A New Decision Procedure for Finite Sets and
Cardinality Constraints in SMT*

Kshitij Bansal', Andrew Reynolds?, Clark Barrett!, and Cesare Tinelli?

! Department of Computer Science, New York University
2 Department of Computer Science, The University of Iowa

Abstract. We consider the problem of deciding the theory of finite sets
with cardinality constraints using a satisfiability modulo theories solver.
Sets are a common high-level data structure used in programming; thus,
such a theory is useful for modeling program constructs directly. More
importantly, sets are a basic construct of mathematics and thus nat-
ural to use when formalizing the properties of computational systems.
We develop a calculus describing a modular combination of a proce-
dure for reasoning about membership constraints with a procedure for
reasoning about cardinality constraints. Cardinality reasoning involves
tracking how different sets overlap. For efficiency, we avoid considering
Venn regions directly, as done previous work. Instead, we develop a novel
technique wherein potentially overlapping regions are considered incre-
mentally as needed. We use a graph to track the interaction among the
different regions. Initial experimental results demonstrate that the new
technique is competitive with previous techniques and scales much better
on certain classes of problems.

1 Introduction

Satisfiability modulo theories (SMT) solvers are at the heart of many verifica-
tion tools. One of the reasons for their popularity is that fast, dedicated decision
procedures for fragments of first-order logic are extremely useful for reasoning
about constructs common in hardware and software verification. In particular,
they provide a good balance between speed and expressiveness. Common frag-
ments include theories such as bitvectors, arithmetic, and arrays, which are useful
both for modeling basic constructs as well as for performing general reasoning.

As the use of SMT solvers has spread, there has been a corresponding demand
for SMT solvers to support additional useful theories. Although it is possible to
encode finitely axiomatizable theories using quantifiers, the performance and
robustness gap between a custom decision procedure and an encoding using
quantifiers can be quite significant.

In this paper, we present a new decision procedure for a fragment of set
theory. Our main motivation is that sets are a common abstraction used in pro-
gramming. As with other SMT theories like the theories of arrays and bitvectors,

* This work was partially supported by NSF grants 1228765, 1228768, and 1320583.

we expect the theory of sets to be useful in modeling a variety of program con-
structs. Sets are also used directly in high-level programming languages like
SETL and in specification languages like Alloy, B and Z. More generally, sets
are a basic construct in mathematics and come up quite naturally when trying
to express properties of systems.

While the full language of set theory is undecidable, many interesting frag-
ments are known to be decidable. We present a calculus which can handle ba-
sic set operations, such as membership, union, intersection, and difference, and
which can also reason efficiently about set cardinalities. The calculus is also
designed for easy integration into the DPLL(T) framework [12].

1.1 Related work

In the SMT community, the desire to support a theory of finite sets with cardi-
nality goes back at least to a 2009 proposal [9]. However, the focus there is on
formalizing the semantics and representation of the theory within the context of
the SMT-LIB language, rather than on a decision procedure for deciding it.

There is an existing stream of research on exploring decidable fragments of
set theory (often referred to in the literature as syllogistics) [5]. One such sub-
fragment is MLSS, more precisely, the ground set-theoretic fragment with basic
Boolean set operators (union, intersection, set difference), singleton operator
and membership predicate. A tableau-based procedure for this fragment was
presented in [6], and the part of our calculus covering this same fragment builds
on that work. In [7], an extension of the theory of arrays is presented, which can
be used to encode the MLSS fragment. However, this approach cannot be used
to encode cardinality constraints.

In this paper, we consider the MLSS fragment extended with set cardinal-
ity operations. The decidability of this fragment was established in [14]. The
procedure given there involves making an up-front guess that is exponential in
the number of set variables, making it non-incremental and highly impractical.
That said, the focus of [14] is on establishing decidability and not on providing
an efficient procedure.

Another logical fragment that is closely related is the Boolean Algebra and
Presburger Arithmetic (BAPA) fragment, for which several algorithms have been
proposed [10,11,13]. Though BAPA doesn’t have the membership predicate or
the singleton operator in its language, [13, Section 4] shows how one can general-
ize the algorithm for such reasoning. Intuitively, singleton sets can be simulated
by imposing a cardinality constraint card(X) = 1. Similarly, a membership con-
straint, say x £ 9, is encoded by introducing a singleton set, say X, and then
using the subset operation: X C S.

This reduction can lead to significant inefficiencies, however. Consider the
following simple example: £ S1 U (S2 U (... U (Sgg U S100)))- It is easy to see
that the constraint is satisfiable. In our calculus, a straightforward repeated
application of one of the rules for set unions can determine this. On the other
hand, in a reduction to BAPA, the membership reasoning is reduced to reasoning
about cardinalities of different sets. For example, the algorithm in [13] will reduce

the problem to arithmetic constraints involving variables for 219! Venn regions
derived from Sy, So, ..., S100, and the singleton set introduced for x.

The broader point is that reasoning about cardinalities of Venn regions is the
main bottleneck for this fragment. As we show in our calculus, it is possible to
avoid using Venn regions for membership predicates by instead reasoning about
them directly. For explicit cardinality constraints, our calculus minimizes the
number of Venn regions that need to be considered by reasoning about only a
limited number of relevant regions that are introduced lazily.

1.2 Formal Preliminaries

We work in the context of many-sorted first-order logic with equality. We assume
the reader is familiar with the following notions: signature, term, literal, formula,
free variable, interpretation, and satisfiability of a formula in an interpretation
(see, e.g., [3] for more details). Let X be a many-sorted signature. We will use
~~ as the (infix) logical symbol for equality—which has type o x o for all sorts
o in X and is always interpreted as the identity relation. We write s % ¢ as an
abbreviation of =s & ¢. If e is a term or a formula, we denote by V(e) the set of
e’s free variables, extending the notation to tuples and sets of terms or formulas
as expected.

If ¢ is a X-formula and Z a X-interpretation, we write Z = ¢ if Z satisfies .
If ¢ is a term, we denote by tZ the value of ¢ in Z. A theory is a pair T = (X, 1),
where X' is a signature and I is a class of Y-interpretations that is closed under
variable reassignment (i.e., every Y-interpretation that differs from one in I only
in how it interprets the variables is also in I). I is also referred to as the models
of T. A Y-formula ¢ is satisfiable (resp., unsatisfiable) in T if it is satisfied by
some (resp., no) interpretation in I. A set I" of X-formulas entails in T a X-
formula ¢, written I' =1 ¢, if every interpretation in I that satisfies all formulas
in I' satisfies ¢ as well. We write =7 ¢ as an abbreviation for 0 =7 ¢. We
write I" = ¢ to denote that I" entails ¢ in the class of all X-interpretations. The
set I' is satisfiable in T if I" [z L where L is the universally false atom. Two
Y-formulas are equisatisfiable in T' if for every model A of T that satisfies one,
there is a model of T" that satisfies the other and differs from A at most over the
free variables not shared by the two formulas. When convenient, we will tacitly
treat a finite set of formulas as the conjunction of its elements and vice versa.

2 A Theory of Finite Sets with Cardinality

We consider a typed theory Tg of finite sets with cardinality. In a more gen-
eral logical setting, this theory would be equipped with a parametric set type,
with a type parameter for the set’s elements, and a corresponding collection
of polymorphic set operations.? For simplicity here, we will describe instead a
many-sorted theory of sets of sort Set whose elements are all of sort Element.

3 In fact, this is the setting supported in our implementation in CVC4.

Constant and function symbols:

n:Card foralln e N - : Card — Card + : Card x Card — Card
0:Set card(:):Set — Card {-}:Element — Set U, \ : Set x Set — Set

Predicate symbols:

< : Card x Card >= : Card x Card C: Set x Set £ : Element x Set

Fig. 1: The signature of Tg.

The theory Tg can be combined with any other theory ¥ in a standard way, i.e.,
Nelson-Oppen-style, by identifying the Element sort with a sort ¢ in ¥, with the
restriction that ¢ must be interpreted in T as an infinite set.* Note that we limit
our language to consider only flat sets (i.e. no sets of sets). However, this can
be simulated by combining ¥ with itself using the mechanism just mentioned.
The theory Tg has also a sort Card for terms denoting set cardinalities. Since we
consider only finite sets, all cardinalities will be natural numbers.

Atomic formulas in Tg are built over a signature with these three sorts, and
an infinite set of variables for each sort. Modulo isomorphism, T is the theory of
a single many-sorted structure, and its models differ in essence only on how they
interpret the variables. Each model of T interprets Element as some countably
infinite set E, Set as the set of finite subsets of E, and Card as N. The signature of
T s has the following predicate and function symbols, summarized in Figure 1: the
usual symbols of linear integer arithmetic, the usual set composition operators,
an empty set () and a singleton set ({-}) constructor, and a cardinality operator
(card(-)), all interpreted as expected. The signature includes also symbols for the
cardinality comparison (<), subset (C) and membership (E) predicates.

We call set term any term of sort Set or of the form card(s), and cardinality
term any term of sort Card with no occurrences of card(:). A set constraint is an
atomic formula of the form s =~ ¢, s C ¢, e E t or their negation, with s and t set
terms and e a term of sort Element. A cardinality constraint is a [dis]equality
[]c & d or an inequality ¢< d or ¢>= d where ¢ and d are cardinality terms. An
element constraint is a [dis|equality [-]x &~ y where x and y are variables of sort
Element. A Tg-constraint is a set, cardinality or element constraint.

We will use z, y for variables of sort Element; S, T, U for variables of sort
Set; s, t, u, v for terms of sort Set; and ¢ with subscripts for variables of sort
Card. Given C, a set of constraints, Vars (C) (respectively, Terms(C)) denotes the
set of variables (respectively, terms) in C. For notational convenience, we fix an
injective mapping from terms of sort Set to variables of sort Card that allows us
to associate to each such term s a unique cardinality variable c;.

We are interested in checking the satisfiability in Tg of finite sets of Tg-
constraints. While this problem is decidable, it has high worst-case time complex-
ity [14]. So our efforts are in the direction of producing a solver for ¥ g-constraints

4 An extension that allows o to be interpreted as finite by relying on polite combina-
tion [8] is planned as future work.

that is efficient in practice, in addition to being correct and terminating. Our
solver relies on the modular combination of a solver for set constraints and an
off-the-shelf solver for linear integer arithmetic, which handles arithmetic con-
straints over set cardinalities.

3 A Calculus for the Theory

In this section, we describe a tableaux-style calculus capturing the essence of our
combined solver for €g. As we describe in the next section, that calculus admits
a proof procedure that decides the satisfiability of ¥ g-constraints.

For simplicity, we consider as input to the calculus only conjunctions C of
constraints whose set constraints are in flat form. These are (well-sorted) set
constraints of the form S~T, S# T, S~0, S~ {z}, S=TUU,S~TnNU,
S~T\U,zE S,z £ 5, or cg ~ card(S), where S, T, U, cg, and x are
variables of the expected sort. We also assume that any set variable S of C
appears in at most one union, intersection or set difference term. Thanks to
common satisfiability-preserving transformations,® all of these assumptions can
be made without loss of generality.

The calculus is described as a set of derivation rules which modify a state
data structure. A state is either the special state unsat or a tuple of the form
(8§, M, A, G), where S is a set of set constraints, M is a set of element constraints,
A is a set of cardinality constraints, and G is a directed graph over set terms
with nodes V(G) and edges E(G). Since cardinality constraints can be processed
by a standard arithmetic solver, and element constraints by a simple equality
solver,% we present and discuss only rules that deal with set constraints.

The derivation rules are provided in Figures 2 through 9 in guarded assign-
ment form. In such form, the premises of a rule refer to the current state and
the conclusion describes how each state component is changed, if at all, by the
rule’s application. A derivation rule applies to a state o if all the conditions
in the rule’s premises hold for o and the resulting state is different from o. In
the rules, we write St as an abbreviation for S U {¢}. Rules with two or more
conclusions separated by the symbol || are non-deterministic branching rules.

The rules are such that it is possible to generate a closed tableau (or deriva-
tion tree) from an initial state (Sy, Mo, Ao, Go), where Gy is an empty graph,
if and only if the conjunction of all the constraints in So U My U Ag is unsat-
isfiable in Tg. Broadly speaking, the derivation rules can be divided into three
categories. First are those that reason about membership constraints (of form
x E S). These rules only update the components S and M of the current state,
although their premises may depend on other parts of the state, in particular,
the nodes of the graph G. Second are rules that handle constraints of the form
cs = card(S). The graph incrementally built by the calculus is central to satis-
fying these constraints. Third are rules for propagating element and cardinality
constraints respectively to M and A.

® Including replacing constraints of the form s C ¢ with s ~ (s Mt).
5 Recall that T5 has no terms of sort Element besides variables.

UNION DOWN 1 UNIiON DownN 11

Tz sUteS" TEsUteS” {u,v} = {s,t} xR ueS"
S=8Sa(z#s)<d(x#t) S=S<a(zEv)
Union Up I Union Up II
rseS" TREteS" suteT rEuUES” u € {s,t} suteT
S:=8S<a(zggsUt) S:=S<(xEsUL)
INTER DOWN I INTER DOWN 11
TEsMNteS” zEsNteS” {u,v} = {s, t} rEuES”
S:=8S<a(zESs)<(zET) S:=8<(z#v)
INTER UP I INTER UP II
TEseS” TEtES” snteT TFEueS" u € {s,t} snteT
S:=8S<a(xzEsnNt) S:=8S<a(z#snt)

UNION SPLIT
rEsUteS TEs,zEtZS"

S:=8Sqa(zEs) || S:=Sa(zE)

INTER SPLIT
snteT {u,v} = {s,t} TEuES” TEv,TZvgS”

S:=8<(zEV) || S:=8S<(z#Zv)

Fig. 2: Union and intersection rules.

3.1 Set reasoning rules

Figures 2 and 3 focus on sets without cardinality. They are based on the MLSS
decision procedure by Cantone and Zarba [6], though with some key differences.
First, the rules operate over a set 7 of Set terms which may be larger than just
the terms in S. This generalization is required because of additional terms that
may be introduced when reasoning about cardinalities. Second, the reasoning is
done modulo equality. A final, technical difference is that we work with sets of
ur-elements rather than untyped sets.

These rules rely on the following additional notation. Given a set C of con-
straints, let Termssort (C) refer to terms of sort Sort in C, with Terms(C) denoting
all terms in C. We define the binary relation ~} C Terms(C) x Terms(C) to be
the reflexive, symmetric, and transitive closure of the relation on terms induced
by equality constraints in C. Now, we define the following closures:

M ={arylarjyytU{zy| Wy o~ yriuy, o' %y e M}
S*=8SU{zEs| I . erj 2, sxis, P ES €S}
U{zgs |3, szl 2, sxss, 2/ #s €S}

where z, y, 2/, ¥’ in Termsgement(M U S), and s, s’ in Termsset(S). Next, we
define a left-associative operator <. Intuitively, given a set of constraints C and

SINGLETON SINGLE MEMBER SINGLE NON-MEMBER
{z} eT zE{y}eS” zZ{y}eS”

S:=8S<(zxE {z}) M:=Ma(zry) M:=Ma(z#y)

SET DISEQUALITY
s#teS” Pz € Terms(S) such that t Es € S and x Z t € S*
Pz € Terms(S) such that 2 £ s € S andz Et € S*

S:=8ayEs)AygEl) | S=S<a(Zs)<WEL)
EqQ UnsaT SET UNSAT EMPTY UNSAT
(zstx)e M* (zES) ES” (xZs)eS” (zE0) €S
unsat unsat unsat

Fig. 3: Singleton, disequality and contradiction rules. Here, y is a fresh variable.

a literal [, C < (1) adds I to C only if I is not in C’s closure. More precisely,

ca) C ifleC” 1)
< =
CU{l} otherwise.

Finally, the set of relevant terms for these rules is denoted by 7 and consists of
terms from S and G: T = Terms(S) U V(G).

Figure 2 shows the rules for reasoning about membership in unions and
intersections. Each rule covers one case in which a new membership (or non-
membership) constraint can be deduced. The justification for these rules is
straightforward based on the semantics of the set operations. Due to space limi-
tations, we do not show the rules that process set difference constraints. However,
they are analogous to those given for union and intersection constraints. Figure 3
shows rules for singletons, disequalities, and contradictions. Note in particular
that the SET DISEQUALITY rule introduces a variable y, denoting an element
that is in one set but not in the other.

Ezample 1. Let S ={S~ AUB,S~CnND,zE C,x # D,y # S,y E D}.
Using the rules in Figure 2, we can directly deduce the additional constraints:
xZCND (by INTER Up II), 2 Z A, 2 & B,y Z A, y Z B (by UNION DOwWN
I), and y # C (by INTER DowN II). This gives a complete picture, modulo
equality, of exactly which sets contain x and y. O

3.2 Cardinality of sets

The next set of rules is based on two observations: (i) the cardinality of two sets,
and that of their union, intersection and set difference are inter-related; (iz) if
two set terms are asserted to be equal, their cardinalities must match. Figure 4
shows the Venn regions for two sets, 7" and U. Notice the following relationships:
T is a disjoint union of T\ U and TNU; T UU is a disjoint union of 7'\ U and
TNU and U\ T; and U is a disjoint union of TN U and U \ T. Knowing that

TUU

1<I<

T U

Fig. 4: Venn regions for 7" and U. Fig. 5: The same structure as a graph.

the sets are disjoint is important; it allows us to infer the constraints:

card(T) ~ card(T'\U) + card(T 1 U)
card(TUU) ~ card(T\U) + card(TU) + card(U\T)
card(U) ~ card(U\T) + card(T'NU).

We can represent these same relationships using a graph. The nodes of the
graph are set terms, and each node has the property that it is the disjoint union
of its children in the graph. The graph for the regions in Figure 4 is shown
in Figure 5. We ensure that the graph contains all nodes whose cardinality is
implicitly or explicitly constrained by the current state. Set terms with implicit
cardinality constraints include (¢) union, intersection, and set difference terms
appearing in S, for which one of the operands is already in the graph; and (i7)
terms occurring in an equality whose other member is already in the graph. A
careful analysis” reveals that we can actually avoid adding intersection terms
t Mu unless both ¢ and w are already in the graph, and set difference terms ¢\ u
unless ¢ is already in the graph.

The rules in Figure 6 make use of a function add which takes a graph G and
a term s and returns the graph G’ defined as follows:

1. Fors=Tors=0ors={z}
V(G") =V(G)u{s}
E(G) = E(9)
2. Fors=TNUors=T\U:
V(@) =Va=V(Q)U{T,U,T\U,TNUU\T}
EG@)=E.=EG)u{T,T\U),(T,TNU), (U, TNU), (U,U\T)}
3. For s =T UU and V5 and E> as above:
V(G) = Vo U{T LU}
EG)=EJ{TuurT\U),Tuu,TnU),(TUUU\T)}

Recall that, by assumption, each set variable participates in at most one union,
intersection, or set difference. This ensures that edges from a set variable node
are added only once, maintaining the invariant that its children in the graph
are disjoint. Terms with explicit constraints on their cardinality are added to

7 See completeness proof in [1, Chapter 2] for further details.

INTRODUCE UNION

INTRODUCE EQ RIGHT S=TUUES TUU ¢ V(G)
S~teS S eV(g) tZV(G) TeV(G) orUeV(G)
G :=add(g,1t) G :=add(G,TuU)
INTRODUCE INTER
INTRODUCE EQ LEFT S~TnNU eS8 TNnU ¢V(G)
S~teS S V() teV(39) T eV(9) UeV(g)

G :=add(g, 5) G :=add(G, TnN0)
INTRODUCE CARD INTRODUCE SINGLETON INTRODUCE EMPTY SET
cs ~card(S) € S {z} € Terms(S)

G :=add(g, S) G := add(g, {z}) G :=add(g,0)

Fig. 6: Graph introduction rules.

MERGE EQUALITY I MERGE EQuALITY II
s~teS s, 6,0 € V(G) s~teS s, t e V(G)
{uv}={s,t} L(u)S L) L(s) Z L) L)L L(s)
S:={s~0|seLw\Lu}uS G := merge(G, s, t)

Fig. 7: Merge rules.

the graph by INTRODUCE CARD. Terms that have implicit constraints on their
cardinality, specifically, singletons and the empty set, are added by rules INTRO-
DUCE SINGLETON and INTRODUCE EMPTY SET.

If two nodes s and ¢ in the graph are asserted to be equal (that is, s =t € S
ort = s € §), we can ensure they have the same cardinality by systematically
modifying the graph. Let £(n) denote the set of leaf nodes for the subtree rooted
at node n which are not known to be empty. Formally,

L(n)={n' € Leaves (n) | n' ~ 0 & S*}, (2)

where Leaves (v) = {w € V(G) | C(w) = 0, w is reachable from v} and C'(w) de-
notes the children of w. We call two nodes n and n’ merged if they have the
same set of nonempty leaves, that is if £(n) = L(n’).

The rules in Figure 7 ensure that for all equalities over set terms, the cor-
responding nodes in the graph are merged. Consider an equality s = t. Rule
MERGE EQUALITY I handles the case when either £(s) or L(t) is a proper sub-
set of the other by constraining the extra leaves in the superset to be empty. Rule
MERGE EQUALITY II handles the remaining case where neither is a subset of the
other. The graph G’ = merge(G, s, t) is defined as follows, where Ly = L(s)\ L(¢t)
and Ly = L(¢) \ L(s):

V(G)=V(Q)U{liNly | 1y € L1,lz € Ly}
E(g/) = E(g) U {(ll,ll 1 12), (lz,ll Il lg) ‘ ll S Ll,lz S LQ}

ARITHMETIC CONTRADICTION GuUEss EMPTY SET
AUG sz, L t € Leaves (G)

unsat S:=8Sat~0) || S=8<@t#0

Fig. 8: Additional graph rules.

MEMBERS ARRANGEMENT
t€Leaves(G) A% >|ts| [ale. [yle €ts [2]e # e zRyg M

M=Ma(zry) || M:=Ma(z#y)
GUESs LOWER BOUND PROPAGATE MINSIZE
t € Leaves (G) A2 e > |ts] T1ES,...,thnESES" AP cs>n
< |ts| € A Ttz E M foralll<i<j<nm
A:=c¢>=ts|, A || A:=c<l|ts|, A A:=cs>=n, A

Fig.9: Cardinality and membership interaction rules.

We denote by G the collection of all of the following arithmetic constraints
imposed by graph G:

1. For each set term s € V(G), its corresponding cardinality is the sum of the

s € V(g)}.

corresponding non-empty leaf nodes: {cs ~ Zteﬁ(s) ct
2. Each cardinality is non-negative: {¢;>=0 | s € V(G)}.
3. A singleton set has cardinality 1: {¢c; ~ 1 | s € V(G), s = {z}}.
4. The empty set has cardinality 0: {c¢; =0 | s € V(G), s = (}.

Rule ARITHMETIC CONTRADICTION, shown in Figure 8 makes use of the
arithmetic solver to check whether the constraints in G are inconsistent with
the input constraints. Also shown is rule GUESS EMPTY SET which can be used
to guess if a leaf node is empty. This is useful to apply early on, to reduce
the impact of merge operations on the size of the graph. Here and in Figure 9,

Leaves (G) = {v € V(G) | C(v) = 0}.

3.3 Cardinality and membership interaction

The rules in Figure 9 propagate consequences of set membership constraints
to the sets M and A. Let £ denote the set of equalities in M, and let [z],
denote the equivalence class of x with respect to £. Then for a Set term ¢,
ts = {[z]¢ | x Et € S*}, the set of equivalence classes of elements known to
be in t. The notation A = ¢; > n means that ¢; >= k € A for some concrete
constant k > n.

Rule MEMBERS ARRANGEMENT is used to decide which elements of a set
should be equal or disequal. Once applied to completion, Rule PROPAGATE MIN-
SIZE can then be used to determine a lower bound for the cardinality of that
set. Rule GUESS LOWER BOUND can be used to short-circuit this process by
guessing a conservative lower bound based on the number of distinct equiva-
lence classes of elements known to be members of a set. If this does not lead

to a contradiction, a model can be found without resorting to extensive use of
MEMBERS ARRANGEMENT.

Ezample 2. Consider again the constraints from Example 1, but now augmented
with cardinality constraints {cg = card(S), cc =~ card(C), ¢cp = card(D)} and
arithmetic constraints {cg >= 4, cc + ¢p < 10}. Using the rules in Figure 6, the
following nodes get added to the graph: S, C, D (by INTRODUCE CARD), AU B,
CMD (by INTRODUCE EQ RIGHT). AUB is added with children A\ B, ANB, and
B\ 4; and by adding CM D, we also get C'\ D and D\ C, with the corresponding
edges from C and D. Now, using two applications of MERGE EQUALITY II, we
force the sets S, ALUB and CT1D to have the same set of 3 leaves, labeled ST1(A\
B)N(CND), SM(ANB)M(CMD), and ST1(B\ A)M(CMND). Let us call these nodes
Iy, I, and I3 for convenience. Let us also designate [y = C'\ D and ls = D\ C.
Notice that the induced arithmetic constraints now include cg ~ ¢, + ¢, + ¢y,
co Ryt oyt eyt a,,and cp & ¢, + ¢, + oy + ¢, With the addition of C'\ D
and D\ C to the graph, these are also added to 7. We can then deduce z £ C\ D
and y £ D \ C using the (not shown) rules for propagation over set difference.
Finally, we can use PROPAGATE MINSIZE to deduce ¢;, >= 1 and ¢;; >= 1. It is
now not hard to see that using pure arithmetic reasoning, we can deduce that
cc + ¢p >= 10 which leads to unsat using ARITHMETIC CONTRADICTION. O

4 Calculus Correctness

Our calculus is terminating and sound for any derivation strategy, that is, re-
gardless of how the rules are applied. It is also refutation complete for any fair
strategy, defined as a strategy that does not delay indefinitely the application
of an applicable derivation rule. For space reasons, we only outline the proof
arguments here. Complete proofs are given in [1].

We group the derivation rules of the calculus in the following subsets.

R1: membership predicate reasoning rules, from Figures 2 and 3.
Ro: graph rules to reason about cardinality, from Figures 6, 7 and 8.
Rs: rules from Figure 9 other than Rule GUESS LOWER BOUND.
R4: Rule GUESS LOWER BOUND.

The rules are used to construct derivation trees. A derivation tree is a tree
over states, where the root is a state of the form (Sy, Mo, Ao, (0,0)), (and Sy,
My, Ap obey the input constraints mentioned at the beginning of Sec. 3), and
where the children of each non-root node are obtained by applying one of the
derivation rules of the calculus to that node. A branch of a derivation tree is
closed if it ends with unsat; it is saturated with respect to a set R of rules if it
is not closed and no rules in R apply to its leaf. A derivation tree is closed if all
of its branches are closed. A derivation tree derives from a derivation tree T' if
it is obtained from T' by the application of exactly one of the derivation rules to
one of T”s leaves.

Let S be a set of Tg-constraints. A derivation (of S) is a sequence (T;)o<i<x
of derivation trees, with & finite or countably infinite, such that 7541 derives from

T; for all i, and Tp is a one-node tree whose root is a state (Sy, Mo, Ao, (0, 0))
where So U Mo U A is Tg-equisatisfiable with S. A refutation (of S) is a (finite)
derivation of S that ends with a closed tree.

4.1 Termination
Proposition 1 (Termination). Every derivation in the calculus is finite.

Proof (Sketch). It is enough to show that every application of a derivation rule
to a state produces smaller states with respect to a well-founded relation > over
states other than unsat. For simplicity, we ignore the rule GUESS LOWER BOUND,
although the proof could be extended to that rule as well. To define > we first
define the following functions, each of which maps a state o = (S, M, A, G) to a
natural number (from N).

(0): number of equalities ¢; = to in S such that either ¢; & V(G), t2 ¢

(, Oor E(tl) 75 ﬁ(tg).

— fa(0): cardinality of (Termsse(S) U {0}) \ V(G).

— f3(0): cardinality of {t € Leaves (G) | t ~ 0 & S*,t % 0 & S*}.

— f4(0): number of disequalities ¢; % to in S such that the premise of SET
DiSEQUALITY holds.

— f5(0): cardinality of T' = Termsse:(S) U {0} U V(G).

— f6(0): cardinality of Termsgiement(S U M).

— f7(0): 2+ fo(0)? minus the cardinality of M*.%

— f3(0): 2+ f5(0)2 + 2 f5(0) - f¢(o') minus the cardinality of S*.°

— fo(o): cardinality of T'\ {t € Leaves (G) | A& ¢ > |ts|}.
Let (Ng, >&X) be the 9-fold lexicographic product of (N, >). We define >~ as the
relation such that o = o’ iff (f1(0),..., fo(c)) >, (f1(d’),..., fo(d”)). 0

4.2 Completeness

We develop the proof in stages, proving properties about different subsets of
rules. We start with a proposition about the rule set R;.

Proposition 2. Let (S, M, A, G) be a state to which none of rules in Ry apply.
There is a model G of Tg that satisfies the constraints S and M and has the
following properties.

1. For all z,y € Vars (M) U Vars (S) of sort Element, z° = y® if and only if
TRy e M.

2. For all S € Vars (S) of sort Set, S = {2 | z E S € §*}.

3. For all cg € Vars (S) of sort Card, c§ = ’SG‘.

8 Note that the cardinality of M* is at most 2 - (fs(c))>.
9 One can show that this value is non-negative.

For the next two results, let (S, M, A, G) be the leaf of a branch saturated
with respect to rules Ry URs UR3 in a derivation tree. The first result is about
the effects of the rules in Ro. The second is about the rules in R3.

Proposition 3. For every s € V(G) the following holds.

Ifs~teS ort~seS for somet, then L(s) = L(t).
If s=TUU, then LTUU) = L(T)UL(U).
[fs=TNU, then LT NU) = £(T)N L(U).

If s=T\U, then L(T\U) = L(T)\ L(U).

For all distinct t,u € Leaves (s), Exg tMu = 0.
{trultrueS} Fxs s~ iegs ¢.10

S G Lo o~

Proposition 4. Let S be an interpretation as the one specified in Proposition
2 and let A be any model of Ts satisfying A. Then, for allt € L(G), ¢} > }t6| .

Completeness is a direct consequence of the following result.

Proposition 5. Let D be a derivation tree with root (Sy, Mo, Ao, (0,0)). If D
has a branch saturated with respect to rules R1 U Ro U R3, then there exists a
model J of Tg that satisfies So U Mg U Ag.

Proof (Sketch). We build the model of the leaf nodes in the graph by modifying
as needed the model obtained from Proposition 2. We add additional elements
to these sets to make the cardinalities match the model satisfying the arithmetic
constraints and the constraints induced by the graph. Propositions 3 and 4 ensure
that it is always possible to do so without violating the set constraints. ad

Proposition 6 (Completeness). Under any fair derivation strategy, every
derivation of a set S of Tg-unsatisfiable constraints extends to a refutation.

Proof. Contrapositively, suppose that S has a derivation D that cannot be ex-
tended to a refutation. By Proposition 1, D must be extensible to one that ends
with a tree with a saturated branch. By Proposition 5, S' is satisfiable in €g. 0O

4.3 Soundness
We start by showing that every rule preserves constraint satisfiability.

Lemma 1. For every rule of the calculus, the premise state is satisfied by a
model J,, of Tg iff one of its conclusion configurations is satisfied by a model J,
of ¥s where 3, and J. agree on the variables shared by the two states.

10 Technically, L] is ambiguous. But, for any structure in Tg, the interpretation of LI
is associative, so the bracketing doesn’t matter in our context.

Proof (Sketch). Soundness of the rules in Figure 2 and Figure 3 follows triv-
ially from the semantics of set operators and the definition of §*. Soundness of
MERGE EQUALITY I follows from properties of the graph (see Proposition 3, in
particular the property that leaf terms are disjoint). The rules in Figure 6 and
rule MERGE EQUALITY II do not modify the constraints, but we need them to
establish properties of the graph. Soundness of the induced graph constraints in
ARITHMETIC CONTRADICTION follows from Proposition 3 (in particular proper-
ties 5 and 6). Soundness of PROPAGATE MINSIZE follows from the semantics of
cardinality. Soundness of GUESS EMPTY SET, MEMBERS ARRANGEMENT and
GUESS LOWER BOUND is trivial. O

Proposition 7 (Soundness). Fvery set of Tg-constraints that has a refutation
is Tg-unsatisfiable.

Proof (Sketch). Given Lemma 1, one can show by structural induction on deriva-
tion trees that the root of any closed derivation tree is ¥ g-unsatisfiable. The claim
then follows from the fact that every refutation of a set S of T g-constraints starts
with a state ¥ g-equisatisfiable with S. O

5 Evaluation

We have implemented a decision procedure based on the calculus above in the
SMT solver CVC4 [2]. We describe a high-level, non-deterministic version of it
here, followed by an initial evaluation on benchmarks from program analysis.

5.1 Derivation strategy

The decision procedure can be thought of as a specific strategy for applying the
rules given in Section 3, divided into the sets Ry, ..., R4 introduced in Section 4.

Our derivation strategy can be summarized as follows. We start with the
derivation from the initial state (Sp, Mo, Ao, Go) with Gy the empty graph, as
described in Section 3, and apply the steps listed below, in the given order.
The steps are described as rules being applied to a current branch. Initially, the
current branch is the only branch in tree. On application of a rule with more
than one conclusion, we select one of the branches (say, the left branch) as the
current branch.

1. If a rule that derives unsat is applicable to the current branch, we apply
one and close the branch. We then pick another open branch as the current
branch and repeat Step 1. If no open branch exists, we stop and output
unsat.

2. If a propagation rule (those with one conclusion) in R is applicable, apply
one and go to Step 1.

3. If a split rule (those with more than one conclusion) in R4 is applicable,
apply one and go to Step 1.

4. If Guess EMPTY SET rule is applicable, apply it and go to Step 1.

file output| time (s.)| # V| # L| [file |output time (s.)|# V|# L
vel unsat 0.00 3 3| |vel |1 sat/4 unsat 0.02| 12 6
vc2a | unsat 0.01 17 8 |ve2 |1 sat/3 unsat 0.07] 39| 23
ve2b sat 0.01 15 7| |ve3 |2 sat/2 unsat 0.09] 54| 21
vc2 unsat 0.00 8 5/ |vcd |1 sat/3 unsat 0.02 o O
vcda | unsat 0.00 6 0| |veb |2 sat/2 unsat 0.08) 27| 13
vedb sat 0.01 17 8| |vc6 |1 sat/3 unsat 0.01 0 0
ved unsat 0.00 6 0| |vc7 |2 sat/4 unsat 0.34] 56| 33
vedb | sat 0.22 45 16| |ve8 |1 sat/3 unsat 0.01 0 O
vcd unsat 0.07 57 18| |ve9 |2 sat/2 unsat 0.09] 39| 19
vebb | sat 1.71 71 22| |vcl0 |2 sat/2 unsat 0.32] 94| 32
ved unsat 0.36 68 21

vcba unsat 0.02 34 14

vc6b | sat 0.14 31 13

vcbe sat 0.06 34 14

vch sat 0.02 38 18

(a) Jahob (b) Leon

Fig. 10: Results on program verification benchmarks.

5. If an introduce or merge rule in R4 is applicable, apply it and go to Step 1.
6. If any of the remaining rules is applicable, apply one and go to Step 1.
7. At this point, the current branch is saturated. Stop and output sat.

Note that if there are no constraints involving the cardinality operator, then
steps 1 to 3 above are sufficient for completeness.

5.2 Experimental evaluation

We evaluated our procedure on benchmarks obtained from verification of pro-
grams. The experiments were run on a machine with 3.40GHz Intel i7 CPU with
a memory limit of 3 GB and timeout of 300 seconds. We used a development
version of CVC4 for this evaluation.!! Benchmarks are available on our website!2.

The first set of benchmarks consists of single query benchmarks obtained
from verifying programs manipulating pointer-based data structures. These were
generated by the Jahob system, and have been used to evaluate earlier work on
decision procedures for finite sets and cardinality [10,11,13]. The results from
running CVC4 on these benchmarks are provided in Figure 10a. The output
reported by CVC4 is in the second column. The third column shows the solving
time. The fourth and fifth columns give the maximum number of vertices (# V)
and leaves'3 (# L) in the graph at any point during the run of the algorithm.

' Git commit c833e17 at https://github.com/CVC4/CVC4/commit/c833e176 .

12 http://cs.nyu.edu/~kshitij/setscard/

13 The # L statistic is updated only when explicitly computed, so the numbers are
approximate. For the same reason, # L is 0 on certain benchmarks even though
V is not. This is because CVC4 was able to report unsat before the need for
computing the set of leaves arose.

https://github.com/CVC4/CVC4/commit/c833e176
http://cs.nyu.edu/~kshitij/setscard/

Keeping the number of leaves low is important to avoid a blowup from the
MERGE EQUALITY II rule.

Although we have not rerun the algorithms from [10,11,13], we report here
the experimental results as stated in the respective papers. As the experiments
were run on different machines the comparison is only indicative, but it does
suggest that our algorithm has comparable performance.

In [11], the procedure from [10] is reported to solve 12 of the 15 benchmarks
with a timeout of 100 seconds, while the novel procedure in [11] is reported
to solve 11 of the 15 benchmarks with the same timeout. The best-performing
previous algorithm ([13]) can solve all 15 benchmarks in under a second.'* As
another point of comparison, we tested the algorithm from [13] on a benchmark
of the type mentioned in Section 1.1: a single constraint of the form z £ A;LI.. .1
As;. As expected, the algorithm failed (it ran out of memory after 85 seconds).
In contrast, CVC4 solves this problem instantaneously.

Finally, another important difference compared to earlier work is that our
implementation is completely integrated in an actively developed and main-
tained solver, CVC4.'® To highlight the usefulness of an implementation in a
full-featured SMT solver, we did a second evaluation on a set of incremental
(i.e., multiple-query) benchmarks obtained from the Leon verification system [4].
These contain a mix of membership and cardinality constraints together with
the theories of datatypes and bitvectors. The results of this evaluation are shown
in Figure 10b. The output column reports the number of sat and unsat queries in
each benchmark. CVC4 successfully solves all of the queries in these benchmarks
in under one second. To the best of our knowledge, no other SMT solver can
handle this combination of theories.

6 Conclusion

We presented a new decision procedure for deciding finite sets with cardinality
constraints and proved its correctness. A novel feature of the procedure is that
it can reason directly and efficiently about both membership constraints and
cardinality constraints. We have implemented the procedure in the CVC4 SMT
solver, and demonstrated the feasibility as well as some advantages of our ap-
proach. We hope this work will enable the use of sets and cardinality in many
new applications. We also expect to use it to drive the development of a standard
theory of sets under the SMT-LIB initiative.

Acknowledgements. We thank the reviewers for their valuable and constructive
suggestions. We thank Viktor Kuncak and Etienne Kneuss for valuable scientific
discussions and for providing the Leon benchmarks. We thank Philippe Suter
for his help running the algorithm from [13].

4 Note that [13] includes a second set of benchmarks, but we were unable to evaluate
our algorithm on these, as they were only made available in a non-standard format
and were missing crucial datatype declarations.

15 One reason we were unable to do a more thorough comparison with previous work
is that those implementations are no longer being maintained.

References

10.

11.

12.

13.

14.

. Kshitij Bansal. Decision Procedures for Finite Sets with Cardinality and Local

Theory Eztensions. PhD thesis, New York University, January 2016.

Clark Barrett, Christopher Conway, Morgan Deters, Liana Hadarean, Dejan Jo-
vanovic, Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4. In 23rd Inter-
national Conference on Computer Aided Verification (CAV’11), volume 6806 of
Lecture Notes in Computer Science, pages 171-177. Springer, 2011.

Clark Barrett, Roberto Sebastiani, Sanjit Seshia, and Cesare Tinelli. Satisfiability
modulo theories. In Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby
Walsh, editors, Handbook of Satisfiability, volume 185, chapter 26, pages 825-885.
10S Press, February 2009.

Régis William Blanc, Etienne Kneuss, Viktor Kuncak, and Philippe Suter. An
overview of the Leon verification system: Verification by translation to recursive
functions. In Scala Workshop, 2013.

D. Cantone, E. G. Omodeo, and A. Policriti. Set Theory for Computing. From
Decision Procedures to Logic Programming with Sets. Monographs in Computer
Science. Springer, 2001.

Domenico Cantone and Calogero G Zarba. A new fast tableau-based decision
procedure for an unquantified fragment of set theory. In Int. Workshop on First-
Order Theorem Proving (FTP98), 1998.

Leonardo De Moura and Nikolaj Bjgrner. Generalized, efficient array decision
procedures. In Formal Methods in Computer-Aided Design (FMCAD 2009), pages
45-52. IEEE, 2009.

Dejan Jovanovi¢ and Clark Barrett. Polite theories revisited. In Proceedings of the
17" International Conference on Logic for Programming, Artificial Intelligence,
and Reasoning (LPAR ’10), volume 6397 of LNCS, pages 402-416. Springer, Oc-
tober 2010.

Daniel Kroning, Philipp Riimmer, and Georg Weissenbacher. A proposal for a
theory of finite sets, lists, and maps for the SMT-LIB standard. In Proceedings
of the 7'h International Workshop on Satisfiability Modulo Theories (SMT °09),
August 2009.

Viktor Kuncak, HuuHai Nguyen, and Martin Rinard. Deciding Boolean algebra
with Presburger arithmetic. Journal of Automated Reasoning, 36(3):213-239, 2006.
Viktor Kuncak and Martin Rinard. Towards efficient satisfiability checking for
Boolean Algebra with Presburger Arithmetic. In Conference on Automated De-
duction (CADE-21), volume 4603 of Lecture Notes in Computer Science. Springer,
2007.

Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and SAT
Modulo Theories: from an Abstract Davis-Putnam-Logemann-Loveland Procedure
to DPLL(T). Journal of the ACM, 53(6):937-977, November 2006.

Philippe Suter, Robin Steiger, and Viktor Kuncak. Sets with cardinality constraints
in Satisfiability Modulo Theories. In Verification, Model Checking, and Abstract
Interpretation (VMCAI), 2011.

Calogero G. Zarba. Combining sets with integers. In Frontiers of Combining
Systems, 4th International Workshop, FroCoS 2002, pages 103-116, 2002.

	A New Decision Procedure for Finite Sets and Cardinality Constraints in SMT

