT/UNSAT benchmarks

e SAT benchmarks generated by removing necessary pf assumptions
— Many theories: UF, arithmetic, arrays, datatypes
— Quantifiers only over free sorts

 Memory addresses, Values, Sets, ...

e TPTP Benchmarks
e |sabelle Benchmarks

— Provable and unprovable goals, contains some arithmetic

Results: DVF

SAT german refcount agree apg bmk | Total Time

45 6 42 19 37 | 149

z3 45 1 0 0 0 46 8.1
cvCa+i 2 0 0 0 0 2 0.0
cvca+f 45 6 42 18 36 | 147 1413.1
cvca+i 45 6 42 19 36 | 148 13339
cvcd+fm 45 6 42 19 37 | 149 6054
cvcd+fmi 45 6 42 19 37 | 149 409.8
UNSAT | german refcount agree apg bmk | Total Time

145 40 488 304 244 | 1221

z3 145 40 488 304 244 | 1221 31.0
CVCA+i 145 40 484 304 244 | 1217 21.3
cvca+f 145 40 476 298 242 | 1201 7512.2
cvca+i 145 40 488 302 244 | 1219 1181.4
cvcd+fm 145 40 471 300 242 | 1198 6949.7
cvcd+fmi | 145 40 488 302 244 | 1219 1185.0

cvcs :

e f:finite model

* i:heuristic

* m:model-based

e cvcd with finite model finding (cvc4+f)
Effective for answering sat
Using heuristic instantiation, solves 4 unsat that cvc4 cannot

Results: TPTP

e Using techniques described in this work:
— Of 1995 satisfiable benchmarks:

* Paradox solves 1305
* iProver solves 1231
e cvcd solves 1109 (with model-based instantiation)

— Includes 2 problems with rating 1.0

— Of 12568 unsatisfiable benchmarks:
e 73 solves 5934

e cvcd solves 3028 (with model-based+heuristic instantiation)
— Orthogonal, 282 cannot be solved by z3

* Placed 3" in FNT (non-theorem) division of CASC 24

Results : TPTP

cvcd+f +
cvcd+fm +

e
§
@
%

%

a
|_'.
@
+
-1

T

I

I
[
M
+
an

I
><><I
|

|_'.

iy

=

=
T

aup

%50) 800 850 gOO 950 1600
Solved

 Model-Based Instantiation is often essential
— Solves where exh. instantiation require >1 billion instances

Results: Isabelle

SAT Arrow FFT FTA Hoare NS QEP SNorm TwoSq TypeSafe| Total
z3 3 19 24 46 10 49 1 17 11 180
CVCA+i 0 9 0 0 0O O 0 8 0 17
cvcd+f 22 138 172 153 56 79 12 59 69 760
cved+fm | 26 139171 151 49 80 12 59 69 756
cvcd+fmi| 26 151174 159 60 81 12 60 78 801

UNSAT |Arrow FFT FTA Hoare NS QEP SNorm TwoSq TypeSafe|Total
z3 261 224 765 497 135 236 240 451 325 (3134
cvCa+i 199 217 682 456 97 244 231 486 239 2851
cvca+f 120 99 298 214 36 105 84 316 132 1404
cvcd+fm | 102 91 330 246 26 117 80 310 128 1430
cvcd+fmi| 155 170 467 328 42 161 97 411 188 (2019

cvcs .

cvc4+fmi solves 244 unsat that z3 cannot, 164
that cvc4d cannot

e f:finite model
 i: heuristic
* m: model-based

Summary

* CVC4 with finite model finding:
— Constructs “good” candidate models

— Incorporates various instantiation strategies
* Model-based quantifier instantiation
* Heuristic instantiation (E-matching)

— Increased ability to answer “satisfiable”

* Publicly available: http://cvc4.cs.nyu.edu/web/

http://cvc4.cs.nyu.edu/web/

Further Work

e Further work:

— Would like to show:

* Finite model completeness
» Refutational completeness for certain fragments

— Improved algorithm for checking candidate models
— Apply similar techniques to:

* Bounded integer quantification
* Datatypes, strings with bounded length

Thank you

e Questions?

