
AUTOMATED REASONING IN SECURITY

 A recent successful approach to security analysis reduces security questions
about programs to constraint satisfaction problems in some formal logic.
Automatic reasoners for that logic can then be used to solve those problems.

SATISFIABILITY MODULO THEORIES

Solvers based on Satisfiability Modulo Theories (SMT) techniques have
become a natural choice in such approaches to security. The most sophisticated
SMT solvers integrate a fast propositional engine with several theory solvers,
each specialized on a theory of interest such as, linear integer arithmetic (LIA),
uninterpreted functions (EUF), bit vectors, arrays, etc. The need for powerful
automated solvers that can handle string constraints is increasingly important in
security analysis.

(set-logic QF_S)

(declare-const input String)
(declare-const buff String)
(declare-const pass0 String)
(declare-const pass1 String)
(declare-const mem String)

(assert (= (str.len buff) 15))
(assert (= (str.len pass1) 1))
(assert (str.prefix (str.++ buff pass0) mem)))
(assert (str.prefix (str.++ input “\0") mem)))

(assert (str.in.re buff (re.+ (re.range "A" "Z"))))
(assert (ite (str.prefix "PASSWORD\0" buff)
 (= pass1 "Y")
 (= pass1 pass0)))

(assert (not (str.prefix "PASSWORD\0" input)))
(assert (= pass1 "Y"))

SOLVING STRING CONSTRAINTS

A major difficulty is that, in general, the satisfiability problem of any

reasonably comprehensive theory of character strings is undecidable.

However, one can identify several restricted, but still quite useful,

fragments of the theory of strings that are decidable.

Recent research has focused on identifying decidable fragments suitable

for program analysis and developing efficient solvers for them. Most of the

string solvers are stand-alone tools that can reason only about small

fragments of the theory of strings. These solvers are based on reductions to

the satisfiability problems over other data types, such as bit-vectors, or to

decision problems over automata. At the same time, they are either

unsound, or lack expressiveness.

CVC4 STRING SOLVER

We developed a new algebraic approach for solving constraints over:

  a theory of unbounded strings,

  length constraints,

  extended regular expression membership,

  common string manipulating functions

directly without reducing to other problems. We implemented an

automated string solver based on this approach, and incorporated it into the

state-of-the-art SMT solver CVC4.

Efficient Solving of String Constraints for Security Analysis

Clark Barrett2, Cesare Tinelli1, Morgan Deters2, Tianyi Liang1, Andrew Reynolds1, Nestan Tsiskaridze1
 1 The University of Iowa, 2 New York University

EXPERIMENTAL RESULTS

Our experimental results show that, on string

problems, our CVC4 string solver is highly effective – it
outperforms other existing specialized string solvers in

terms of correctness, precision, and run time, when

evaluated on comparable input fragments.

We compared our string solver against solvers: Kaluza

(UC Berkley) and Z3-str (Purdue) on about 50,000

Kudzu benchmarks from real-world web security

applications:

THEORETICAL RESULTS

 We have a general proof of correctness for our string

solver in terms of refutation soundness and solution

completeness. We have also identified two expressive

fragments for which it is a decision procedure: one with

unbounded strings and length constraints and one with

regular language membership and length constraints.

char buff[15];
char pass;

std::cout << "Enter the password :";
gets(buff);

if (std::regex_match(
 buff,
 std::regex("([A-Z]+)"))) {
 if(strcmp(buff, “PASSWORD")) {
 std::cout << "Wrong Password";
 }
 else {
 std::cout << "Correct Password";
 pass = 'Y';
 }
}

if(pass == 'Y') {
 /* Grant the root permission*/
}

Encode

Example: A code for a password verification with a buffer overflow attack

vulnerability is reduced to the set of constraints, solution to which provides an

instance of a buffer overflow attack – i.e. proof of the vulnerability.
Theoretical Complexity Challenges

CVC4 Z3-str Kaluza

Result Incorrect2 Incorrect2

unsat 11,6251 317 11,769 7,154 13,435

sat 33,271 1,583 31,372 n/a 25,468

unknown 0 0 3

timeout 2,388 2,123 84

error 0 120 1,140

1. CVC4 answers UNSAT, but neither Z3-str nor Kaluza answers SAT.

2. We verified the errors by asserting the model back to the assertions.

Later versions of Z3-str have eliminated those errors at the cost of some

loss in performance

SAT

engine

Propagate Split by Length

Normalize Partition
Check

Cardinality

Conflict?

S
tr

in
g

 s
o

lv
e

r

 LIA

 solver

 EUF

 solver

