
Relational Constraint Solving in SMT

Baoluo Meng, Andrew Reynolds, Cesare Tinelli, Clark Barrett

Introduction

Many computational problems can be modeled
relationally

• High-level system design
• Reasoning about ontologies
• Architectural configuration of network systems
• Verification of programs with linked data structures
• …

Contributions

•Present a theory of finite relations as an
extension to a theory of finite sets in our earlier
work

•Present a calculus for the satisfiability of
quantifier-free formulas in

• Implement a modular theory solver in the SMT
solver – CVC4 based on the DPLL(T) architecture

•Demonstrate useful applications of the theory
in Alloy and OWL

Related Work

Alloy

A declarative language for modeling and analyzing
structurally-rich systems

Based on relational logic with built-in transitive
closure and cardinality

SAT-based analysis by the Alloy Analyzer
• Prove the consistency of a model
• Disprove a given property holds for a model

Relational Reasoning via SMT

El Ghazi et. al introduced an approach that
translates the Alloy kernel language to the SMT-LIB
language, enabling the solving of Alloy constraints
using SMT solvers (AlloyPE)

The resulting SMT formulas are difficult to solve by
SMT solvers because of heavy usage of quantifiers
in the translation

Description Logics (DLs)

Fragments of relational logic for efficient knowledge
representation and reasoning

Consider on purpose only unary and binary relations

Web Ontology Language (OWL): a semantic web
ontology language based on description logics

• Efficient solvers: KONCLUDE, FaCT++, Chainsaw and etc.

A Theory of Finite Sets

A Theory of Finite Set

A theory of finite sets with cardinality was
introduced in previous work (IJCAR 2016)

Implemented a sound, complete and terminating
procedure for the theory in CVC4

Set Signature of

Empty Set: ∶ Set
Set constructor: [▁]: → Set
Subset: ⊑ ∶ Set × Set → Bool
Membership: ⋿ ∶ × Set → Bool
Union, intersection, set difference:⊓,⊔, \ ∶ Set × Set → Set

A Tableaux-style Calculus

• The calculus consists of a set of derivation rules in
guarded assignment form

•The derivation rules modify a state data structure,
where a state is either the distinguished state
unsat or a set of constraints.

A Tableaux-style Calculus

•The premises of a rule refer to the current state
and the conclusion describes how is

changed by the rule’s application

• Rules with two or more conclusions, separated
by the symbol ∥, are non-deterministic
branching rules

• , is an abbreviation for ∪ { } , and ()
denotes the set of all terms and subterms
occurring in

A Tableaux-style Calculus

We define the following closure operator for where⊨ denotes entailment in the theory.

A Calculus for

Derivation rules for intersection and
union

A Calculus for cont.

Derivation rules for set difference,
singleton, disequality and contradiction

A Relational Extension to

Notation, … , : a parametric tuple sort (n > 0)(, … ,): a relational sort and
abbreviate it as ,⋯ ,

Relational Signature ℛ of

Tuple constructor:_ , … , _ ∶ ×⋯ × → Tup , … ,
Product: ∗ ∶ Rel × Rel → Rel ,
Join:⋈ ∶ Rel , × Rel , → Rel ,with + > 0
Transpose: _ : Rel ,⋯ , → Rel ,⋯ ,
Transitive Closure: _ : , → ,

TRANSPOSE Derivation Rule (_)

JOIN Derivation Rule (⋈)

is a fresh variable

PRODUCT Derivation Rule (∗)

TRANSITIVE CLOSURE Derivation Rule (_)

, , are fresh variables

Example

= { , ∉ R , R ≈ Q, ∈ P, ∈ P, P ∗ P ≈ Q ⊓ T}
1 ∶= ∪ { , ∈ P ∗ P, , ∈ P ∗ P, , ∈ P ∗ P, … }PROD UP

TRANSP UP

P ∗ P ≈ Q ⊓ T

3 ∶= 2 ∪ { , ∈ R , … }
INTER DOWN

, Q, R ≈ Q2 ∶= 1 ∪ { , ∈ Q, , ∈ Q, , ∈ Q, … }
UNSAT, ∉ REQ UNSAT

Example

= { , ∈ , , ∉ R, , ∉ R ⋈ R}
1 ∶= ∪ { , ∈ R}

EQ UNSAT , ∉ R
TCLOS DOWN

UNSAT

Example

= { , ∈ , , ∉ R, , ∉ R ⋈ R}
JOIN UP

UNSAT

, ∉ R ⋈ R
1 ∶= ∪ { , ∈ R, , ∈ R}

TCLOS DOWN

2 ∶= 1 ∪ { , ∈ R ⋈ R}
EQ UNSAT

1 ∶= ∪ { , ∈ R, , ∈ R, , ∈ R, ≉ }

Example

= { , ∈ , , ∉ R, , ∉ R ⋈ R}
TCLOS DOWN

NO RULES APPLY

SAT

Calculus Correctness

Refutation and Model Soundness

Detailed proof can be found in the paper!

Termination of a Fragment of

Proposition 3 (Termination): If S is a finite set of
constraints generated by the grammar in above figure,
then all derivation trees with root node S are finite.

Detailed proof can be found in the paper!

Applications of

A Mapping from Alloy to CVC4

Full support for Alloy kernel language in SMT natively

Finite model finding of CVC4 can reason in the
presence of quantified formulas

Can prove and disprove properties with respect to
Alloy models

ALLOY KERNEL LANGUAGE CVC4
Signature sig S S : Rel1(Atom)
Field f : S1 → ⋯ → Sn of a sig S f : Reln+1(Atom, …, Atom)

f ⊑ S ∗ S1 ∗⋯ ∗ Sn

sig S1, … , Sn extends S S1 ⊑ S, … , Sn ⊑ S
Si ⊓ Sj = [] for 1 ≤ i < j ≤ n
S1 ⊔ ⋯⊔ Sn = S if S is abstract

sig S1, … , Sn in S, S1 ⊑ S, … , Sn ⊑ S

ALLOY KERNEL LANGUAGE CVC4
Set Operators: +, &, −, =, in ⊔,⊓ −, ≈,⊑
Relational Operators: ~, ⋅, →, ^ _ ,⋈, ∗, _

Logical operators: and, or, not AND, OR, NOT

Quantifiers: all, some FORALL, EXISTS

A File System Example

abstract sig FileSystemObj{}

sig File extends FileSystemObj{}

sig Dir extends FileSystemObj{
contents: Set FileSystemObj

}

all f: File | some d: Dir |
f in d.contents

Atom : TYPE;
FileSystemObj : Rel1(Atom);
File : Rel1(Atom);
Dir : Rel1(Atom);
contents : Rel2(Atom, Atom);
contents ⊑ Dir ∗ FileSystemObj;
Dir ⊓ File ≈ [];
Dir ⊔ File ≈ FileSystemObj;∀ f : Atom | <f> ∈ File =>∃ d : Atom | <d> ∈ Dir ∧

<f> ∈ [<d>]⋈ contents

Alloy Model CVC4 Encoding

Evaluation on Alloy Benchmarks

Evaluate CVC4 with two configurations
• CVC4: enables full native support for relational operators
• CVC4+AX: encodes all relational operators as

uninterpreted functions with axioms

Compare with Alloy Analyzer and AlloyPE on two
sets of benchmarks: AlloyPE and one selected from
an academic class

Evaluation on Alloy Benchmarks

Compared to the Alloy Analyzer
• CVC4 is overall slower for SAT benchmarks
• CVC4 solves UNSAT benchmarks, whereas the Alloy Analyzer

can only answer bounded UNSAT

Compared to AlloyPE
• CVC4 solves SAT benchmarks, whereas AlloyPE solves none
• CVC4 solves most of AlloyPE’s benchmarks

Compared to CVC4+AX
• CVC4 solves SAT benchmarks, whereas CVC4+AX solves none
• CVC4 solves significantly more UNSAT benchmarks

Experimental Evaluation on AlloyPE Benchmarks

Experimental Evaluation on Academic Benchmarks

A Mapping from OWL DL to SMT

OWL DL based on the expressive, yet decidable,
description logic

Built a translation from constructs to
their SMT counterparts in

Perform consistency checks on OWL models using
CVC4

OWL DL CVC4
Individual name a a : Atom
Nominal {a} {<a>}
Top concept T
Bottom concept ⊥ Univ, {∀ a : Atom | <a> ∈ Univ}

[]

Atomic concept C
Role R

C : Rel1(Atom)
R : Rel2(Atom, Atom)

Union C ⊔ D
Intersection C ⊓ D

C ⊔ D
C ⊓ D

Inverse role R–

Complement ¬C
R-1

Univ \ C

OWL DL CVC4
Concept, role assertion C(a), R(a; b) a ∈ C, <a, b> ∈ R

Individual (dis)equality a ≈ b, a ≉ b a ≈ b, a ≉ b

Concept, role inclusion C ⊑ D, R ⊑ S C ⊑ D, R ⊑ S

Concept, role equiv. C ≡ D, R ≡ S C ≈ D, R ≈ S

Complex role inclusion R1 ∘ R2 ⊑ S R1⋈ R2 ⊑ S

Role disjointness Disjoint(R, S) R ⊓ S ≈ []

OWL DL CVC4
Existential restriction ∃R.C R⋈ C

Universal restriction ∀R.C [x | x ∈ Univ ∧ [x]⋈ R ⊑ C]

At-least restriction ≥ R.C [x | x ∈ Univ ∧ (∃ a1, … , an: Atom
[<a1>, … , <an>] ⊑ (([x]⋈ R) ⊓ C)∧ Dist(a1, … , an))]

At-most restriction ≤ R.C [x | x ∈ Univ ∧ (∃ a1, … , an: Atom
(([x]⋈ R) ⊓ C)⊑ [<a1>, … , <an>]∧ [<a1>, … , <an>] ⊑ C)]

Local reflexivity ∃R.Self [<x, y> | <x, y> ∈ R x ≈ y]

Evaluation on OWL Benchmarks

Experiment on 3936 OWL models from 4th OWL
Reasoner competition with comparison to the state-
of-the-art DL reasoner KONCLUDE

KONCLUDE gave answers for all benchmarks with an
average solving time 0.02 sec

CVC4 found 3,639 consistent, found 7 inconsistent,
and timed out (30s) on the remaining 290 with an
average solving time 1.7 secs

Conclusion

•Presented a calculus for an extension to the theory
of finite sets that includes support for relations and
relational operators

• Implemented the calculus as a modular extension to
the set subsolver in our SMT solver CVC4

•Evaluated the solver on Alloy and OWL benchmarks
showing promising results

Future Work

• Investigate more expressive fragments for which
our calculus terminates

•Devise an approach for a theory that includes both
relational constraints and cardinality constraints

•Extend our logic with the set complement operator
and a constant for the universal set

Thanks for Listening!

•Relational solver implemented in CVC4
• Open source
• Available at: http://cvc4.cs.stanford.edu/web/
• Working on *.smt2 standard format for relations

References

1. F. Baader. The description logic handbook: Theory, implementation and
applications. Cambridge university press, 2003.
2. F. Baader, I. Horrocks, and U. Sattler. Description logics. In V. L. Frank van
Harmelen and B. Porter, editors, Handbook of Knowledge Representation,
volume 3 of Foundations of Artificial Intelligence, pages 135 – 179.
Elsevier, 2008.
3. K. Bansal, A. Reynolds, C. W. Barrett, and C. Tinelli. A new decision
procedure for finite sets and cardinality constraints in SMT. In Proceedings
of IJCAR’16, volume 9706 of LNCS, pages 82–98. Springer, 2016.
4. C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanovi´c, T. King, A.
Reynolds, and C. Tinelli. CVC4. In Proceedings of CAV’11, volume 6806 of
LNCS, pages 171–177. Springer, 2011.
5. C. Barrett, P. Fontaine, and C. Tinelli. The SMT-LIB standard—Version
2.6. In A. Gupta and D. Kroening, editors, SMT 2010, 2010.

References

6. C. Barrett, R. Sebastiani, S. Seshia, and C. Tinelli. Satisfiability modulo
theories. In A. Biere, M. J. H. Heule, H. van Maaren, and T. Walsh, editors,
Handbook of Satisfiability, volume 185, chapter 26, pages 825–885. IOS
Press, February 2009.
7. B. Dutertre and L. D. Moura. The YICES SMT solver. Technical report, SRI
International, 2006.
8. A. A. E. Ghazi and M. Taghdiri. Analyzing alloy constraints using an SMT
solver: a case study. In 5th International Workshop on Automated Formal
Methods (AFM), 2010.
9. A. A. E. Ghazi and M. Taghdiri. Relational reasoning via SMT solving. In
Proceedings of FM’11, volume 6664 of LNCS, pages 133–148. Springer,
2011.
10. A. A. E. Ghazi, M. Taghdiri, and M. Herda. First-order transitive closure
axiomatization via iterative invariant injections. In Proceedings of NFM’15,
volume 9058 of LNCS. Springer, 2015.

References

11. I. Horrocks and U. Sattler. Decidability of shiq with complex role
inclusion axioms. Artificial Intelligence, 160(1-2):79–104, 2004.
12. D. Jackson. Alloy: a lightweight object modelling notation. ACM Trans.
Softw. Eng. Methodol., 11(2):256–290, 2002.
13. D. Jackson. Software Abstractions - Logic, Language, and Analysis. MIT
Press, 2006.
14. R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT Modulo
Theories: from an abstract Davis-Putnam-Logemann-Loveland Procedure
to DPLL(T). Journal of the ACM, 53(6):937–977, Nov. 2006.
15. A. Reynolds, C. Tinelli, A. Goel, and S. Krstic. Finite model finding in
SMT. In Proceedings of CAV’13, volume 8044 of LNCS, pages 640–655.
Springer, 2013.

References

16. A. Steigmiller, T. Liebig, and B. Glimm. Konclude: System description.
Web Semantics: Science, Services and Agents on the World Wide Web,
27(1), 2014.
17. E. Torlak and D. Jackson. Kodkod: a relational model finder. In
Proceedings of TACAS’07, volume 4424 of LNCS, pages 632–647. Springer,
2007.
18. D. Tsarkov and I. Horrocks. Fact++ description logic reasoner: system
description. In Proceedings of IJCAR’06, volume 4130 of LNCS. Springer,
2006.
19. D. Tsarkov and I. Palmisano. Chainsaw: a metareasoner for large
ontologies. In I. Horrocks, M. Yatskevich, and E. Jim´enez-Ruiz, editors,
ORE, 2012.
20. W3C. OWL 2 web ontology language,
https://www.w3.org/2007/OWL/wiki/Syntax.

