
Fine-grained SMT proofs
for the theory of fixed-width bit-vectors ?

Liana Hadarean1, Clark Barrett2, Andrew Reynolds3,
Cesare Tinelli4, and Morgan Deters2

1 Oxford University
2 New York University

3 EPFL
4 The University of Iowa

Abstract. Many high-level verification tools rely on SMT solvers to efficiently
discharge complex verification conditions. Some applications require more than
just a yes/no answer from the solver. For satisfiable quantifier-free problems, a
satisfying assignment is a natural artifact. In the unsatisfiable case, an externally
checkable proof can serve as a certificate of correctness and can be mined to
gain additional insight into the problem. We present a method of encoding and
checking SMT-generated proofs for the quantifier-free theory of fixed-width bit-
vectors. Proof generation and checking for this theory poses several challenges,
especially for proofs based on reductions to propositional logic. Such reductions
can result in large resolution subproofs in addition to requiring a proof that the
reduction itself is correct. We describe a fine-grained proof system formalized
in the LFSC framework that addresses some of these challenges with the use of
computational side-conditions. We report results using a proof-producing version
of the CVC4 SMT solver on unsatisfiable quantifier-free bit-vector benchmarks
from the SMT-LIB benchmark library.

1 Introduction

SMT solvers are often used to reason in theories whose satisfiability problem ranges
in complexity from NP-complete to undecidable. To be able to do this, they implement
complex algorithms combining efficient SAT solving with theory-specific reasoning,
requiring many lines of highly optimized code.5 Because the solvers’ code base changes
frequently to keep up with the state of the art, bugs are still found in mature tools: during
the 2014 SMT competition, five SMT solvers returned incorrect results. In a field where
correctness is paramount, this is particularly problematic. While great progress has been
made in verifying complex software systems [18,19], the verification of SAT and SMT
solvers still remains a challenge [20].

One approach for addressing this concern is to instrument an SMT solver to emit
a certificate of correctness. If the input formula is satisfiable and quantifier-free, a nat-
ural certificate is a satisfying assignment to its variables. Correctness can be checked
? Work partially supported by DARPA award FA8750-13-2-0241 and ERC project 280053

(CPROVER).
5 For example, the CVC4 code base consists of over 250K lines of C++ code.

by evaluating the input formula under that assignment. In the unsatisfiable case, the
solver could emit an externally-checkable proof of unsatisfiability. Proof checkers usu-
ally consist of a small trusted core that implements a set of simple rules. These can be
composed to prove complex goals, while maintaining trustworthiness.

Proof-producing SMT solvers have been successfully used to improve the perfor-
mance of sceptical proof assistants, as shown in several recent papers [1, 5, 6, 8, 9, 14].
The proof assistant can discharge complex sub-goals to the SMT solver. It can then
check or reconstruct the proof returned by the solver without having to trust the result.
In some applications, such as interpolant generation [26] and certified compilation [11],
the proof object itself is used for more than just establishing correctness.

Proofs for the theory of fixed-width bit-vectors are of particular practical impor-
tance, with applications in both hardware and software verification. Previous work [7]
shows how to reconstruct proofs from the Z3 SMT solver in HOL4 and Isabelle/HOL.
However, due to the lack of detail in the Z3 bit-vector proofs, proof reconstruction is
not always successful. In this paper, we seek to address this limitation by presenting
a method of encoding and checking fine-grained SMT-generated proofs for the theory
Tbv of bit-vectors as formalized in the SMT-LIB 2 standard [3]. Proof generation and
checking for the bit-vector theory poses several unique challenges. Algebraic reasoning
is typically not sufficient by itself to decide most bit-vector formulas of practical inter-
est, so often bitvector (sub)-problems are solved by reduction to SAT. However, such
reductions usually result in very large propositional proofs. In addition, the reduction
itself must be proven correct. LFSC is a meta-logic that was specifically designed to
serve as a unified proof format for SMT solvers. Encoding the Tbv proof rules in LFSC
helps address some of these challenges.

We make the following contributions: (i) we develop an LFSC proof system for the
quantifier-free theory of fixed-width bit-vectors that includes proof rules for bit-blasting
and allows for a two-tiered DPLL(T) proof structure; (ii) we instrument the CVC4 SMT
solver to output proofs in this proof system; and (iii) we report experimental results on
an extensive set of unsatisfiable SMT-LIB benchmarks in the QF_BV logic.

We start with a discussion of related work in Section 2. Section 3 explains the struc-
ture of SMT-generated proofs, while Section 4 introduces the LFSC proof language
and illustrates how to use it to encode the kinds of inferences routinely done by SMT
solvers. We discuss how bit-vector constraints are decided in CVC4 and how to generate
proofs for them in Section 5. Section 6 introduces the LFSC proof rules that are specific
to the bit-vector theory. We show experimental results in Section 7 and conclude with
future work in Section 8.

2 Related Work

Early approaches to proof-checking for SMT relied on using interactive theorem provers
to certify proofs produced by SMT solvers. One effort [21] used HOL Light to cer-
tify proofs generated by the CVC Lite SMT solver. Another [13] generated proofs
for quantifier-free problems in the logic of equality with uninterpreted symbols us-
ing the haRVey SMT solver and translated these into Isabelle/HOL. A contrasting ap-
proach [22] traded off assurance for speed by using a special-purpose external checker

to check proofs generated by the Fx7 solver. Our approach aims to balance trust and
efficiency by using LFSC. Using a logical framework with a generic proof checker pro-
vides both trust and flexibility, while LFSC’s computational side-conditions increase
performance.

None of the work mentioned above supports proofs for the theory of bit-vectors.
The work in [15] targets SMT-generated proofs for the theory of bit-vectors for the
purpose of generating interpolants. It is similar to ours in that it uses a lazy bit-vector
solver, integrated into a DPLL(T) framework and in that if algebraic reasoning fails,
it falls back on a resolution proof generated by the SAT solver. However, the work is
different in that its focus is on producing interpolants rather than proof-checking. They
do not address the correctness of bit-blasting, for instance.

The work whose scope is most similar to ours is an effort that was undertaken to
reconstruct bit-vector proofs produced by Z3 within Isabelle/Hol [7]. The main differ-
ence in that work is that Z3 does not produce full proofs, but rather “proof sketches.”
Specifically, Z3 provides some “large-step” inferences, lemmas that are valid in the the-
ory of bit-vectors, without proof. As the authors remark, the coarse granularity of Z3’s
proofs makes proof reconstruction particularly challenging. A significant part of the
proof checking time is spent re-proving large-step inferences that Z3 does not provide
details for. In contrast, our approach is more fine-grained as it provides full details for
every step. As we show below, this enables our approach to check more proofs.

The LFSC meta-framework has been successfully used for encoding proofs gener-
ated by SMT solvers for other theories in [24, 25, 28]. The current paper extends this
line of work to support LFSC proofs for the bit-vector theory. In [26] the authors show
how to use LFSC to compute interpolants from unsatisfiability proofs in the theory of
equality and uninterpreted function symbols. We believe this approach can be extended
to generate bit-vector interpolants from LFSC bit-vector proofs.

3 Proofs in SMT

In the rest of the paper, we assume some familiarity with automated reasoning, many-
sorted first-order logic, and the syntax of simply-typed lambda calculus. Let _P be an
abstraction operator that replaces each atom (a predicate symbol applied to one or more
terms) in a formula with a unique propositional variable. Most SMT solvers are based
on some variant of the DPLL(T) architecture [23], which combines Boolean reasoning
on the abstraction ϕP of a quantifier-free input formula ϕ with theory-specific reason-
ing in order to determine the satisfiability of ϕ with respect to a background theory
T .6 Boolean reasoning on ϕP is performed by a SAT solver, while theory-specific rea-
soning is delegated to a theory solver for T (or T -solver). The SAT solver enumerates
satisfying assignments AP for ϕP. The T -solver checks whether the corresponding set
of T -literals A is T -satisfiable. If A is not T -satisfiable, a T -valid clause is added that
blocks the assignment AP, and the process continues until either a satisfying assign-
ment is found or a contradiction can be derived purely at the propositional level. From a
proof-theoretic perspective, one can think of the T -solver as refining the propositional

6 For simplicity, we will ignore here the issue of whether the background theory is the combi-
nation of several more basic theories or not.

 Solver Solver

toCNF

SAT SolverSAT Solver

T-solverT-solver

ProofProof

T-ProofT-Proof

 φ

SAT ProofSAT Proof

┴

CNF Proof

T-lemma assertions
inputs T-lemmas

signature
S

signature
S

Proof
Checker

TRUSTED

Fig. 1: DPLL(T) architecture, SMT proof structure, and proof checker.

abstraction ϕP with the addition of selected theory lemmas (clauses valid in T) until a
propositionally unsatisfiable formula is obtained [4].

The resolution calculus is refutationally complete for propositional clause logic [27]
and has been successfully used as the basis for a common proof format for SAT solvers
[30]. However, as we describe below, SMT proofs are significantly more sophisticated
than SAT proofs (see, e.g., [2] for more details). First, SMT solvers convert their input
to CNF; thus, a proof object produced by an SMT solver must incorporate a proof
establishing that the CNF clauses used internally by the solver follow from the input
formula. Second, the Boolean abstraction of the input formula is obtained by replacing
T -atoms with propositional variables. Hence, SMT proof generation must also rely on
a mechanism that maintains a connection between input atoms and the propositional
variables representing them in the SAT solver. Finally, each theory lemma generated by
the theory solver must have a proof expressed in terms of T -specific proof rules.

As a consequence, SMT proofs typically have a three-tiered structure: (i) a deriva-
tion of the internal CNF formula ψ from the input formula ϕ;7 (ii) a resolution refu-
tation of ψ in the form of a resolution tree whose root is the empty clause and whose
leaves are either clauses from ψ or theory lemmas; and (iii) theory proofs of all the
theory lemmas occurring in the resolution tree.

Figure 1 depicts the DPLL(T) architecture and how it relates to the structure of
SMT proofs. In this paper, we consider proofs with this structure expressed as terms in
the LFSC framework, which we discuss next.

4 LFSC

LFSC is an extension of the Edinburgh Logical Framework (LF) [17], a meta-framework
based on a extension of simply-typed lambda calculus with dependent types. LF has
been used extensively to encode various kinds of deductive systems. In general, a spe-
cific proof system P can be defined in LF by representing its proof rules as LF constants

7 This step typically also includes the application of simplifying rewrite rules, which we ignore
in this paper. Extending the approach here to include the many pre-processing rewrite rules
used in real solvers is tedious but straightforward.

and encoding their premises and conclusions as a type. In this setting, a formal proof in
the encoded proof system is represented as an LF term whose constants (in the sense of
higher-order logic) are proof-rule names. A collection of type and term constant dec-
larations is called a signature in LF. Checking the correctness of a proof then reduces
to type checking: an LF proof checker takes as input both a signature S defining a
proof system P and a proof term t encoding a proof in P . It verifies the correctness of
the proof by checking that t is well-typed with respect to S. For example, the equality
transitivity proof rule:

t1 = t2 t2 = t3
t1 = t3

trans (1)

in (unsorted) first-order logic can be encoded in LF as a constant with type:

trans : Πt1, t2, t3:tr. Πp1:holds (eq t1 t2). Πp2:holds (eq t2 t3). holds (eq t1 t3) (2)

where Π is the binder for the dependently typed product, tr is the type of first-order
terms, eq is a binary function of type tr × tr → form (where form is the type of first-
order formulas), and holds is a unary (dependent) type parametrized by a first-order
formula.8 As a proof constructor, the proof rule (1) takes as arguments terms t1, t2 and
t3, as well as proofs p1 of t1 = t2 and p2 of t2 = t3, and returns a proof of t1 = t3.
The LF declaration in (2) encodes this in the type of the constant trans. One possible
proof that a = d follows from the premises a = b, b = c, and c = d is represented by
the (well-typed) term:

λa, b, c, d:term. λp1:holds (eq a b). λp2:holds (eq b c). λp3:holds (eq c d).

(trans a c d (trans a b c p1 p2) p3)

Using the wild-card symbol _, the body of the innermost lambda term can be simplified
to (trans _ _ _ (trans _ _ _ p1 p2) p3), since the omitted arguments can be inferred
automatically during type-checking.

Purely declarative proof systems like those defined in LF cannot always efficiently
model the kind of complex reasoning usually employed by SMT solvers. LFSC ad-
dresses this issue by extending LF types with computational side conditions, explicit
computational checks defined as programs in a small but expressive functional first-
order programming language. The language has built-in types for arbitrary precision
integers and rationals, ML-style pattern matching over LFSC type constructors, recur-
sion, limited support for exceptions, and a very restricted set of imperative features. A
proof rule in LFSC may optionally include a side condition written in this language.
When checking the application of such a proof rule, an LFSC checker computes actual
parameters for the side condition and executes its code. If the side condition fails, the
LFSC checker rejects the rule application.

As shown in Figure 1, when using LFSC, the trusted core includes both the (generic)
LFSC checker and the specific LFSC signature which consists of a set of proof rules,
each of which may have side conditions.

8 Intuitively, an LF expression of dependent type Πϕ:form. holds(ϕ) represents a proof that
the formula ϕ holds.

unit, var, lit, clause : type holds : clause→ type cln : clause

ok : unit pos, neg : var→ lit clc : lit→ clause→ clause

resolve (c1, c2:clause, v:var):clause = let p (pos v) in let n (neg v) in
let _ (occurs p c1) in let _ (occurs n c2) in merge (remove p c1) (remove n c2)

Res : Πc, c1, c2:clause. holds c1 → holds c2 → Πv:var {(resolve c1 c2 v) ↓ c}. holds c

Fig. 2: LFSC declarations encoding propositional resolution.

We refer the reader to [28] for a detailed description of the LFSC language and its
formal semantics. Here we introduce LFSC syntax via examples to illustrate the main
features of the framework.

Example 1. An inference rule at the heart of SAT and SMT solvers is the propositional
resolution rule:

l1 ∨ . . . ln ∨ l ¬l ∨ l′1 ∨ . . . l′m
l1 ∨ . . . ln ∨ l′1 ∨ . . . ∨ l′m

Res

where l’s are literals. This rule alone is actually not enough to express resolution deriva-
tions as formal objects, since one also has to account for the associativity, commuta-
tivity and idempotency of the ∨ operator. In LF, this problem can be addressed only
by adding additional proof rules for those properties. Doing so makes it possible to
move literals around in a clause and remove duplicate literals, but at the cost of requir-
ing many proof rules for each resolution step, resulting in the generation of very large
proofs. Alternative solutions [31] eschew the generic, declarative approach provided by
meta-frameworks like LF and instead hard-code the clause data structure in the proof
checker, requiring a proof-checker with higher complexity and lower generality.

In contrast, an LFSC proof rule for resolution can use a side condition to encode
that the resulting clause is computed by removing the complementary literals in the two
input clauses and then merging the remaining literals. One encoding of the rule and its
side condition, together with all the necessary types and constants, is shown in Figure 2.
In the figure and in the remainder of the paper, we write τ1 → τ2 to abbreviate as usual a
type of the form Πx:τ1. τ2 where τ2 contains no occurrences of x. Clauses are encoded
essentially as nil-terminated lists of literals. They are built with the constructors cln, for
the empty clause, and clc, for non-empty clauses. Literals are built from propositional
variables using the constructors pos and neg, for positive and negative literals. Variables
do not have constructors because LFSC variables can be used directly.

The resolution rule Res takes as input the clauses c1, c2, and c, together with a proof
of c1 of type holds c1, one of c2 of type holds c2, and a variable v to be used as the
resolved atom. The resolve side condition function computes the resolvent of clause c1
with c2, provided that c1 contains at least one occurrence of the positive literal (pos v)
and c2 contains at least one occurrence of the negative literal (neg v). The side condition
{(resolve c1 c2 v) ↓ c} succeeds if c is the result of resolving c1 and c2 on v. In that
case, the proof rule returns a proof of c. The definitions of the auxiliary functions occurs,
remove, and merge are omitted from Figure 2 due to space constraints. (occurs l c)
does nothing if the literal l is in the clause c; otherwise, it raises a failure exception;

(remove l c) returns the result of removing the literal l from the clause c; (merge c1 c2)
returns the clause with no repeated literals resulting from merging clauses c1 and c2.

ut

LFSC has previously been successfully used to encode the constructs necessary
for Boolean resolution, CNF conversion, and propositional abstraction of theory lem-
mas [28]. In this paper, we will not cover these constructs, but instead focus on how to
encode bit-vector specific reasoning in LFSC.

5 Bit-vector proof generation in CVC4

Decision procedures for the theory Tbv of bit-vectors almost always involve a reduc-
tion to propositional logic. One approach for encoding a bit-vector formula ϕ into an
equisatisfiable propositional formula ϕBB is known as bit-blasting. For each variable
v denoting a bit-vector of size n, bit-blasting introduces n fresh propositional vari-
ables, v0, . . . vn−1, to represent each bit in the vector. To be able to encode this map-
ping in Tbv, we extend the Tbv signature with a family of interpreted predicate symbols
(bitOfi : BVn 7→ bool)0≤i<n, where bitOfi takes a bit-vector x of width n and returns
true iff the ith bit of x is 1. Let ϕ be a bit-vector formula. For each atom a appearing in
ϕ, let bbAtom(a) denote a propositional formula consisting of the circuit representation
of a. Let CBB denote the conjunction of bit-blasting clauses obtained from converting
to CNF the atom definitions:

CBB ≡ CNF

 ∧
a∈Atoms(ϕ)

aBB ⇔ bbAtom(a)

 ,

where aBB is a fresh propositional variable representing atom a and CNF represents
conversion to CNF. The formula ϕBB := ϕ[a 7→ aBB]a∈Atoms(ϕ) ∧ CBB is a propo-
sitional formula equisatisfiable with ϕ. Most state-of-the-art solvers for Tbv generate
a formula like ϕBB and then rely on a single query to a SAT solver to check its sat-
isfiability. Thus, a proof of unsatisfiability for ϕ could consist of: (i) a proof that ϕ
is equisatisfiable with ϕBB in Tbv, (ii) a propositional proof that ϕBB is equisatisfi-
able with CNF (ϕBB), and (iii) a monolithic, potentially very large, resolution-based
refutation of CNF (ϕBB).

CVC4 incorporates an eager bit-vector decision procedure (cvcE) based on the ap-
proach sketched above. It also provides, as an alternative, a lazy DPLL(T)-style bit-
vector solver (cvcLz) that maintains the word-level structure of the input terms and sep-
arates reasoning over the propositional structure of the input formula ϕ from bit-vector
term reasoning [16]. In cvcLz, the bit-vector theory is treated like any other theory:
the main DPLL(T) SAT engine SATmain reasons on the propositional abstraction ϕP

whereas a Tbv-solver BV decides conjunctions A of Tbv-literals. Essentially, BV corre-
sponds to the T -solver box in the DPLL(T) diagram in Figure 1.

Recall from Section 3 that the Tbv solver BV must repeatedly decide the satisfia-
bility of the Tbv-literals A and return a Tbv-valid clause over the atoms of A if A is
Tbv-unsatisfiable. We achieve this by relying on a second SAT solver, SATbb, to decide
the satisfiability of each assignment A. It does this by checking the propositional for-
mula ABB ∧ CBB , where ABB = A[a 7→ aBB]a∈Atoms(A). Note that this may be

significantly smaller than the formula ϕ[a 7→ aBB]a∈Atoms(ϕ) ∧ CBB checked in the
eager approach.

If ABB ∧ CBB is unsatisfiable, SATbb returns a set of literals LBB ⊆ ABB that
is inconsistent with CBB . The clause ¬L is a Tbv-valid lemma, and the ¬LP clause
is added to SATmain. We can efficiently use SATbb to check the satisfiability of CBB

with different assumptions ABB by using the solve with assumptions feature of SAT
solvers [12].

The lazy solver cvcLz in CVC4 also has several algebraic word-level sub-solvers.
However, we do not yet support proof production for these sub-solvers, so in this paper,
we focus on the Tbv-lemmas generated by SATbb.

6 LFSC Bit-vector signature

In this section, we discuss proof generation for the lazy bit-vector solver cvcLz de-
scribed in Section 5. Figure 3 shows the overall structure of the Tbv proof by zooming
in on the Tbv-lemmas that occur as leaves in the resolution SAT proof in Figure 1. We
start with the bit-blasting proofs that each atom a is equivalent to its bit-blasted for-
mula: a ⇔ bbAtom(a). These proofs require no assumptions as a ⇔ bbAtom(a) is
Tbv-valid. 9 Next, the CNF proof establishes that the bit-blasting clauses CBB follow
from the atom definitions.10 Note that this step also establishes the mapping from the
Tbv-atom a to the abstract Boolean variable aBB used in the SATbb SAT solver.

Each Tbv-lemma has a corresponding resolution proof in SATbb with CBB as leaves.
The resolution proof constructs a clause over the aBB SAT variables. To use this in
SATmain, we need to map the lemma to Tbv atoms, and then to the SAT variables aP in
SATmain. In the figure, circles denote Tbv-atoms and diamonds the propositional vari-
ables that abstract them (either in SATbb or in SATmain).

6.1 Encoding bit-vector formulas

Figure 4 shows the LFSC constructs needed to represent formulas in the theory of
bit-vectors. Note that the encoding distinguishes between formulas and terms: formu-
las are represented by the simple type form and terms by the dependent type term,
parametrized by the sort of the term: Πs:sort. term s. Formulas are constructed with
the usual logical operators and with an equality operator over terms which is parametric
in the terms’ sort. The int type is LFSC’s own built-in infinite precision integer type.
Bit-vector sorts are represented by the dependent type Πn:int.BV n where n is the
width of the bit-vector. Bit-vector constants are represented as lists of bits using the
constBV type with the two constructors bvn and bvc, for the empty sequence and the
list cons operator respectively. The constBV bit-vector constants are converted to bit-
vector terms with the const2BV function. Bit-vector variables are represented as LFSC
variables of type varBV and converted to terms with var2BV.

9 Recall that bbAtom(a) is a propositional formula encoding the semantics of atom a, and
contains bitOfi applications on the bit-vector variables in a.

10 For details on how to use LFSC to encode proofs for CNF conversion, see [28]

CNF
bb

 Proof

Bit-blasting Proof

T
bv

- lemmas...

...
SAT

bb

SAT
main

a ↔ bbAtom(a)

aBB ↔ bbAtom(a)

CBB

Res

... ...

...

...

Res

...

SAT proof
......

Fig. 3: Bit-vector proof structure.

sort : type term : sort→ type BV : int→ sort

form : type true, false : form and, or, impl, iff : form→ form→ form
not : form→ form = : Πs:sort. term s→ term s→ form

varBV : type var2BV : Πn:int. varBV→ term (BV n)

bit : type b0, b1 : bit const2BV : Πn:int. constBV→ term (BV n)

constBV : type bvn : constBV bvc : bit→ constBV→ constBV

Fig. 4: Partial LFSC signature for the theory Tbv of bit-vectors.

Example 2. The bit-wise conjunction operator is encoded in LFSC as:

bvand : Πn:int. term (BV n)→ term (BV n)→ term (BV n)

Similarly, the unsigned comparison operator < is encoded as:

bvult : Πn:int. term (BV n)→ term (BV n)→ form

The Tbv formula (t1 = t2 & t3) ∨ (t1 < 0[3]) where & is bvand, 0[3] is the zero
bit-vector of size 3, and t1, t2, t3 have type (term (BV 3)) can be encoded in LFSC as

(or (= _ t1 (bvand _ t2 t3))
(bvult _ t1 (const2BV 3 (bvc b0 (bvc b0 (bvc b0 bvn)))))),

with b0 representing the zero bit. ut

6.2 Bit-blasting

Recall that a bit-blasting proof (see Figure 3) makes the connection between a bit-vector
formula and its propositional logic encoding by proving for each bit-blasted atom a in

bbt : type bbtn : bbt bbtc : formula→ bbt→ bbt

bitOf : varBV→ int→ form bbTerm : Πn:int. term (BV n)→ bbt→ type

bb-var (v : varBV, n : int) : bbt =
if n < 0 then bbtn else (bbtc (bitOf v n) (bb-var v (n− 1)))

bbVar : Πn:int. Πv:varBV.
Πvb:bbt {(bb-var v (n− 1)) ↓ vb}. (bbTerm n (var2BV n v) vb)

bbAnd : Πn:int. Πx, y:term (BV n). Πxb, yb, rb:bbt.
Πxbb:bbTerm n x xb.
Πybb:bbTerm n y xb {(bb-bvand xb yb) ↓ rb}. bbTerm n (bvand n x y) rb

bbEq : Πn:int. Πx, y:term (BV n). Πbx , by :bbt. Πf :form.
Πbbx :bbTerm n x bx .
Πbby :bbTerm n y by {(bb-eq bx by) ↓ f}. thHolds (iff (= (BV n) x y) f)

Fig. 5: Partial list of the LFSC bit-blasting rules for Tbv.

the input formula, the following formula:

a⇔ bbAtom(a).

We represent a bit-blasted bit-vector term of width n as a sequence of n formulas, with
the ith formula in the sequence corresponding to the ith bit. The bbt type encodes bit-
blasted terms and has two type constructors bbtn and bbtc as shown in Figure 5. We
introduce the dependent type constructor bbTerm to encode the fact that the bit-vector
term x:BV n. corresponds to a bit-blasted term y:bbt. For example, the following term
encodes that 15[4] is bit-blasted as [true, true, true, true]:

(bbTerm _ (const2BV 4 (bvc b1 (bvc b1 (bvc b1 (bvc b1 bvn)))))
(bbtc true (bbtc true (bbtc true (bbtc true bbtn)))))

We can define proof rules for each piece of syntax in bit-vector terms and compose them
in order to build up arbitrary bit-blasted terms. Figure 5 shows several such bit-blasting
rules. The bbVar rule takes a bit-vector variable v, its width n, and a sequence of bit-
blasted terms vb, and checks that the sequence computed by the side condition code in
bb-var matches vb. The side condition code just builds a sequence of applications of the
bitOf operator to v—with (bitOf v i) representing the Tbv predicate bitOfi introduced
at the beginning of Section 5. Similarly, the rule that establishes how to bit-blast bit-
wise conjunction (&) takes a proof xbb that xb is the bit-blasted term corresponding
to x as well as a proof ybb for yb corresponding to y and returns a proof that x&y is
bit-blasted to rb. The rb term is constructed by the side condition code bb-bvand (not
shown) which works similarly to bb-var. The bbEq rule for equality Tbv-atoms follows
a similar pattern, but returns a formula instead of a bbTerm. Note that bit-blasting proof
rules do not take any Tbv-assertions as assumptions: their conclusions are Tbv-valid.

Example 3. Encoding in LFSC the bit-blasting proof for the formula a[8] = x[8]&y[8]
requires the following proof rule applications:

(bbEq _ _ _ _ _ _ (bbVar 8 a _) (bbAnd _ _ _ _ _ _ (bbVar 8 x _) (bbVar 8 y _)))

Assuming previously defined variables a, x, and y, the above term has type thHolds(ϕ)
where ϕ is:

(a[8] = x[8]&y[8])⇔
∧

0≤i<8

(ai ⇔ (bitOf v i) ∧ (bitOf v i)) .

The bit-blasting LFSC proof rules rely on the side-condition code to build up the
bit-blasted terms. This side-condition code thus becomes part of the trusted core and
offers an efficient way to encode bit-blasting proofs.

6.3 Resolution in SATbb

A resolution refutation can be obtained from a SAT solver by instrumenting it to store
resolution proofs of all the clauses learned during search. The empty clause is then
derived by resolving input clauses and learned clauses. Recall that SATbb uses “solve
with assumptions” to identify a subset LBB ⊆ ABB that is inconsistent with CBB and
thereby produce the theory lemma¬L. Because the assumption literals are implemented
as decisions in SATbb, all clauses learned in SATbb follow from the bit-blasting clauses
alone and can thus be reused in subsequent checks by SATbb. In particular, we can
retrieve a resolution proof of the ¬LBB clause from SATbb starting from the bit-blasting
clauses CBB and using the stored resolutions of the learned clauses. We are careful to
reuse the resolution proofs of learned clauses in multiple Tbv lemmas.

Stepping back and examining the overall Tbv proof structure, it looks like we could
obtain one big resolution proof if we could plug the SATbb resolution trees into the
SATmain resolution tree. However, this cannot be done directly as the SAT variable
aBB abstracting Tbv-atom a in the resolution proof in SATbb is not the same as the
aP variable used to abstract the same atom in SATmain. Therefore, we need a proof
construct to map the proof of a clause cBB to cP (the dashed lines between SATmain and
SATbb in Figure 3).

In previous work on encoding SMT proofs in LFSC [28], we developed a spe-
cialized proof rule assump used to transform a T -proof of

∧n
i=0 ¬li |=T ⊥ to a

proof of the clause cP = [lP1 , . . . , l
P
n] where we use the square brackets as a short-

hand for the LFSC syntax for clauses. Chaining assump rules turns a term of type
thHolds(¬l1) → . . . → thHolds(¬ln).holds cln into a term of type holds [lP1 . . . l

P
n].

Our goal here is to build a proof that takes as assumptions the negation of each literal
li as well as a proof of the clause cBB = [lBB

1 , . . . , lBB
n] and returns a term of type

holds cln. We will do this using the introUnit rule: 11

introUnit : Πf :form. Πv:var. Πc:clause.
thHolds f → atom v f → (holds [v]→ holds c)→ holds c

This natural deduction style rule states that if formula f holds (thHolds f) and is ab-
stracted by propositional variable v (atom v f), and if we can derive clause c from the
unit clause corresponding to f (holds [v]→ holds c), then we can derive clause c.

11 For simplicity, introUnit only introduces literals in positive polarity. In reality, we also use a
dual version that introduces literals in negative polarity.

(a) Size of generated proofs. (b) Distribution of proof sizes.

Fig. 6: Proof sizes both cvcLz and cvcE

Example 4. We show how to put these rules together to lift a proof of a clause in SATbb

to a proof of the corresponding clause in SATmain. In the sub-expression below, as-
sume c has type holds [¬aBB

1 ,¬aBB
2] and that at1 and at2 have types atom(aBB

1 , a1)
and atom(aBB

2 , a2), respectively. The two resolution steps between the assumption unit
clauses u1 and u2 derive the empty clause from c. Therefore, the computed type of the
following term is thHolds(not a1) → thHolds(not a2) → holds cln, which is exactly
what the assump rule requires:

λh1 : thHolds(not a1). λh2 : thHolds(not a2).
(introUnit _ _ _ h1 at1 (λu1 : (holds[aBB

1]).
(introUnit _ _ _ h2 at2 (λu2 : (holds[aBB

2]).
(Res _ _ (Res _ _ c u1 v1) u2 v2)))))

7 Experimental Results

All the experiments in this section were run on the StarExec [29] cluster infrastructure
with a timeout of 600 seconds and a memory limit of 200GB.12 We selected all of the
17,172 unsatisfiable QF_BV benchmarks used in the 2015 SMT-COMP competition
and evaluated the overhead of proof generation for both the lazy cvcLz and the eager
cvcE configurations of CVC4. CVC4 is a competitive bit-vector solver that placed sec-
ond in the QF_BV division of the 2015 SMTCOMP by running cvcLz and cvcE in
parallel.13 The proof generated by cvcE uses the same proof signature as cvcLz but has

12 Experiments were run on the queue all.q consisting of Intel(R) Xeon(R) CPU E5-2609 0 @
2.40GHz machines with 268 GB of memory.

13 CVC4 solved 26001 problems in that division compared to 26260 problems solved by the
winning solver, Boolector [10].

default +log +log+proof +log+proof+check
solved time (s) solved time (s) % solved time (s) % solved time (s) %

cvcLz 16665 38575 16663 43684 11 16662 43729 14 14063 118544 973
cvcE 16601 65009 16583 78187 19 16582 78256 22 13734 137931 737

Table 1: Overhead of proof generation and its impact on the number of problems solved.

a single monolithic resolution proof as opposed to the modular two-tiered structure of
cvcLz proofs.

Table 1 shows the results for both solvers. We ran the following configurations:
solving with proof generation disabled (default); solving with proofs enabled (i.e., the
solver logs the information needed to produce the proof) but without actually produc-
ing proofs (+log); solving with proof generation including writing the proof object
to disk (+log + proof); and solving with proof generation as well as proof checking
(+log + proof + check). For the lazy solver cvcLz, the overhead of proof logging re-
sults in 2 fewer problems solved while adding an 11% overhead to solving time.14 The
additional overhead of stitching the proof together and outputting it to a file is only 3%
of the solving time. For the eager solver cvcE, proof logging adds a higher overhead of
19% and solves 18 fewer problems than the default configuration of cvcE. The overhead
of proof generation is higher for the eager solver than for the lazy one.

To ensure the correctness of the proofs we generated, we checked them using our
LFSC proof checker. Within the 600 sec time limit, we were able to succesfully check
84% of the problems we could solve with cvcLz and 82% of the ones solved with cvcE.
Proof checking failed due to unsupported proof steps in our generated proof for 33
problems attempted by cvcLz, and for 92 attempted by cvcE. The other failures in proof
checking were due to timeouts: proof checking is an order of magnitude slower than
solving. We believe that with additional work on the LFSC proof checker, this can be
improved.

Despite the slow checking times, we achieve higher proof checking rates for QF_BV
than the proof reconstruction approach in Böhme et al. [7]. In that work, proofs could be
produced for 735 of the 1377 QF_BV benchmarks available at the time. Out of these, the
produced proofs were successfully checked only for 38.5% of the total; 48.4% timed out
and 13.1% produced errors. The authors attribute the timeouts to the long time taken to
reprove large-step Z3 inferences. Our experimental results indicate that fine-granularity
bit-vector proofs enable proof checking for a significantly larger number of problems.

Finally, we compared the sizes of the proof files generated. Figure 6(a) is a log-scale
scatter plot comparing the sizes of the proofs generated by the two solvers. Overall, the
proofs generated by the two-tiered lazy approach are smaller: adding the sizes of all
the lazy generated proofs results in 276GB while for the eager solver it is 328GB.
Figure 6(b) shows, with the y-axis in log-scale, the distribution of the proof sizes over
the benchmark selection. The majority of the benchmarks have relatively small proofs,
well under 1GB.

14 Overhead in each column is measured by comparing the time taken to solve only those prob-
lems solved by both the default and the column configuration.

8 Conclusion and Future Work

We have discussed a fine-grained LFSC proof system for the quantifier-free theory of
bit-vectors. Our proof system takes advantage of LFSC’s support for side conditions to
efficiently check large resolution proofs and proofs of bit-blasting-based encodings to
SAT. Used in the context of a lazy bit-vector solver, this proof system allows for mod-
ular two-tiered proofs that are smaller and more efficiently checked than a monolithic
resolution proof, as shown by our experimental evaluation on a large set of QF_BV
benchmarks.

The two-tiered proofs have several additional advantages we plan to investigate fur-
ther in future work. For instance, it simplifies proof generation in the combination of
Tbv with other theories and allows more compact proofs through the use of algebraic
proof rules for Tbv conflicts. In addition to SAT reasoning, cvcLz also incorporates sev-
eral word-level sub-solvers that use algebraic reasoning and equation solving to iden-
tify word-level conflicts. These conflicts can be expressed using proof rules that are
bit-width independent and do not require reasoning about the bit-blasted terms.

One of the trade-offs of using side condition code in LFSC rules is that it becomes
part of the trusted core. For future work we plan to look at a systematic approach for
verifying the correctness of proof rules and their side condition code with the aid of the-
orem proving assistants such as Coq or Isabelle/HOL. Furthermore, we plan to develop
infrastructure to export LFSC proofs to these tools as a way to integrate SMT solvers
into interactive theorem provers and increase their level of automation.

References

1. M. Armand, G. Faure, B. Grégoire, C. Keller, L. Théry, and B. Werner. A modular integration
of SAT/SMT solvers to Coq through proof witnesses. In Certified Programs and Proofs.
2011.

2. C. Barrett, L. de Moura, and P. Fontaine. Proofs in satisfiability modulo theories. In All
about Proofs, Proofs for All, pages 23–44. 2015.

3. C. Barrett, P. Fontaine, and C. Tinelli. The Satisfiability Modulo Theories Library (SMT-
LIB). www.SMT-LIB.org, 2015.

4. C. W. Barrett, D. L. Dill, and A. Stump. Checking satisfiability of first-order formulas by
incremental translation to SAT. In Conference on Computer Aided Verification, 2002.

5. F. Besson, P.-E. Cornilleau, and D. Pichardie. Modular SMT proofs for fast reflexive check-
ing inside Coq. In Certified Programs and Proofs. 2011.

6. J. C. Blanchette, S. Böhme, and L. C. Paulson. Extending Sledgehammer with SMT solvers.
Journal of automated reasoning, 2013.

7. S. Böhme, A. Fox, T. Sewell, and T. Weber. Reconstruction of Z3’s Bit-Vector Proofs in
HOL4 and Isabelle/HOL. In Certified Programs and Proofs. 2011.

8. S. Böhme and T. Weber. Fast LCF-style proof reconstruction for Z3. In Interactive Theorem
Proving, 2010.

9. T. Bouton, D. Caminha B. De Oliveira, D. Déharbe, and P. Fontaine. veriT: An open,
trustable and efficient SMT-solver. In Conference on Automated Deduction, 2009.

10. R. Brummayer and A. Biere. Boolector: An efficient SMT solver for bit-vectors and arrays.
In Tools and Algorithms for the Construction and Analysis of Systems. 2009.

11. J. Chen, R. Chugh, and N. Swamy. Type-preserving compilation of end-to-end verification
of security enforcement. In Programming Language Design and Implementation, 2010.

12. N. Eén and N. Sörensson. An extensible SAT-solver. In Theory and applications of satisfia-
bility testing, 2004.

13. P. Fontaine, J. Y. Marion, S. Merz, L. P. Nieto, and A. Tiu. Expressiveness + automation +
soundness: Towards combining SMT solvers and interactive proof assistants. In In Tools and
Algorithms for Construction and Analysis of Systems, 2006.

14. Y. Ge and C. Barrett. Proof translation and SMT-LIB benchmark certification: A preliminary
report. In Workshop on Satisfiability Modulo Theories, 2008.

15. A. Griggio. Effective word-level interpolation for software verification. In Formal Methods
in Computer-Aided Design, 2011.

16. L. Hadarean, K. Bansal, D. Jovanovic, C. Barrett, and C. Tinelli. A tale of two solvers: Eager
and lazy approaches to bit-vectors. In Conference on Computer Aided Verification, 2014.

17. R. Harper, F. Honsell, and G. Plotkin. A Framework for Defining Logics. Journal of the
Association for Computing Machinery, 1993.

18. G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe, K. En-
gelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood. seL4: Formal
verification of an OS kernel. In Symposium on Operating Systems Principles, 2009.

19. X. Leroy. Formal certification of a compiler back-end, or: programming a compiler with a
proof assistant. In Principles of Programming Languages, 2006.

20. S. Lescuyer and S. Conchon. A Reflexive Formalization of a SAT Solver in Coq. In Theorem
Proving in Higher Order Logics, 2008.

21. S. McLaughlin, C. Barrett, and Y. Ge. Cooperating theorem provers: A case study combining
HOL-Light and CVC Lite. In Pragmatics of Decision Procedures in Automated Reasoning
(PDPAR ’05), 2006.

22. M. Moskal. Rocket-Fast Proof Checking for SMT Solvers. In Tools and Algorithms for the
Construction and Analysis of Systems, 2008.

23. R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT Modulo Theories: from
an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T). Journal of the ACM,
53(6):937–977, Nov. 2006.

24. D. Oe, A. Reynolds, and A. Stump. Fast and Flexible Proof Checking for SMT. In Workshop
on Satisfiability Modulo Theories, 2009.

25. A. Reynolds, L. Hadarean, C. Tinelli, Y. Ge, A. Stump, and C. Barrett. Comparing proof
systems for linear real arithmetic with LFSC. In Workshop on Satisfiability Modulo Theories,
2010.

26. A. Reynolds, C. Tinelli, and L. Hadarean. Certified interpolant generation for EUF. In
Workshop on Satisfiability Modulo Theories, 2011.

27. J. A. Robinson. Logic: Form and Function: The Mechanization of Deductive Reasoning.
Elsevier, 1980.

28. A. Stump, D. Oe, A. Reynolds, L. Hadarean, and C. Tinelli. SMT proof checking using a
logical framework. Formal Methods in System Design, 2013.

29. A. Stump, G. Sutcliffe, and C. Tinelli. StarExec: a cross-community infrastructure for logic
solving. In International Joint Conference on Automated Reasoning, 2014.

30. A. Van Gelder. http://users.soe.ucsc.edu/ avg/ProofChecker/ProofChecker-fileformat.txt.
31. N. Wetzler, M. J. Heule, and W. A. Hunt Jr. Drat-trim: Efficient checking and trimming using

expressive clausal proofs. In Theory and Applications of Satisfiability Testing. 2014.

	Fine-grained SMT proofs for the theory of fixed-width bit-vectors

