
Quantifier Instantiation Techniques
for Finite Model Finding in SMT

Andrew Reynolds, Cesare Tinelli

Amit Goel, Sava Krstic

Morgan Deters, Clark Barrett

Satisfiability Modulo Theories (SMT)

• SMT solvers are powerful tools

– Used in many formal methods applications

– Support many background theories

• Arithmetic, bitvectors, arrays, datatypes, …

– May generate:

• Proofs
– Theorem proving, software/hardware verification

• Models
– Failing instances of aforementioned applications

– Invariant synthesis, scheduling, test case generation

SMT: Limitations

• SMT solvers effective handling ground formulas

– Fast decision procedures for UF, arithmetic, …

• Ongoing challenge: quantified formulas

– Heuristic methods for answering “unsat”

– Limited capability of answering “sat”

• Often will return “unknown” after some effort

Contributions

• Finite Model Finding in SMT

– Different from ATP finite model finders:

• Native support for background (ground) theories

– Different from SMT solvers:

• Increased ability to answer “satisfiable”

• New techniques for:

– Constructing good candidate models

– Efficiently checking candidate models

DPLL(T) Architecture

SAT
Solver

Theory
Solvers

Satisfying assignment A for F

Clauses to add to F

UNSAT,
proof

SAT,
model

A is T-Consistent

A is T-Inconsistent

F is sat

Formula
F

F is unsat

DPLL(T) Architecture : Challenge

SAT
Solver

Theory
Solvers

Clauses to add to F

A is T-Consistent

A is T-Inconsistent

F is sat

Formula
F

F is unsat

• Challenge: What if determining the consistency of A is difficult?
• For quantified formulas, determining consistency is undecidable

UNSAT,
proof

SAT,
model

Satisfying assignment A for F

• If sat assignment contains quantified formula Q,

– Heuristically add instances of Q to F

• Typically based on pattern matching

– May discover refutation, if right instances are added

Heuristic Instantiation for Q

SAT
Solver

Theory
Solvers

Instances of Q
to add to F

Consistency of A is
unknown

F is sat

Formula
F

F is unsat

UNSAT,
proof

Satisfying assignment A for F

SAT,
model

(containing Q)

Why Models are Important

SMT
solver

UNSAT

Verification
Condition

for P

Unknown

Manual
Inspection

Candidate
Model

Property P is
verified

(with quantifiers)

Why Models are Important

SMT
solver

UNSAT

Verification
Condition

for P

Unknown

Manual
Inspection

Candidate
Model

Property P is
verified

(with quantifiers)

Concrete
counterexample
for Property P

SAT

Model-Based Approach for Quantifiers

• Given:

– Set of ground formulas F

– Set of universally quantified formulas Q

• To determine the satisfiability of F  Q,
– Construct candidate models for Q, based on satisfying

assignments for F

• Model-Based Quantifier Instantiation (MBQI)
– [Ge/deMoura 2009]

DPLL(T) Architecture (Extended)

SAT
Solver

Theory
Solvers

Satisfying
assignment

 A for F

Clauses to
add to F

UNSAT,
proof

A is
T-Consistent F is sat

Ground
Formulas

F
Candidate
model M

Model
Verifier

M is a model
for Q

Quantified
Formulas

Q

SAT,
model M

else

else

else

When can we represent/check models for Q?

• Focus of talk: Finite Model Finding

– Limited to quantifiers over:

• Uninterpreted sorts

– Can represent memory addresses, values, sets, etc.

• Other finite sorts

– Fixed width bitvectors, datatypes, …

• Useful in applications:

– Software/hardware verification

Constructing/Checking Candidate Finite Models

1. How do we construct good candidate models M?

2. How do we efficiently check if M is a model for Q?
– If we fail, which instances do we add to F?

Sat assignment
 A for F

Model
Verifier

Ground Solver

(Finite)
Candidate
model M

UNSAT,
proof

SAT,
model M

Instances of Q to
add to F

F Q

Constructing Good Candidate Models

• Naïvely, to determine whether M is model for Q:

– Check if M satisfies all instances S of Q

• Challenge: S can be very large

– For Q with n variables, domain size d, |S| can be O(dn)

• Solutions:

– Find models with small domain sizes

• Use theory of finite cardinality constraints [CAV 2013]

– Only consider instances of Q that are false in M

• Construct M such that most instances of Q are true

Constructing Good Candidate Models

Constructing Models : Example

distinct(NewYork, Boston, Seattle)

travels(person1, Boston)

salesman(person2)

salesman(person3)

person1, person2, person3 : Person

NewYork, Boston, Seattle : City

salesman: Person  Bool

travels : Person  City  Bool

 x : Person, y : City.

 salesman(x)  travels(x,y)

Q F

Constructing Models : Example

distinct(NewYork, Boston, Seattle)

travels(person1, Boston)

salesman(person2)

salesman(person3)

person1, person2, person3 : Person

NewYork, Boston, Seattle : City

salesman: Person  Bool

travels : Person  City  Bool

 x : Person, y : City.

 salesman(x)  travels(x,y)

Q F

Interpretation of “salesman”:

 salesman(person2) ≈ ,

 salesman(person3) ≈ T,

 salesman(x1) ≈ 

Interpretation of “travels”:

 travels(person1, Boston) ≈ T,

 travels(x1, x2)≈ 

Model Representation

• Represent functions/predicates using defining maps

• Given sort S with domain V,

– A defining map for f : S…S S is:

• Set of equations Df of the form f(t1, …, tn) ≈ v, where

– v  V

– Each ti is either a unique variable or in V

• If t1 ≈ v1 and t2 ≈ v2  Df, unifiable with mgu s, then:

– s is non-empty

– t1 s ≈ v  Df for some v

• f(x1, …, xn) ≈ v  Df for some v

Interpretation in Model

• Interpretation f(t1, …, tn) is v, where:

– t ≈ v  Df

– t is most specific generalization of f(t1, …, tn)

among LHS in Df

• Guaranteed to exist and be unique

Constructing Models

• Defining map Df is a union of:
– Entailed ground equalities

– Non-ground equalities for defining default values

• How to chose default values?

– Guided by sat assignment for distinguished elements

• See how one instance is satisfied, generalize this for all

Constructing Models : Example

distinct(NewYork, Boston, Seattle)

travels(person1, Boston)

salesman(person2)

salesman(person3)

person1, person2, person3 : Person

NewYork, Boston, Seattle : City

salesman: Person  Bool

travels : Person  City  Bool

 x : Person, y: City.

 salesman(x)  travels(x,y)

Q F

• Instantiate Q with distinguished elements

salesman(person1)  travels(person1, NewYork)

Dtravels:

{ travels(person1, NewYork) ≈ T

 travels(person1, Boston) ≈ ,

 travels(x1, x2)≈ T }

Constructing Models : Example

distinct(NewYork, Boston, Seattle)

travels(person1, Boston)

salesman(person2)

salesman(person3)

person1, person2, person3 : Person

NewYork, Boston, Seattle : City

salesman: Person  Bool

travels : Person  City  Bool

 x : Person, y: City.

 salesman(x)  travels(x,y)

Q F

T salesman(person1)  travels(person1, NewYork)

Dsalesman:

{ salesman(person2) ≈ ,

 salesman(person3) ≈ T,

 salesman(x1) ≈ T }

• Choose defaults based on distinguished instance
– Analagous to Inst Gen Calculus [Korovin 2008]

Efficiently Checking Candidate Models

Instances of Q to
add to F

• To check if M is a model for Q:
– Naively, add every instance of Q to F

– Alternatively, only add instances that are false in M
• Identify sets of instances of Q that are equisatisfiable

Checking Candidate Models

SAT,
model M

(Finite)
Candidate
model M

Model
Verifier

M is a
model for Q

Ground
Solver

F Q

Checking Candidate Models

distinct(NewYork, Boston, Seattle)

travels(person1, Boston)

salesman(person2)

salesman(person3)

person1, person2, person3 : Person

NewYork, Boston, Seattle : City

salesman: Person  Bool

travels : Person  City  Bool

 x : Person, y: City.

 salesman(x)  travels(x,y)

Q F

salesman(person1)  travels(person1, NewYork)

Dsalesman:

{ salesman(person2) ≈ ,

 salesman(person3) ≈ T,

 salesman(x1) ≈ T }

Dtravels:

{ travels(person1, NewYork) ≈ T

 travels(person1, Boston) ≈ ,

 travels(x1, x2)≈ T }

Q[person1, NewYork]
Q[person1, Boston]
Q[person1, Seattle]
Q[person2, NewYork]
Q[person2, Boston]
Q[person2, Seattle]
Q[person3, NewYork]
Q[person3, Boston]
Q[person3, Seattle]

Q[person1, NewYork]
Q[person1, Boston]
Q[person1, Seattle]
Q[person2, NewYork]
Q[person2, Boston]
Q[person2, Seattle]
Q[person3, NewYork]
Q[person3, Boston]
Q[person3, Seattle]

Checking Candidate Models

distinct(NewYork, Boston, Seattle)

travels(person1, Boston)

salesman(person2)

salesman(person3)

person1, person2, person3 : Person

NewYork, Boston, Seattle : City

salesman: Person  Bool

travels : Person  City  Bool

 x : Person, y: City.

 salesman(x)  travels(x,y)

Q F

salesman(person1)  travels(person1, NewYork)

Dsalesman:

{ salesman(person2) ≈ ,

 salesman(person3) ≈ T,

 salesman(x1) ≈ T }

Dtravels:

{ travels(person1, NewYork) ≈ T

 travels(person1, Boston) ≈ ,

 travels(x1, x2)≈ T }

true
false

true

true

true

Enhancement: Heuristic Instantiation

• Idea:

– First see if instantiations based on heuristics exist

– If not, resort to model-based instantiation

• May lead to:

– Discovering easy conflicts, if they exist

– Arriving at model faster

• Instantiations rule out spurious models

Experiments

• DVF Benchmarks
– Taken from verification tool DVF used by Intel

– Both SAT/UNSAT benchmarks
• SAT benchmarks generated by removing necessary pf assumptions

– Many theories: UF, arithmetic, arrays, datatypes

– Quantifiers only over free sorts
• Memory addresses, Values, Sets, …

• TPTP Benchmarks

• Isabelle Benchmarks
– Provable and unprovable goals, contains some arithmetic

Results: DVF

cvc4 :

• f : finite model

• i : heuristic

• m : model-based

SAT german refcount agree apg bmk Total Time
45 6 42 19 37 149
z3 45 1 0 0 0 46 8.1

cvc4+i 2 0 0 0 0 2 0.0
cvc4+f 45 6 42 18 36 147 1413.1
cvc4+fi 45 6 42 19 36 148 1333.9

cvc4+fm 45 6 42 19 37 149 605.4
cvc4+fmi 45 6 42 19 37 149 409.8

UNSAT german refcount agree apg bmk Total Time
145 40 488 304 244 1221
z3 145 40 488 304 244 1221 31.0

cvc4+i 145 40 484 304 244 1217 21.3
cvc4+f 145 40 476 298 242 1201 7512.2
cvc4+fi 145 40 488 302 244 1219 1181.4

cvc4+fm 145 40 471 300 242 1198 6949.7
cvc4+fmi 145 40 488 302 244 1219 1185.0

• cvc4 with finite model finding (cvc4+f)
• Effective for answering sat
• Using heuristic instantiation, solves 4 unsat that cvc4 cannot

Results: TPTP

• Using techniques described in this work:

– Of 1995 satisfiable benchmarks:

• Paradox solves 1305

• iProver solves 1231

• cvc4 solves 1109 (with model-based instantiation)

– Includes 2 problems with rating 1.0

– Of 12568 unsatisfiable benchmarks:

• z3 solves 5934

• cvc4 solves 3028 (with model-based+heuristic instantiation)

– Orthogonal, 282 cannot be solved by z3

• Placed 3rd in FNT (non-theorem) division of CASC 24

Results : TPTP

• Model-Based Instantiation is often essential
– Solves where exh. instantiation require >1 billion instances

Results: Isabelle

• cvc4+fmi solves 244 unsat that z3 cannot, 164
that cvc4 cannot

UNSAT Arrow FFT FTA Hoare NS QEP SNorm TwoSq TypeSafe Total
z3 261 224 765 497 135 236 240 451 325 3134
cvc4+i 199 217 682 456 97 244 231 486 239 2851
cvc4+f 120 99 298 214 36 105 84 316 132 1404
cvc4+fm 102 91 330 246 26 117 80 310 128 1430
cvc4+fmi 155 170 467 328 42 161 97 411 188 2019

SAT Arrow FFT FTA Hoare NS QEP SNorm TwoSq TypeSafe Total
z3 3 19 24 46 10 49 1 17 11 180
cvc4+i 0 9 0 0 0 0 0 8 0 17
cvc4+f 22 138 172 153 56 79 12 59 69 760
cvc4+fm 26 139 171 151 49 80 12 59 69 756
cvc4+fmi 26 151 174 159 60 81 12 60 78 801

cvc4 :

• f : finite model

• i : heuristic

• m : model-based

Summary

• CVC4 with finite model finding:

– Constructs “good” candidate models

– Incorporates various instantiation strategies

• Model-based quantifier instantiation

• Heuristic instantiation (E-matching)

– Increased ability to answer “satisfiable”

• Publicly available: http://cvc4.cs.nyu.edu/web/

http://cvc4.cs.nyu.edu/web/

Further Work

• Further work:

– Would like to show:

• Finite model completeness

• Refutational completeness for certain fragments

– Improved algorithm for checking candidate models

– Apply similar techniques to:

• Bounded integer quantification

• Datatypes, strings with bounded length

Thank you

• Questions?

