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Abstract An increasing number of applications in verification and security rely on or could
benefit from automatic solvers that can check the satisfiability of constraints over a diverse
set of data types that includes character strings. Until recently, satisfiability solvers for strings
were standalone tools that could reason only about fairly restricted fragments of the theory
of strings and regular expressions (e.g., strings of bounded lengths). These solvers were
based on reductions to satisfiability problems over other data types such as bit vectors or to
automata decision problems. We present a set of algebraic techniques for solving constraints
over a rich theory of unbounded strings natively, without reduction to other problems. These
techniques can be used to integrate string reasoning into general, multi-theory SMT solvers
based on the common DPLL(T ) architecture. We have implemented them in our SMT solver
cvc4, expanding its already large set of built-in theories to include a theory of strings with
concatenation, length, and membership in regular languages. This implementation makes
cvc4 the first solver able to accept a rich set of mixed constraints over strings, integers, reals,
arrays and algebraic datatypes. Our initial experimental results show that, in addition, on
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pure string problems cvc4 is highly competitive with specialized string solvers accepting a
comparable input language.

Keywords String solving · Satisfiability modulo theories · Automated deduction

Mathematics Subject Classification 68Q60 · 03B10 · 03B20 · 03B22 · 03B25 · 03B70

1 Introduction

In the last few years a number of techniques originally developed for verification purposes
have been adapted to support software security analyses as well [5,6,9,21]. These techniques
have benefited from the rise of powerful specialized reasoning engines such as SMT solvers.
Security analyses frequently require the ability to reason about string values. One reason
is that program inputs, especially in web-based applications, are often provided as strings
which are then processed using operations such as matching against regular expressions,
concatenation, and substring extraction or replacement. In general, both safety and security
analyses can benefit from solvers able to check the satisfiability of constraints over a rich set
of data types that includes character strings.

Despite their power and success as back-end reasoning engines, generalmulti-theory SMT
solvers so far have provided minimal or no native support for reasoning over strings. A major
difficulty is that any reasonably comprehensive theory of character strings is undecidable [4,
24]. However, several more restricted, but still quite useful, theories of strings do have a
decidable satisfiability problem. These include any theories of fixed-length strings, which
are trivially decidable because their possiblemodels can be finitely enumerated, but also some
fragments over unbounded strings (e.g., word equations [20]). Recent research has focused
on identifying decidable fragments suitable for program analysis and, more crucially, on
developing efficient solvers for them. Unfortunately, until very recently the available string
solvers were standalone tools that could reason only about (some fragment of) the theory of
strings and regular expressions. Often, they imposed strong restrictions on the expressiveness
of their input language such as, for instance, exact length bounds on all string variables.
Traditionally, these solvers were based on reductions to satisfiability problems over other
data types, such as bit vectors, or to decision problems over automata.

In the last couple of years, alternative approaches have been developed that are based
on algebraic techniques for solving (quantifier-free) constraints natively over a theory of
unbounded strings with length and regular language membership [1,18,35]. We present one
such approach in this paper. One of its distinguishing features is that it is geared towards the
construction of string solvers that can be integrated into general, multi-theory SMT solvers
based on the common DPLL(T ) architecture [23]. We have built a solver based on our
approach within the DPLL(T )-based SMT solver cvc4. To our knowledge, cvc4 is the first
solver able to reason about a language of mixed constraints that includes strings together
with integers, reals, bit vectors, arrays, and algebraic datatypes. The experimental results we
present in this paper show that, in addition, over pure string problems the performance and
reliability of cvc4 is superior to that of specialized string solvers able to reason about the
same fragment of the theory of strings.

We describe our approach abstractly in terms of derivation rules and a proof procedure
for the calculus consisting of these rules. After discussing related work, we define in Sect. 2
the theory of strings and regular expressions we work with, presenting a calculus for this
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theory in Sect. 3. We prove a number of correctness results about the calculus in Sect. 4 and
provide a general proof procedure for it in Sect. 5. Our string solver is essentially a concrete
and optimized implementation in cvc4 of the proof procedure, as we explain in Sect. 6. In
Sect. 7, we present an experimental evaluation of our implementation against other major
string solvers. We conclude in Sect. 8, mentioning several areas of future work.

This paper is a considerably extended and revised version of one presented at CAV
2014 [18]. Major differences include full proofs of our theoretical results, and an updated
experimental evaluation with new solvers and more recent versions of previously existing
ones. As in that work, however, we focus mostly on solving equality and disequality con-
straints over string terms together with arithmetic constraints over their length. The part of
the calculus used to reason about membership predicates is substantial and different enough
to deserve a separate treatment [19].

1.1 Related work

A popular approach for solving string constraints, especially if they involve regular expres-
sions, is to encode them into automata problems. For example, Hooimeijer and Weimer [14]
present an automata-based solver, DPRLE, for matching problems of the form e ⊆ r where,
in essence, r is a regular expression over a given alphabet and e is a concatenation of alpha-
bet symbols and string variables. The solver has been used to check programs against SQL
injection vulnerabilities. This approach was improved in later work by generating automata
lazily from the input problemwithout requiring a priori length bounds [15]. A comprehensive
set of algorithms and data structures for performing fast automata operations to support con-
straint solving over strings is described by Hooimeijer and Veanes [13]. Generally speaking,
there are two kinds of automata-based approaches: one where each transition in the automa-
ton represents a single character (e.g., [10,34]), and one where each transition represents
a set of characters (e.g., [15,32,33]). Most tools based on these approaches provide very
limited support for reasoning about constraints mixing strings and other data types. Also,
automata refinement is typically the main bottleneck, although it is still very useful in solving
membership constraints. Further discussion can be found in [12,17].

A different class of solvers is based on reducing string constraints to constraints in other
theories. A rather successful representative of this approach is the Hampi solver [16], which
has been used in a variety of static analysis systems. Hampi works onlywith string constraints
over fixed-size string variables. It extends the constraint language tomembership in fixed-size
context-free languages but considers only problems over one string variable. Input problems
are reduced first to bit-vector problems and then to SAT. An alternative approach, developed
to support Pex [29], a white-box test generation tool, targets path feasibility problems for
programs using the .NET string library [4]. There, string constraints over a large set of
string operators, but no language membership predicates, are abstracted to linear integer
arithmetic constraints and then sent to an SMT solver. Each satisfying solution, if any, induces
a fixed-length version of the original string problem which is then solved using finite domain
constraint satisfaction techniques. The Kaluza solver [27] extends Hampi’s input language
to multiple variables and string concatenation by following an approach similar to one used
in Pex, except that it simply feeds fixed-length versions of the input problem to Hampi. It has
been used in the WebBlaze tool to find new vulnerabilities in Javascript programs in cases
where a bit-vector encoding would not be suitable [27].

The Java string analyzer (JSA) [7]workswith Java string constraints. It first translates them
to a flow graph and then analyzes the graph by converting it into a context-free grammar. That
grammar is approximated by a regular one, which is then encoded as amulti-level automaton.
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Compared to our work, JSA focuses on Java string analysis, approximation, and automaton
conversion, while our approach is independent from the original programming language,
and solves string constraints primitively without approximation. PASS [17] combines ideas
from automata and SMT. As with JSA, it handles almost all Java string operations, regular
expressions, and string-number conversions. However, it represents strings as arrays with
symbolic length. This leads to the generation of several quantified constraints over such
arrays, which are then solved with the aid of a specialized quantifier instantiation procedure.

Recent concurrent work by others has resulted in three systems that are more closely
related to our approach and its implementation in cvc4. The first is z3- str [35], a string
solver developed as an extension of the z3 SMT solver [8] through z3’s user plug-in interface.
It considers unbounded strings with concatenation, substring, replace, and length functions
and accepts equational constraints over strings as well as linear integer arithmetic constraints.
In contrast with cvc4, its main idea is to have z3 treat string function and predicate symbols as
uninterpreted but monitor the inferences of z3’s equality solver, generating and passing to z3
selected string theory lemmas as needed. Roughly speaking, these lemmas are used to force
the identification of equivalent string terms (e.g., the lemma s ·ε ≈ s where · is concatenation
and ε is the empty string), or the dis-identification of terms that z3 has wrongly guessed to
be equal (e.g., len(t) > 0 ⇒ s �≈ s · t). The approach is not refutation complete since it
does not always generate enough axioms to recognize an unsatisfiable problem. At a very
high level, our approach is similar, and similarly incomplete, except that it uses a different
and more comprehensive set of rules to generate suitable axioms, and so is able to recognize
more unsatisfiable cases. Another notable difference is that we have devised it with the goal
of implementing it in an internal, fully integrated theory solver for cvc4, as opposed to an
external plug-in, which allows us to leverage several features of the DPLL(T ) architecture.
The third difference is that when a string variable appears on both sides of an equality, z3-
str under-approximates candidate models and confines its search space to a finite set. If
no candidate satisfies the constraints, z3- str reports unknown. In contrast, our approach
reduces these sorts of constraints to symbolic regular expressions. This preserves all possible
models and allows us to prove that our proof procedure is refutation sound (Theorem 1).

Another recent SMT-based string solver is s3 [31]. It is built as an extension of z3- strwith
support for additional string manipulating functions and regular expressions. The reduction
rules for handling membership constraints in s3 are similar to the simplified lazy unrolling
rules mentioned in this paper. This approach is refutation incomplete even over the restricted
fragment of just membership constraints. That is the case also for the lazy unrolling rules we
discuss later in this paper. However, cvc4 actually uses a different set of rules that make it
complete over that fragment. A description of those rules is given in a separate paper [19].
A final difference with cvc4 is that neither s3 nor z3- str generate unsatisfiable cores for
unsatisfiable problems.

The work most closely related to ours is by the authors of norn, a string solver based
on a recent calculus [1] for the same fragment of the theory of strings we discuss in this
paper. According to its authors, the latest version of norn 1 follows our approach by using
the DPLL(T ) architecture (see Sect. 6) to implement an efficient proof procedure for the
calculus. A major feature of norn is that it is a decision procedure over a large class of
acyclic constraints identified by the authors in [1]. While as an SMT solver it supports only
the theory of strings, it also contains a fixed-point engine used to prove safety properties of
recursive programs encoded as Horn-like clauses.

1 Personal communication. norn was not publicly available at the time of this writing.
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1.2 Formal preliminaries

Wework in the context of many-sorted first-order logic with equality.We assume the reader is
familiar with the following notions: signature, term, literal, formula, free variable, interpreta-
tion, and satisfiability of a formula in an interpretation (see, e.g., [3] for more details). Let Σ
be a many-sorted signature. We will use ≈ as the (infix) logical symbol for equality—which
has type σ ×σ for all sorts σ inΣ and is always interpreted as the identity relation. We write
s �≈ t as an abbreviation of ¬ s ≈ t . If e is a term or a formula, we denote by V(e) the set of
e’s free variables, extending the notation to tuples and sets of terms or formulas as expected.

If ϕ is aΣ-formula and I aΣ-interpretation, we write I |� ϕ if I satisfies ϕ. If t is a term,
we denote by tI the value of t in I. A theory is a pair T = (Σ, I) where Σ is a signature and
I is a class of Σ-interpretations, the models of T , that is closed under variable reassignment
(i.e., every Σ-interpretation that differs from one in I only in how it interprets the variables
is also in I). A Σ-formula ϕ is satisfiable (resp., unsatisfiable) in T if it is satisfied by some
(resp., no) interpretation in I. A set � of Σ-formulas entails in T a Σ-formula ϕ, written
� |�T ϕ, if every interpretation in I that satisfies all formulas in � satisfies ϕ as well. We
write |�T ϕ as an abbreviation of ∅ |�T ϕ. We write � |� ϕ to denote that � entails ϕ

in the class of all Σ-interpretations. The set � is satisfiable in T if � �|�T⊥ where ⊥ is the
universally false atom. Two Σ-formulas are equisatisfiable in T if for every model A of T
that satisfies one, there is a model of T that satisfies the other and differs fromA at most over
the free variables not shared by the two formulas. When convenient, we will tacitly treat a
finite set of formulas as the conjunction of its elements.

2 A theory of strings and regular language membership

We consider a parametric theory TSRL of Strings with Regular language membership and
Length constraints. The constraints are from a signature �SRL with three sorts, Str, Int, and
Lan, and an infinite set of variables for each sort. This theory, which is parametrized by a
finite set A of characters, is essentially the theory of a single many-sorted structure, as its
models differ only on how they interpret the variables. All models of TSRL interpret Int as
the set of integer numbers, Str as the languageA∗ of all words over the alphabetA, and Lan
as the power set ofA∗. The signature includes the following predicate and function symbols,
summarized in Fig. 1: the usual symbols of linear integer arithmetic, interpreted as expected;
a constant symbol, or string constant, for each word of A∗, interpreted as that word (and so
identified with it); a variadic function symbol con : Str × · · · × Str → Str, interpreted

Fig. 1 The signature of TSRL
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as word concatenation; a function symbol len : Str → Int, interpreted as the word length
function; a function symbol set : Str → Lan, interpreted as the function mapping each
word l ∈ A∗ to the language {l}; a function symbol star : Lan → Lan, interpreted as the
Kleene closure operator; an infix predicate symbol in : Str × Lan, interpreted as the set
membership predicate; and a suitable set of additional function symbols corresponding to
regular expression operators such as language concatenation, conjunction, disjunction, and
so on.2

We call: string term any term of sort Str or of the form (len s); arithmetic term any term
of sort Int, all of whose occurrences of len are applied to a variable; regular expression any
term of sort Lan, possibly with variables. A string term is atomic if it is a variable or a string
constant. A string constraint is a [dis]equality [¬]s ≈ t with s and t string terms. What
algebraists call word equations are, in our terminology, positive string constraints s ≈ t with
s and t of sort Str. An arithmetic constraint is a [dis]equality [¬]s ≈ t or an inequality
s > t where s and t are linear arithmetic terms. Note that if x and y are string variables,
len x is both a string and an arithmetic term and [¬]len x ≈ len y is both a string and an
arithmetic constraint. A regular language constraint is a literal of the form [¬]s in r where s is
a string term and r is a regular expression. A TSRL-constraint is a string, arithmetic or regular
language constraint. We will denote entailment in TSRL (|�TSRL ) more simply as |�SRL.

2.1 The satisfiability problem in TSRL

We are interested in checking the satisfiability in TSRL of finite sets of TSRL-constraints. We
are not aware of any results on the decidability of this problem. In fact, the decidability of a
strict sublanguage of the above, just word equations with length constraints, is classified as
an open question by other authors (e.g., [11]). Some other sublanguages do have a decidable
satisfiability problem. For instance, the satisfiability of word equations was proven decidable
by Makanin [20] and then given a PSPACE algorithm by Plandowski [25], although that
algorithm is highly impractical.

In this paper, we focus on practical solvers for the full language of TSRL-constraints that,
while incomplete and non-terminating in general, can efficiently solve string constraints
arising from verification and security applications. In addition to efficiency, we also strive for
correctness. We want a solver that is both refutation sound: any problem the solver classifies
as unsatisfiable is indeed so; and solution sound: any variable assignment that the solver
claims to be a solution of the input constraints does indeed satisfy them.

Our solver is based on themodular combination of an off-the-shelf solver for linear integer
arithmetic and a novel solver for string and regular language constraints. The combination
between the two solvers is achieved, Nelson–Oppen style, by exchanging equalities over
shared terms, which however are not variables, as in traditional combination procedures [22,
30], but terms of the form (len x) where x is a variable.3

Like the theory TSRL, our constraint solving method for it is parametric in the finite
alphabet A; the method works exactly the same way regardless of the alphabet as long as it
is finite. In fact, the method can be modified slightly, by simply dropping the derivation rule
Card from Fig. 7, so that it works also with infinite alphabets over problems that do not have
membership constraints.

2 We do not specify those additional symbols here because solving membership constraints is not the focus
of this paper.
3 This difference is not substantial if the arithmetic solver treats (len x) like an integer variable.
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3 A calculus for TSRL

In this section, we describe the essence of our combined solver for TSRL abstractly and
declaratively, as a tableaux-style calculus. Because of the computational complexity of solv-
ing even just word equations, this calculus is non-deterministic and allows many possible
proof strategies. Our solver can be understood then as a specific proof procedure for the cal-
culus. In the description below, we focus only on the derivation rules that deal with string and
arithmetic constraints. We have, additionally, developed a novel set of rules for processing
regular language constraints using algebraic techniques. These are complex and sophisticated
enough to deserve a dedicated description in a separate paper [19], and so are not covered
here.

The rules of the calculus describe abstractly how the two subsolvers, respectively for
arithmetic and for string and regularmembership constraints, behave and cooperate. Since the
arithmetic solver is completely standard, we provide only rules that formalize its interaction
with the string solver.We give only one rule involving regular language constraints, to process
membership constraints generated from word equations. The rest of the rules then formalize
the part of the solver that processes string constraints.

The string constraint subsolver is built on top of amore or less standard congruence closure
procedure for EUF, the theory of equality with uninterpreted functions, that can deduce
general consequences (in that theory) of the current set of constraints. When computing the
congruence closure of that set, this procedure essentially treats the string operators as if they
were uninterpreted. The only significant difference is that it recognizes all string constants as
denoting pairwise distinct elements of the string domain. The rest of the string solver contains
rules that deduce, or guess, consequences specific to the theory of strings. For instance, it can
deduce the equation y ≈ z from con(x, y) ≈ con(x, z) or from con(x1, y) ≈ con(x2, z)
and len x1 ≈ len x2. Deductions and guesses are actually made on flat forms of the terms
involved instead of the actual terms. A flat form is an equivalent representation of a term
as a flat concatenation of string constants and variables. The computation of flat forms
proceeds bottom-up from sub-terms to super-terms and is such that all terms in the same
equivalence class eventually get the same flat form, which at that point becomes a normal
form for the whole class. For simplicity, and in fact also for efficiency, flat and normal
forms are recomputed from scratch every time a new equation is added to the current set of
constraints. When all normal forms have been computed, equivalence classes are partitioned
into buckets, where each bucket is associated with a different string length. This partitioning
aids in computing a concrete solution for the original problem, that is, a satisfying variable
assignment mapping each variable to a string/integer constant.

3.1 Basic notions and assumptions

To describe our calculus formally, we adopt the following notational conventions. We will
denote characters (i.e., elements of the alphabet A) by the letter c, and string constants by l
or the juxtaposition c1 . . . cn of their individual characters, with c1 . . . cn denoting the empty
string ε when n = 0. We will use x, y, z to denote string variables and s, t, u, v, w to denote
terms in general.

The calculus will maintain terms fully reduced with respect to the rewrite rules in Fig. 2,
which can be shown to be terminating and confluent modulo the axioms of arithmetic. We
denote by t ↓ the fully reduced form of a term t with respect to those rewrite rules. It is
not difficult to see that if t is of sort Str, then t↓ is either an atomic string term or has the
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Fig. 2 Rewrite rules for terms

form con(a1, . . . , an) with n > 1 and a1, . . . , an atomic; if t is of integer sort, then t↓ is an
arithmetic term.

We will consider tuples (s1, . . . , sn) of string terms, with n ≥ 0, and denote them by
letters in bold font, with comma denoting tuple concatenation. For example, if s = (s1, s2)
and t = (t1, t2, t3) we will write (s, t) to denote the tuple (s1, s2, t1, t2, t3). Similarly, if u is
a term, (s, u, t) denotes the tuple (s1, s2, u, t1, t2, t3). We will sometimes use fully reduced
tuples a↓ of atomic terms obtained from an atomic term tuple a by dropping its empty string
components and replacing adjacent string constants by the constant corresponding to their
concatenation. For example, (x, ε, c1, c2c3, y)↓ = (x, c1c2c3, y) and (ε)↓= ().

Definition 1 (Congruence closure) Let S be a finite set of string constraints and let TS be
the set of all terms (and subterms) occurring in S. The congruence closure of S is the set

̂S = {s ≈ t | s, t ∈ TS, S |� s ≈ t} ∪
{s �≈ t | s, t ∈ TS, s′ �≈ t ′ ∈ S ∪ L , S |� s ≈ s′ ∧ t ≈ t ′ for some s′, t ′}

where L = {l1 �≈ l2 | l1, l2 distinct string constants}. ��
Note that while ̂S is infinite, it only contains finitely many equalities. The congruence

closure of S induces an equivalence relation ES over TS where two terms s, t are equivalent
iff s ≈ t ∈ ̂S (or, equivalently, iff S |� s ≈ t). For all t ∈ TS , we denote its equivalence class
in ES by [t]S or just [t] when S is clear or not important.

The calculus applies to a finite set of TSRL-constraints with the goal of determining its
satisfiability in TSRL. The rules of our calculus operate over data structures we call configu-
rations.

Definition 2 (Configurations) A configuration is either the distinguished symbol unsat or
a tuple of the form 〈S, A, R, F, N ,C, B〉 where
– S, A, R are respectively a set of string, arithmetic, and regular language constraints;
– F is a set of pairs s �→ a where s ∈ TS and a is a tuple of atomic string terms;
– N is a set of pairs e �→ a where e is an equivalence class of ES and a is a tuple of atomic

string terms;
– C is a set of terms of sort Str;
– B is a set of buckets where each bucket is a set of equivalence classes of ES . ��
Informally, the sets S, A, R initially store the input problem and grow with additional

constraints derived by the calculus; N eventually stores a normal form for each equivalence
class in ES ; F maps selected input terms to an intermediate form, which we call a flat form,
used to compute the normal forms in N ; C stores terms for which a flat form should not be
computed, to prevent loops in the computation of their equivalence class’ normal form; B
eventually becomes a partition of the set of equivalence classes of ES and is used to generate
a satisfying assignment that maps equivalence classes in different buckets to string constants
of different lengths, and different equivalence classes in the same bucket to different string
constants of the same length.
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Assumption 1 By standard transformations, one can convert any finite set of �SRL-literals
to an equisatisfiable set S0 ∪ A0 ∪ R0, where S0 is a set of string constraints, A0 is a set
of arithmetic constraints, and R0 is a set of regular language constraints. As a consequence,
without loss of generality, we define our calculus to start only with configurations of the form
〈S0, A0, R0,∅,∅,∅,∅〉. For convenience, we also assume that

1. S0 contains no trivial equations t ≈ t ;
2. S0 contains an equation x ≈ t for each non-variable term t ∈ TS0 , where x is a variable

of the same sort as t ;4

3. all string variables occurring in A0 also occur in S0;5

4. all terms in S0 ∪ A0 ∪ R0 are fully reduced with respect to the rewrite system of Fig. 2.

��
3.2 Derivation rules

The rules of the calculus are provided in Figs. 3, 4, 5, 6 and 7 in guarded assignment form,
where fields S, A, R, F, N, C, and B store, in order, the components of a configuration
〈S, A, R, N ,C, B〉. A derivation rule applies to a configuration K if all of the rule’s premises
hold for K and the resulting configuration is different from K . A rule’s conclusion describes
how each component of K is changed, if at all. In the rules, wewrite S, t as an abbreviation for
S∪{t}. Rules with two or more conclusions separated by the symbol ‖ are non-deterministic
branching rules.

For notational convenience, in rule premises and conclusions we treat any string constant l
in a tuple of terms indifferently as an atomic termor a tuple l1, . . . , ln of string constantswhose
concatenation equals l. For example, a tuple (x, c1c2c3, y) with the three-character constant
c1c2c3 may be treated also as the tuples (x, c1, c2c3, y), (x, c1c2, c3, y), or (x, c1, c2, c3, y).
All equalities and disequalities in the rules are treated modulo symmetry of≈. When reading
the rules, it helps to keep in mind that every non-variable string term in a configuration is
equated to a variable in the S component.

We assume the availability of a terminating procedure for checking entailment in the
theory of linear integer arithmetic (|�LIA) and one for computing congruence closures in
the sense of Definition 1 and checking entailment in EUF (|�). Implementations of such
procedures are available in most SMT solvers.

Proof procedures for the calculus maintain at all times a current configuration which they
modify using one of the calculus’ rules. As we will see, the calculus is such that the current
configuration 〈S,A,R,F,N,C,B〉 satisfies the following.
Invariant 1
1. All terms are fully reduced with respect to the rewrite system in Fig. 2.
2. F is a partial map from TS to fully reduced tuples of atomic terms.
3. N is a partial map from ES to fully reduced tuples of atomic terms.
4. For all terms s where [s] �→ (a1, . . . , an) ∈ N or s �→ (a1, . . . , an) ∈ F, we have that
S |�SRL s ≈ con(a1, . . . , an).
5. For all b1, b2 ∈ B, [s] ∈ b1 and [t] ∈ b2, S |� len s ≈ len t iff b1 = b2.
6. C contains only (fully reduced) terms of the form con(a). ��
4 Such equations can always be added as needed using fresh variables without changing the satisfiability of
the original problem.
5 If x occurs only in A0, necessarily in a term of the form len x , the whole term can be replaced by a fresh
arithmetic variable.
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Fig. 3 Rules for theory combination, arithmetic and regular language constraints. zs,t denotes a distinguished
fresh variable for the pair s, t

Fig. 4 Basic string derivation rules

We denote by D(N) the domain of the partial map N, i.e., the set {e | e �→ a ∈
N for some a}. For all e ∈ D(N), we write N e to denote the (unique) tuple associated to
e by N. We use a similar notation for F.

3.2.1 Rule groups

We divide the rules into several groups here to facilitate their description. The first four
rules in Fig. 3 describe the interaction between arithmetic reasoning and string reasoning,
achieved via the propagation of entailed constraints in the shared language. Rule A-Conflict
derives unsat if the arithmetic part of the problem is unsatisfiable.R-Star is the only rule for
handling regular language constraints that we provide here, because the constraints it applies
to can be generated, by rule F-Loop in Fig. 6, even if the initial configuration contains no
regular language constraints.

The basic rules for string constraints are shown in Fig. 4.S-Conflict derives a contradiction
when̂S contains a trivially unsatisfiable equality.S-Cycle equates a concatenation t of terms
with one of them (s) when the remaining ones are all equivalent to ε. It alsomarks t , by adding
it to the componentC, as a term forwhich noflat form should be computed,which prevents the
appearance of cycles in the flat from computation. In the absence of additional information,
S-Split guesses whether two strings are equal or not, while L-Split guesses whether two
string variables have the same length. Deciding on the equality of string variables and their
length is important for constructing satisfying assignments.

The bulk of the work is done by the rules in Figs. 5 and 6. Those in Fig. 5 are used to
compute an equivalent flat form (consisting of a sequence of atomic terms) for each non-
variable term not in the setC. Flat forms are used in turn to compute normal forms as follows.
When all terms of an equivalence class e except for variables and terms in C have the same
flat form, that form is chosen by N-Form1 as the normal form of e. When an equivalence
class e consists only of variables and terms inC, one of the variables in e is chosen, arbitrarily,
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Fig. 5 Normalization derivation rules. The letter l denotes a string constant

Fig. 6 Equality reduction rules. The letters z, z1, z2 denote distinct fresh variables

by N-Form2 as the normal form of e. Reset is meant to be applied after the set S changes,
since in that case normal and flat forms and buckets may need to be recomputed.

Example 1 To see how normal forms are computed by the calculus, say that

S = {x ≈ con(y, z), z ≈ con(w, y)}
initially, where x, y, z andw are all variables. The equivalence classes in̂S are {x, con(y, z)},
{y}, {z, con(w, y)}, and {w}. Assuming the other components of our configuration are empty,
we may compute a total map N over these equivalence classes using the rules in Fig. 5. First,
we may apply N-Form2 to add [y] �→ (y) and [w] �→ (w) to N. Then, we may concatenate
these tuples with F-Form1 to add con(w, y) �→ (w, y) to F. After doing so, since a flat
form exists for each non-variable term in [z], using N-Form1 we may add [z] �→ (w, y) to
N. Likewise, we may apply F-Form1 to add con(y, z) �→ (y, w, y) to F, and N-Form1 to
add [x] �→ (y, w, y) to N. ��

The first two rules of Fig. 6 use flat forms to add to S new equations entailed by S in the
theory of strings. F-Loop is used to recognize and break certain occurrences of reasoning
loops that lead to infinite paths in a derivation tree—see Sect. 5 and Example 7 in that section
for more details on F-Loop.

Example 2 For a more elaborate example of normal form computation that involves also the
rules of Fig. 6, consider an initial configuration with

S = {x ≈ con(y, z), z ≈ con(w, y), x ≈ con(y, u, y)} and A = {len u ≈ lenw} .

In this case, the equivalence class of x is {x, con(y, z), con(y, u, y)}. We could apply the
steps in the previous example to add con(y, z) �→ (y, w, y) to F, and similarly to add
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Fig. 7 Disequality reduction rules. Letters z1, z2 denote distinct fresh variables. For each bucket b ∈ B, lenb
denotes a unique term (len z) where [z] ∈ b. The operator |_| is the set cardinality operator

con(y, u, y) �→ (y, u, y) to F. However, notice that N-Form cannot be applied to the
equivalence class [x], since it contains two terms having different flat forms. When this
occurs, we may use the rules in Fig. 6 to infer additional equalities to resolve this difference.
In this example, we may apply F-Unify to add u ≈ w to S, which will cause the equivalence
classes of u and w to merge. As a consequence, we apply Reset to recompute flat and
normal forms for the terms in S. After that, we obtain identical flat forms for con(y, z) and
con(y, u, y), which allows us to apply N-Norm1 and obtain a normal form for [x]. ��

The rules in Fig. 7 are used to partition the equivalence classes of terms of sort Str into
buckets. The partitioning is based on the expected length of the value that each equivalence
class will eventually be given by a satisfying assignment. Once the relationship between these
lengths is known, different equivalence classes go into different buckets (using D-Base) if
their respective terms are constrained to have different lengths. Otherwise, if their terms are
constrained to have the same length, they go into the same bucket (using D-Add), but only if
we can tell they cannot have the same value.D-Split is used to align the normal forms so that
each equivalence class can be either added to an existing bucket with D-Base or given its
bucket with D-Add. The goal is that, on saturation, each bucket b can be assigned a unique
length nb, and each equivalence class in b can evaluate to a unique string of that length.Card
adds a constraint guaranteeing that the chosen nb is big enough to allow for the existence of
enough distinct strings of length nb.

Example 3 As an example of the application of the rules in Fig. 7, consider a configuration
wherêS contains three equivalence classes [x], [y], and [z], and suppose we have computed
the following normal forms for each of these classes:

N [x] = (w1, w2, w3) N [y] = (w1, w4, w5) N [z] = (w1, w6) .

Furthermore, assume that S |� len x ≈ len y and S |� len x �≈ len z. We may use the rules
in Fig. 7 to partition the equivalence classes of ̂S. Assuming B is initially empty, we may
apply D-Base to add {[x]} and {[z]} to B. Since S |� len x ≈ len y, in order to add [y] to B
we must ensure that the precondition of D-Add is met. Assume that S |� lenw2 ≈ lenw4

and w2 �≈ w4 ∈ ̂S. We may apply D-Add to obtain the bucket b = {[x], [y]}. Assuming the
cardinality of our alphabet is 256, we may apply Card to b to add the constraint len x > 0,
stating that since there are two distinct equivalence classes of strings ([x] and [y]) having the
same length, that length must be at least 1. ��
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3.3 Derivation trees and derivations

Because of the presence of non-deterministic rules, derivations in the calculus construct
derivation trees.

Definition 3 (Derivation tree) A derivation tree is a tree where: (i) each node is a configu-
ration whose children (if any) are obtained by applying to it one of the derivation rules, and
(ii) the root node, which we call the initial configuration, satisfies Assumption 1. ��

A derivation tree is closed if all of its branches (are finite and) end with the unsat con-
figuration. A derivation tree derives from a derivation tree T if it is obtained from T by the
application of exactly one of the derivation rules to one of T ’s leaves. A configuration is
derivable if it occurs in a derivation tree; it derives from a configuration K if it is a child of
K in a derivation tree.

Definition 4 (Derivation) A derivation is a (possibly infinite) sequence (Ti )i∈I of derivation
trees with I ⊆ N, such that T0 is a one-node tree whose root is an initial configuration and
Ti derives from Ti−1 for all positive i ∈ I . ��

When talking about the process of constructing a derivation, we will refer to the most
recently derived configuration as the current configuration.

4 Partial correctness of the calculus

In this section, we formalize the main correctness properties of our calculus, namely that it
is refutation and solution sound. Since a string solver for the theory TSRL can be built as a
specific proof procedure for this calculus, aswe illustrate in Sect. 6, such a solver immediately
inherits those properties. This means in particular that when the solver terminates with a sat
or unsat answer, that answer is correct.

We describe here only the more restricted case of input problems with no regular language
constraints, as those constraints are not the focus of this work.

Lemma 1 For all terms t of sort Str, |�SRL t ≈ t↓.
Proof Immediate consequence of the fact that in each of the rewrite rules of Fig. 2, the
left-hand side is equivalent in TSRL to the right hand side. ��
Lemma 2 Invariant 1 holds for all derivable configurations.

Proof Let K = 〈S, A, R, F, N ,C, B〉 be a derivable configuration. If K is an initial config-
uration, Invariant 1 holds trivially by our assumptions on such configurations. We show that
Properties 1 through 6 of Invariant 1 are preserved by each application of a derivation rule
in our calculus. For each property, we consider only those rules for which the preservation
of the property is not immediate.

(Property 1) To see that this property is preserved, observe that every new term introduced
by the conclusion of a rule (as in F-Split, F-Loop, D-Split, and so on) is either already fully
reduced (because it is, for instance, an atomic term or the concatenation of a variable with
other atomic terms) or gets reduced explicitly with the rewrite rules.

(Properties 2 and 1) The rules in Fig. 5 are the only ones that modify F. We note that
their premises ensure that entries can be added to F only for terms from TS not in the current
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domain of F. Also note that in F-Form1, we know that the new tuple is made up of atomic
terms because of the premises and Property 3. Finally, new tuples are explicitly fully reduced
in each rule modifying F. The argument for Property 3 is similar. We note only that in
N-Form2, a tuple consisting of a single variable is always fully reduced.

(Property 4) The rules in Fig. 5 are the only ones that may impact this property. For
F-Form1, assuming that Property 4 is satisfied by the premise configuration, we have that
S |�SRL t1 ≈ con(s1) ∧ . . . ∧ tn ≈ con(sn). It is easy to see that then S TSRL-entails
the equality chain con(t1, . . . , tn) ≈ con(con(s1), . . . , con(sn)) ≈ con(s1, . . . , sn) ≈
con((s1, . . . , sn)↓). For F-Form2, it is enough to observe that (ε)↓= () and (l)↓= (l) for all
other string constants l and that |�SRL ε ≈ con() and |�SRL l ≈ con(l). For N-Form1, by
assumption of the invariant on the premise configuration we have that S |�SRL t ≈ con(F t)
for some t ∈ [x] with a = F t satisfying Property 4. Hence, S |�SRL x ≈ con(a). Since
N [x] = a after applying the rule, we have that S |�SRL x ≈ con(N [x]) and so S |�SRL
s ≈ con(N [x]) for all s ∈ [x]. Finally, for N-Form2, note that S |�SRL x ≈ con(x). It
follows that S |�SRL s ≈ con(x) for all s ∈ [x].

(Property 5) For D-Base, note that the rule creates a new bucket containing equivalence
class [s] only when S |� len s �≈ lenb for all b ∈ B. For D-Add, note that the rule adds an
equivalence class [s] to an existing bucket b only when S |�SRL len s ≈ lenb. Assuming
Property 5 holds on the premise configuration, we have then that S |� len s ≈ len t for all
[t] ∈ b and S �|� len s ≈ len t for all [t] in other buckets of B.

(Property 6) For S-Cycle, observe that t has the form con(a) by the premise of the rule.
For F-Loop, observe that since F t contains a variable, x , it must have been constructed by
an application of F-Form1, which means that t has the form con(a). In both cases, because
t appears in S, it is fully reduced by Property 1. ��
4.1 Refutation soundness

The first main property is that our calculus is refutation sound, meaning that when it derives a
refutation of 〈S0, A0,∅,∅,∅,∅,∅〉, then S0 ∪ A0 is unsatisfiable in TSRL. Roughly speaking,
we prove this by showing that applications of the rules of the calculus preserve the models
of the configuration they modify. This is straightforward for most rules of the calculus, with
the exception of F-Loop for which we need two auxiliary results first.

In the following lemmawe consider elements of theword algebraA∗; we use juxtaposition
to denote word concatenation and write ln for the n-fold concatenation of word l with itself.

Lemma 3 Let l, l1, l2 ∈ A∗ with l1 �= ε and l2 �= ε, such that l l2 = l1l. Then l = k2(k1k2)n,
l2 = k1k2, and l1 = k2k1 for some k1, k2 ∈ A∗ and n ≥ 0.

Proof Overloading the notation, let |_| also denote word length. We prove the claim by
induction on |l|.

(0 ≤ |l| ≤ |l1|) In this case, l1 = l k1 for some k1 ∈ A∗. The claim then follows by
choosing k2 = l and n = 0.

(|l1| < |l|) In this case, l = l1l ′ for some l ′ ∈ A∗ with |l ′| < |l|. Moreover, l1l ′l2 = l1l1l ′
and so l ′l2 = l1l ′. By the induction hypothesis, l ′ = k2(k1k2)n

′
, l2 = k1k2, and l1 = k2k1

for some k1, k2 ∈ A∗ and n′ ≥ 0. Therefore, l = l1l ′ = k2k1k2(k1k2)n
′ = k2(k1k2)n

′+1. The
claim immediately follows by choosing n = n′ + 1. ��
Lemma 4 If K ′ = 〈S′, A, R′, F, N ,C ′, B〉 is the result of applying F-Loop to a configura-
tion K = 〈S, A, R, F, N ,C, B〉, then S′ ∪ R′ and S ∪ R are equisatisfiable in TSRL.
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Proof It is immediate that every interpretation satisfying S′ ∪ R′ satisfies S ∪ R as well. For
the other direction, assume that in configuration K the premise of F-Loop holds for s and t ,
where F s = (w, x,u1) and F t = (w, v, v1, x, v2). Since s ≈ t ∈ ̂S and due to Property 4
of Invariant 1, we have that S |�SRL con(x,u1) ≈ con(v, v1, x, v2). Consider any model I
of TSRL that satisfies S ∪ R. By the above, we have that

xIuI1 = l1x
IvI2 (1)

where l1 = vIvI1 .
Note that, trivially, xI cannot have more characters than l1xI and that l1 �= ε by the

premises of F-Loop. From (1), we then have that there is some word l2 �= ε such that
xIl2 = l1xI and uI1 = l2vI2 . By Lemma 3, xI = k2k, l2 = k1k2 and l1 = k2k1 for some
k1, k2 ∈ A∗, k = (k1k2)n , and n ≥ 0.

Let z, z1, z2 be the fresh variables introduced by F-Loop into K ′, as shown in the con-
clusion of the rule. Since these variables do not occur in K , we can assume with no loss of
generality by definition of TSRL that zI = k, zI1 = k1 and zI2 = k2. To prove the claim,
it is enough to show that I satisfies the constraints (i) x ≈ con(z2, z), (ii) con(v, v1) ≈
con(z2, z1), (iii) con(u1) ≈ con(z1, z2, v2), and (iv) z ∈ star(set con(z1, z2)) introduced
by the rule:

(i) xI = k2k = zI2 z
I = con(z2, z)I .

(ii) con(v, v1)I = vIvI1 = l1 = k2k1 = zI2 z
I
1 = con(z2, z1)I .

(iii) con(u1)I = uI1 = l2vI2 = k1k2vI2 = zI1 z
I
2 v

I
2 = con(z1, z2, v2)I .

(iv) zI = k = (k1k2)n = (zI1 z
I
2 )n ∈ star(set con(z1, z2))I . ��

Definition 5 (Satisfiable configuration) A configuration 〈S, A, R, F, N ,C, N 〉 is satisfiable
if S ∪ A ∪ R is satisfiable in a model of TSRL. A configuration is unsatisfiable if it is the
unsat configuration or is not satisfiable.

Lemma 5 If a non-leaf node in a derivation tree is satisfiable then one of its children is
satisfiable.

Proof Let K = 〈S, A, R, F, N ,C, N 〉 be a non-leaf node in a derivation tree, and let I be a
model of TSRL that satisfies K . We prove the claim by cases, depending on the rule applied
to K to derive its child(ren).

(S-Conflict, A-Conflict) Since the conclusion of these rules is unsatisfiable, it is enough
to argue they only apply to unsatisfiable configurations. This is, however, immediate.

(Len-Split,S-Split, L-Split) For each of these cases, S∪ A∪ R changes by the addition of
some constraint in one branch and its negation in the other branch. It follows that I satisfies
one of K ’s two children.

(R-Star) Let s, t and zs,t be the terms mentioned in this rule. By assumption on I and the
premise, we have that sI = (tI)n+1 = tI(tI)n for some n ≥ 0. Since zs,t does not occur
in K , we can assume with no loss of generality that zIs,t = (tI)n . Hence, sI = tI zIs,t and
zIs,t ∈ (tI)∗. It follows that I satisfies the conclusion of the rule.

(S-Cycle) Let t = con (v1, s, v2) as in the premise of this rule. By assumption of I and
the premise, we have that tI = (con v1)IsI(con v2)I = εsIε = sI . Thus, I |� s ≈ t .

(F-Loop) By Lemma 4.
(F-Unify, F-Split) Let s, t,w, u,u1, v, v1 be the terms mentioned in the premise of these

rules. By Property 4 of Invariant 1 for s and t , we have that sI = (F s)I = wIuIuI1 and
tI = (F t)I = wIvIvI1 . With F-Unify, since S |�SRL s ≈ t ∧ len u ≈ len v, we have that
uI = vI and so I |� u ≈ v. With F-Split, since S |�SRL s ≈ t ∧ len u �≈ len v, it must be
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that vI is a prefix of uI or vice versa. In the first case, uI = vIk for some word k. Since
z does not occur in K , we can assume that zI = k. Hence, I |� u ≈ con(v, z). The other
case is similar.

(Card) Let b be as in the premise of the rule, and suppose b = {[s1], . . . , [sn]} for some
n > 1. Let m be the cardinality of the alphabet A. By a simple inductive argument based on
D-Base and D-Add, one can show that sI1 , . . . , sIn all have length lenIb and are all distinct.

This means that mlenIb > n − 1. Hence, I |� lenb > �logm (n − 1)�.
(D-Split) The argument is similar to that for F-Split but based on the fact that, because

they have different lengths, either u is longer than v (first branch) or v is longer than u (second
branch).

(Remaining rules) Immediate. ��
Theorem 1 (Refutation soundness) For all closed derivation trees with initial configuration
〈S0, A0,∅,∅,∅,∅,∅〉, the set S0 ∪ A0 is unsatisfiable in TSRL.

Proof Assume that 〈S0, A0,∅,∅,∅,∅,∅〉 has a closed derivation tree T . It is enough to prove
by structural induction on T that each of its subtrees has an unsatisfiable configuration at its
root.

(Base case) Immediate since all of T ’s leafs are the configuration unsat.
(Inductive step) Let K be the root of a non-leaf subtree of T . All children of K are the

root of a subtree of T . By inductive hypothesis, they are unsatisfiable. It follows by the
contrapositive of Lemma 5 that K is unsatisfiable. ��
4.2 Solution soundness

The calculus is also solution sound in the following sense: any saturated configuration (see
next) in a derivation tree determines a variable assignment that is a solution of the original
problem—the one stored in the root of the tree.

Definition 6 (Saturated configuration) A configuration 〈S, A, R, F, N ,C, B〉 in a deriva-
tion is saturated if (i) no rule of the calculus other than Reset applies to it, (ii) N is a total
map over ES , and (iii) B is a partition of ES . ��

A branch in a derivation tree is saturated if it contains a saturated configuration. When
constructing a derivation, a proof procedure can stop as soon as it generates a saturated con-
figuration since such a configuration is a witness to the satisfiability of the original problem.
In particular, for a saturated configuration K = 〈S, A, R, F, N ,C, B〉, it is possible to con-
struct a model IK of TSRL that satisfies S∪ A∪R. We describe this model construction below
and then prove that the obtained model satisfies S ∪ A ∪ R. While our main result holds for
arbitrary derivations of K , to simplify the proof we will assume that the rule F-Loop was
never applied in the given derivation.6 This means in particular that the component R of K
is empty if the corresponding component in the initial configuration is also empty.

We fix a saturated configuration K = 〈S, A, R, F, N ,C, B〉 with R = ∅ for the rest
of the section, together with a derivation of K from an initial configuration of the form
〈S0, A0,∅,∅,∅,∅,∅〉.
Lemma 6 The following hold for configuration K .

1. A |�LIA (len t)↓ ≈ (len (con (F t)))↓ for each t ∈ D(F);

6 F-Loop introduces regular expression which are not the focus of this work.
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2. A |�LIA len x ≈ (len (con (N [x])))↓ for each [x] ∈ D(N );
3. For each x ∈ V(S), if N [x] = (a1, . . . , an) with n > 1 then A |�LIA len x > (len ai )↓

for i = 1, . . . , n.

Proof We prove Point 1. and 2. by simultaneous induction on the derivation of K .
For Point 1., if t was added to D(F) by F-Form2, the claim is immediate. If t was

added to D(F) by F-Form1, we have that t = con(t1, . . . , tm) for some t1, . . . , tm . For
i = 1, . . . ,m, let xi be a string variable such that ti ∈ [xi ] and let si = N [xi ]. Note that
each xi exists by our assumption that every equivalence class contains a variable and each
si exists because the configuration is saturated with respect to the rules of Fig. 5. Also note
that, by the premises of F-Form1, each si was added to D(N ) before t was added to D(F).
By inductive hypothesis then, A |�LIA (len xi )↓ ≈ (len (con si ))↓ for i = 1, . . . ,m, and
thus A |�LIA (len t1)↓ + · · · + (len tm)↓ ≈ (len (con s1))↓ + · · · + (len (con sm))↓. The
claim then follows form the fact that |�LIA (len t)↓ ≈ (len t1)↓ + · · · + (len tm)↓ and
|�LIA (len con(N [t]))↓ ≈ (len (con s1))↓ + · · · + (len (con sm))↓.

For Point 2., if [x] was added to D(N ) by N-Form2, the claim is immediate. In the
case that [x] was added to D(N ) by N-Form1, we have that N [x] = F t for some term
t ∈ [x], that is, some term t such that x ≈ t ∈ ̂S. Since the configuration is saturated with
respect to Len, we have A |�LIA (len x)↓ ≈ (len t)↓. By the premises of N-Form1, t
was added to D(F) before [x] was added to D(N ). It follows by inductive hypothesis that
A |�LIA (len t)↓ ≈ (len (con (F t)))↓, and thus A |�LIA (len x)↓ ≈ (len (con (N [x])))↓.

To show Point [3.], assume N [x] = (a1, . . . , an)with n > 1. By Property 4 of Invariant 1,
and by saturation of K with respect to Len, Len-Split and S-Conflict, A |�LIA len ai > 0
for all i = 1, . . . n. By Point 2., A |�LIA len x ≈ (len a1)↓ + · · · + (len an)↓. It follows that
A |�LIA len x > (len ai )↓ for i = 1, . . . , n. ��

4.2.1 Model construction

We now show how to construct a model I of TSRL from the saturated configuration K . Since
all models of TSRL interpret the function and predicate symbols of TSRL in the same way, we
only need to specify how I interprets variables. We focus on the variables in K as we can
define I arbitrarily over those not in K .

(Integer variables) Observe that A is satisfiable in TSRL. Otherwise as one can easily argue,
it would be LIA-unsatisfiable, making A-Conflict applicable to K . Let I be a model of TSRL
that satisfies A. Note that I need not satisfy S; however, since K is saturated with respect to
Len and Len-Split, it must interpret every term of the form len x in A as some non-negative
integer n and x as a string constant of length n. We can choose I so that, for all distinct string
variables x, y of K ,

(len x)I = (len y)I iff S |� len x ≈ len y . (2)

In fact, if S |� len x ≈ len y then A |�LIA len x ≈ len y by saturation of K with respect to
A-Prop. Hence, (len x)I must equal (len y)I . If, instead, S �|� len x ≈ len y then it must
be that A �|�LIAlen x ≈ len y as otherwise, by saturation with respect to S-Prop and L-Split,
rule S-Conflict would apply. Hence, it is possible to have (len x)I �= (len y)I .

We fix I’s interpretation of the integer variables but redefine its interpretation of the string
variables in K as follows.

(String variables) By point (iii) in the definition of saturated configuration, for every string
variable of K its equivalence class is in some bucket of B, so let us consider those variables
by bucket. By construction of I and Property 5 of Invariant 1, we have that lenIb �= lenIb′
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for all pairs of distinct buckets b, b′ ∈ B.7 Let b1, . . . , bk be an enumeration of B such
that lenIb1 < · · · < lenIbk and let i ∈ {1, . . . , k}. We redefine the interpretation of the string
variables of K by induction on i . Specifically for each equivalence class e ∈ bi we do the
following depending of the value N e.8

1. N e = (l) for some string constant l. We modify I so that yI = l for all variables y ∈ e.
2. N e = (a1, . . . , an)with n > 1. From Lemma 6([3.]), we can conclude that the variables

that (necessarily) occur in (a1, . . . , an)belong to equivalence classes in buckets preceding
bi in the enumeration above and so i must be greater than 1. By induction hypothesis,
we have already redefined I for those variables. We then modify I further so that yI =
con(a1, . . . , an)I for all y ∈ e.

3. N e = (u) for some variable u. We modify I so that yI = l for all variables y ∈ e where
l is some string constant of length lenIbi that we have not used so far. The existence of

such a constant is guaranteed by rule Card, which makes sure that lenIbi is large enough.

Let IK be the modified I. To see that IK is well-defined as an interpretation and, like I,
is a model of TSRL it is enough to observe that, by construction,

for all integer variables z of K , zIK = zI (3)

for all string variables x of K , xIK has length (len x)I (4)

We show next that this model satisfies S ∪ A. ��
Lemma 7 The model IK satisfies A.

Proof Immediate consequence of (3), (4) and the fact that the model I used to construct IK
satisfies A. ��

To show that IK satisfies S we need a few intermediate results.

Lemma 8 Let (Ki )i=1,...,m = (〈Si , Ai , Ri , Fi , Ni ,Ci , Bi 〉)i=1,...,m be the sequence of cur-
rent configurations in the derivation of K , with K = Km. Let (�i )i=1,...,m be the sequence
of binary relations over TSi defined as follows:
1. �0 := ∅;
2. � j+1 := � j ∪ {(t, s)} \ {(s, u) | s � j u} if K j+1 is derived from Ki by an application

of S-Cycle where s, t are as in the premise of those rules;
3. � j+1 := � j , otherwise.

For each i ∈ 1, . . . ,m, the relation�i is well founded.Moreover, none of itsminimal elements
is in Ci .

Proof We prove both claims simultaneously by induction on i .
For the well foundedness one it is enough to show that the relations, which are finite, are

acyclic. The base case and the inductive step when � j+1 := � j are trivial. For case (2),
since �i is acyclic by induction hypothesis, �i+1 has a cycle only if s �∗

i+1 t . But this is
impossible because (i) s �= t by the premises of S-Cycle, and (ii) s is a minimal element for
�i+1.

The term s is not in Ci+1 because it is explicitly removed by S-Cycle from the C compo-
nent of the current configuration if present. The other minimal elements of �i+1, if any, are
all minimal for �i by construction of �i+1, so they are not in Ci+1 by induction hypothesis.

��
7 Refer back to Fig. 7 for a definition of lenb .
8 Observe that N e is defined by point (ii) of Definition 6.
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Lemma 9 For all terms t of sort Str in TS, tIK = (con (N [t]))IK .

Proof Let t ∈ TS of sort Str. We prove the claim by induction on |tIK |. If t is a variable,
the statement holds directly by our construction of IK , so suppose t is not a variable. By
saturation of K and the premises of N-Form1 and N-Form2, then either F t = N [t] or
t ∈ C . We consider the two cases separately.

(F t = N [t]) If t is a string constant l then N [t] = (l) and the claim is immediate.
If t is a term of the form con(t1, . . . , tn) with n > 1, then, by construction of F and N ,
N [t] = (s1, . . . , sn)↓, where s1 = N [t1], . . ., sn = N [tn]. For all i ∈ {1, . . . , n} we have
that |tIK

i | < |tIK | by Lemma 6([3.]) and Lemma 7; so, by induction hypothesis, tIK
i =

(con si )IK . Thus, by definition of ↓ and construction of IK , tIK = (con(t1, . . . , tn))IK =
tIK
1 · · · tIK

n = (con s1)IK . . . (con sn)IK = (con (s1, . . . , sn))IK = (con (s1, . . . , sn) ↓
)IK =(con (N [t]))IK .

(t ∈ C) Let � = �m where �m is the well founded relation defined in Lemma 8. By
that lemma, t is not a minimal for �. However, by the previous case and the lemma again,
sIK = (con (N [s]))IK for all minimal terms s of �. We show below that s̄ ≈ t̄ ∈ ̂S
and s̄IK = t̄IK for all s̄, t̄ such that t̄ � s̄. From that it will then follow that tIK =
(con (N [t]))IK . Let t̄ � s̄. By construction of �, (t̄, s̄) must have been added to it by an
application of S-Cycle, hence t̄ must be of the form con (u1, s̄,u2). Since constraints are
never removed from the S component of the current configuration during a derivation, we
also have that u ≈ ε ∈ ̂S for all u in (u1,u2). Now, if |t̄IK | = 0, since IK is a model of
TSRL and t̄ = con (u1, s̄,u2), it must be that uIK = ε for all u in (u1,u2). If |t̄IK | > 0,
let u in (u1,u2). Since |ε| = 0 and u ∈ [ε], we have by our inductive hypothesis that
uIK = (con (N [u]))IK = (con (N [ε]))IK = (con(ε))IK = ε. In both cases, we can
conclude that s̄IK = t̄IK and s̄ ≈ t̄ ∈ ̂S. ��
Lemma 10 For all buckets b ∈ B and distinct [x], [y] ∈ b, (con (N [x]))IK �=
(con (N [y]))IK .

Proof We prove the claim by induction, assuming the property holds for all buckets b′ where
lenIK

b′ < lenIK
b .

First observe that |xIK | = |yIK | = lenIK
b by construction of IK . Given a derivation of

configuration K , suppose [x] was last added to b after [y] at some step i in the derivation
applied to a configuration Ki in the derivation of K . Then [x] was necessarily added by an
application of D-Add to some term s ∈ [x]. We claim that in K , the equivalence classes [x]
and [y] have respectively the same normal form (w, u,u1) and (w, v, v1) they had in Ki . To
see this note that, once computed, the normal form of an equivalence class is never modified
by the calculus.9 Since K is saturated, this implies that N [x] = Ni [x] and N [y] = Ni [y].
Moreover, since Si ⊆ S, we have by the premise of D-Add that S |� len u ≈ len v and
u �≈ v ∈ ̂S. The disequality u �≈ v implies that u and v are distinct (atomic) terms, otherwise
S-Conflict would apply to K . This means that uIK and vIK are distinct by construction. It
also implies, by saturation of K , that [u] and [v] are in the same bucket b′.

Now, ifw,u1, v1 are all empty tuples, (con (N [x]))IK = uIK �= vIK = (con (N [y]))IK .
If, on the other hand, one of w,u1 and v1 is non-empty, we have by Lemma 6 and by con-
struction of IK that |uIK | < lenIK

b or |vIK | < lenIK
b . In either case, then lenIK

b′ < lenIK
b . By

induction hypothesis for bucket b′, we then have that (con (N [u]))IK �= (con (N [v]))IK

and thus (con (N [x]))IK �= (con (N [y]))IK as well. ��
9 It is at most recomputed from scratch after an application of Reset.
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Lemma 11 The model IK satisfies S.

Proof By Properties (2) and (4) of the model construction, IK satisfies all constraints of the
form len x ≈ len y or len x �≈ len y in S. So we only need to show that IK satisfies all the
equalities s ≈ t and disequalities s �≈ t in S between terms of sort Str.

For s ≈ t , this is an immediate consequence of Lemma 9 after observing that [s] = [t]
and so sIK = (con (N [s]))IK = (con (N [t]))IK = tIK .

For s �≈ t , let x, y be variables such that s ∈ [x] and t ∈ [y] and note that [x] and [y]
are distinct as otherwise S-Conflict would apply to K . Since K is saturated, B is a partition
of ES so there are b1, b2 ∈ B such that [x] ∈ b1 and [y] ∈ b2. If b1 and b2 are different
buckets, by construction of IK we have that |xIK | �= |yIK |, which implies that xIK �= yIK .
By Lemma 9, sIK = xIK and tIK = yIK , hence sIK �= tIK . If b1 and b2 are the same, then
(con (N [x]))IK �= (con (N [y]))IK by Lemma 10. Then sIK �= tIK follows from the fact
that sIK ≈ (con (N [x]))IK and tIK ≈ (con (N [y]))IK by Lemma 9. ��
Theorem 2 (Solution soundness) If a derivation tree with initial configuration
〈S0, A0,∅,∅,∅,∅,∅〉 has a saturated branch with no applications of F-Loop then the set
S0 ∪ A0 is satisfiable in TSRL.

Proof Assume there exists a derivation tree with root node 〈S0, A0,∅,∅,∅,∅,∅〉 containing
a saturated configuration K = 〈S, A, R, F, N ,C, B〉 with R = ∅. By Lemmas 7 and 11,
there is a TSRL-model IK that satisfies S ∪ A. It is easy to show by structural induction on
derivation trees that S ∪ A is a superset of S0 ∪ A0. It follows that S0 ∪ A0 is satisfiable in
TSRL. ��

5 Proof procedure

A proof procedure for the calculus is a procedure that constructs a derivation from an initial
configuration by applying the rules according to a certain application strategy.Wepresent here
an abstract, non-deterministic proof procedure that captures the main features of a concrete
and more sophisticated one we have implemented in cvc4. The procedure is based on the
repeated application of the derivation rules of the calculus according to the six steps below.

Proof procedure steps

1. Reset Apply Reset to reset buckets, and flat and normal forms.
2. Check for conflicts Apply S-Conflict or A-Conflict if possible.
3. Exchange equalities Propagate to completion any entailed equalities between S and A

using S-Prop and A-Prop.
4. Add length constraints Apply Len and then Len-Split to completion.
5. Compute normal forms for equivalence classes Apply S-Cycle to completion and then

the rules in Fig. 5 to completion. If this does not produce a total map N, there must be
some s ≈ t ∈ ̂S such that F s and F t have respectively the form (w, u,u1) and (w, v, v1)
with u and v distinct terms. Let x, y be variables with x ∈ [u] and y ∈ [v]. If S entails
neither len x ≈ len y nor len x �≈ len y, apply L-Split to them; otherwise, apply any
applicable rules from Fig. 6, giving preference to F-Unify.

6. Partition equivalence classes into buckets First applyD-Base andD-Add to completion.
If this does not makeB a partition ofES, there must be an equivalence class [x] contained
in no bucket. If for some bucket b, we have neither S |� len x ≈ lenb nor S |� len x �≈
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lenb, then split on this using L-Split. Otherwise, we must have that S |� len x ≈ lenb
for some bucket b (otherwise D-Base would apply). If there is a [y] ∈ b such that
x �≈ y /∈ ̂S, split on x ≈ y and x �≈ y using S-Split. Otherwise, let [y] ∈ b such that
x �≈ y ∈ ̂S. It must be that N [x] and N [y] share a prefix followed by two distinct terms
u and v. Let xu, xv be variables such as u ∈ [xu] and v ∈ [xv]. If S |� len xu �≈ len xv ,
apply the rule D-Split to u and v. If S |� len xu ≈ len xv , since it is also the case that
neither xu ≈ xv nor xu �≈ xv is in ̂S, apply S-Split to xu and xv . If S entails neither
len xu ≈ len xv nor len xu �≈ len xv , split on them using L-Split.

7. Add length constraint for cardinality Apply Card to completion.

In addition to applying the steps above in the given order, the proof procedure also con-
forms to the following directives.

– Grow the derivation-tree depth first.
– When applying a branching rule try the left-branch configuration first.
– Interrupt a step and restart with Step 1 as soon as S changes.
– Keep cycling through the steps and stop as soon as a closed derivation tree or a saturated

one is derived.

We illustrate the procedure’s workings with a few examples. The first one shows how the
procedure constructs a closed tree from an unsatisfiable input problem.

Example 4 Suppose we start with

A = ∅ and S = {len x ≈ len y, x �≈ ε, z �≈ ε, con(x, l1, z) ≈ con(y, l2, z)}
where l1, l2 are distinct constants of the samepositive length and x, y and z are stringvariables.
After checking for conflicts, the procedure applies A-Prop, S-prop, Len and Len-Split to
completion. All resulting derivation tree branches except one can be closed with S-Conflict.
In the leaf of the non-closed branch every string variable is in a disequality with ε. In that
configuration, the string equivalence classes are {x}, {y}, {z}, {l1}, {l2}, {ε}, and {con(x, l1, z),
con(y, l2, z)}. The normal form for the first three classes is computed with N-Form2; the
normal form for the other three with F-Form2 and N-Form1. For the last equivalence
class, the procedure uses F-Form1 to construct the flat forms F con(x, l1, z) = (x, l1, z)
and F con(y, l2, z) = (y, l2, z), and it uses F-Unify to add the equality x ≈ y to S. The
procedure then restarts but now with the string equivalence classes {x, y}, {z}, {l1}, {l2},
{ε}, and {con(x, l1, z), con(y, l2, z)}. After similar steps as before, the terms in the last
equivalence class get the flat form (x, l1, z) and (x, l2, z) respectively (assuming x is chosen
as the representative term for {x, y}). Using F-Unify, the procedure adds the equality l1 ≈ l2
to S and then derives unsat with S-Conflict. This closes the derivation tree, showing that
the input constraints are unsatisfiable. ��

The next example shows how the procedure derives a saturated configuration from a
satisfiable input problem.

Example 5 Suppose now the input constraints are

A = ∅ and S = {len x ≈ len y, x �≈ ε, z �≈ ε, con(x, l1, z) �≈ con(y, l2, z)}
with l1, l2, x, y and z as in Example 4. After similar steps as in that example, the procedure
can derive a configuration where the string equivalence classes are {x}, {y}, {z}, {l1}, {l2},
{ε}, {con(x, l1, z)}, and {con(y, l2, z)}. After computing normal forms for these classes, it
attempts to construct a partition B of them into buckets. However, notice that if it adds {[x]},
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say, to B using D-Base, then neither D-Base (since S |� len x ≈ len y) nor D-Add (since
x �≈ y /∈ ̂S) is applicable to [y]. So it applies S-Split to x and y. In the branch where
x ≈ y, the proof procedure subsequently restarts, computing normal forms as before. At
that point, it succeeds in making B a partition of the string equivalence classes by placing
[con(x, l1, z)] and [con(y, l2, z)] into the same bucket using D-Add, which applies because
their corresponding normal forms are (x, l1, z) and (x, l2, z) respectively. Any further rule
applications lead to branches with a saturated configuration, each of which indicates that the
input constraints are satisfiable. ��

The final example shows that the procedure is not terminating in general. It diverges when
trying to establish the unsatisfiability of some inputs where the same variable appears on
both sides of an equality.

Example 6 Suppose the input constraints are

A = ∅ and S = {len x ≈ 2 ∗ n, con(a, b, x) ≈ con(x, b, a)}
where a and b are distinct constants of length 1 and x and n are variables. Note that this input
is unsatisfiable, since all models of the second equality interpret x as a word of the form
(ab)ma with m ≥ 0, which has odd length, in contradiction with the constraint expressed by
the first equality. The procedure applies Len and Len-Split to completion, after which it will
determine all non-conflict configurations are such that len x > 0. Using the rules in Fig. 5, it
will construct flat forms (a, b, x) and (x, b, a) for the terms con(a, b, x) and con(x, b, a).
Since len x ≈ 2∗n, we know that len x �≈ 1 ≈ len a, and hence after applying L-Split to the
equality len x ≈ len a, the ruleF-Loopwill apply to the flat forms (a, b, x) and (x, b, a) in all
branches when A-Conflict does not apply. As a result, it will add constraints x ≈ con(z2, z),
con(a, b) ≈ con(z2, z1), and con(b, a) ≈ con(z1, z2) to S and z in star(set con(z1, z2))
to R. After applying Len to completion and Len-Split on z1 and z2, it can be shown that all
non-conflicting child configurations in the derivation tree that are saturated with respect to
the rules in Fig. 6 are such that z1 ≈ b and z2 ≈ a. Since Len is applied to x ≈ con(z2, z),
we have that len x ≈ len z2 + len z. Since len z2 ≈ 1 and len x ≈ 2 ∗ n, this implies
that len z is non-zero. Thus, running the proof strategy described in this section concludes
with a configuration in which the only applicable rule of the calculus in this state is R-
Star. This rule does not suffice to show this example is unsatisfiable: applying R-Star to
z in star(set con(z1, z2)) will add z ≈ con(z1, z2, z′) to S and z′ in star(set con(z1, z2))
to R for some z′. After applying Len to con(z1, z2, z′) we will similarly determine that the
length of z′ must be non-zero, and repeated applications of R-Star could continue in this
way indefinitely. ��

Although we will not do it here, we can show that iterative-deepening variants of the
proof procedure given here are solution complete, that is, always able to generate a saturated
derivation tree when the input problem is satisfiable in TSRL. One simple and practical way
to do that is to bound the sum of the lengths of the string variables in the original problem,
and then attempt to solve the bounded version for increasing values of the bound.

In contrast, we do not have a proof currently that our calculus admits proof procedures
that are refutation complete, that is, guaranteed to generate a refutation for any unsatisfiable
input problem. The main issue is termination. Specifically, we currently do not have a proof
that our calculus admits proof-procedures that always terminate with a saturated or closed
derivation tree. The main problem is represented by non-linear word equations, i.e., positive
string constraints containing more than one occurrence of the same variable. The calculus
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does mitigate the risk of non-termination introduced by such constraints by means of the
F-Loop rule which is able to break certain derivation loops, as shown in the example below.

Example 7 Suppose the input constraint is

A = ∅ and S = {con(x, a) ≈ con(b, x)}
where x is a string variable and a and b are distinct string constants of length 1. It is possible
to show by a simple inductive argument that this problem is unsatisfiable. Suppose wemodify
the proof procedure so that it never applies F-Loop. At some point F-Split is applicable. On
one branch (the other branch is similar), the rule adds x ≈ con(b, x ′) to S with x ′ a fresh
variable. By normalization, we eventually have a configurationwithF con(x, a) = (b, x ′, a),
F con(b, x) = (b, b, x ′) and S |� len x ′ �≈ len b. Rule F-Split is applied again, adding
x ′ = con(b, x ′′) to S with x ′′ fresh. This sort of splitting is triggered indefinitely , each time
with a fresh variant of x ≈ con(b, x ′), making the procedure diverge.

In contrast, if F-Loop is applied on this example, two equalities like a ≈ con(z1, z2) and
b ≈ con(z2, z1) with z1 and z2 fresh variables are added to S. Those two equalities allow
the procedure to generate a closed tree eventually. ��

Unfortunately, F-Loop is not enough to guarantee termination in all cases. Our cur-
rent proof procedure will diverge on certain problems involving non-linear word equations
and additional length constraints on their variables, as illustrated by Example 6. Further-
more, the rule introduces membership constraints even in problems that originally had none.
More importantly, these constraints contain symbolic regular expressions, that is, regular
expressions with occurrences of string variables. Such expressions make it arduous to prove
termination because they can actually denote non-regular languages in general.

Abdulla et al. [1] describe a decision procedure for a subset of the language of TSRL-
constraints that satisfies certain acyclicity properties. We conjecture that our proof-procedure
is terminating on that language and hence is an alternative decision procedure for it. A proof
of this conjecture, however, is non-trivial and out of the scope of this work.

6 Implementation

We have described a calculus and a proof procedure based on it that is solution and refutation
sound for finite sets of TSRL-constraints. In this section, we describe how an efficient solver
based on this proof procedure can be integrated into an DPLL(T )-based SMT solver.

The DPLL(T ) framework used by modern SMT solvers combines a SAT solver with
multiple specialized theory solvers for conjunctions of constraints in a certain theory. These
SMT solversmaintain an evolving set F of quantifier-free formulas (specifically, clauses) and
a set M of literals representing a partial Boolean assignment for the atoms of F . Periodically,
a theory solver is asked whether M is satisfiable in its theory.

In terms of our calculus, we assume that the literals of an assignment M are par-
titioned into string constraints (corresponding to the set S in the current configuration
〈S,A,R,F,N,C,B〉), arithmetic constraints (the set A) and regular language constraints
(the set R). These sets are subsequently given to two independent solvers, the string solver
and the arithmetic solver. The rules A-Prop and S-Prop model the standard mechanism
for Nelson–Oppen theory combination, where entailed equalities between shared terms are
exchanged between these solvers. The satisfiability check performed by the arithmetic solver
is modeled by the rule A-Conflict. Note that there is no additional requirement on the arith-
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metic solver, and thus a standard DPLL(T ) theory solver for linear integer arithmetic can be
used.

The case splitting done by the string solver (with rules S-Split and L-Split) is achieved by
means of the splitting on demand paradigm [2], in which a solver may add theory lemmas to
F consisting of clauses, possibly with literals not occurring in M . The case splitting in rules
F-Split and D-Split can be implemented by adding a lemma of the form ψ ⇒ (ϕ1 ∨ ϕ2) to
F , where ϕ1 and ϕ2 are new literals. For instance, in the case of F-Split, we add the lemma
ψ ⇒ (u ≈ con(v, z) ∨ v ≈ con(u, z)), where ψ is a conjunction of literals in M entailing
s ≈ t ∧ s ≈ F s ∧ t ≈ F t ∧ len u �≈ len v in the overall theory.

The rules Len, Len-Split, and Card involve adding constraints to A. This is done by
the string solver by adding to F lemmas containing arithmetic constraints. For instance, if
x ≈ con(y, z) ∈ ̂S, the solver may add a lemma of the form ψ ⇒ len x ≈ len y + len z
to F , where ψ is a conjunction of literals from M entailing x ≈ con(y, z), after which the
conclusion of this lemma is added to M and hence to A.

In DPLL(T ), when a theory solver determines that M is unsatisfiable (in the solver’s
theory) it generates a conflict clause, the negation of an unsatisfiable subset of M . The string
solver maintains a compact representation of ̂S at all times. To construct conflict clauses, it
also maintains an explanation ψs,t for each equality s ≈ t it adds to S by applying S-Cycle,
F-Unify or standard congruence closure rules. The explanationψs,t is a conjunction of string
constraints in M such that ψs,t |�SRL s ≈ t . For F-Unify, the string solver maintains an
explanation ψ for the flat form of each term t ∈ D(F) where ψ |�SRL t ≈ con(F t). When
a configuration is determined to be unsatisfiable by S-Conflict (which in practice happens
when s ≈ t, s �≈ t ∈ ̂S for some s, t), the solver replaces the occurrence of s ≈ t with its
corresponding explanation ψ , and then replaces the equalities in ψ with their corresponding
explanations, and so on, untilψ consists of only equalities fromM . Then it reportsψ ⇒ s ≈ t
as a conflict clause.

All other rules, such as those that modify N, F and B, model the internal behavior of the
string solver.

7 Experimental results

We have implemented a theory solver based on the calculus and proof procedure described in
the previous section within the latest version of our SMT solver cvc4.10 The string alphabet
A for this implementation is the set of all 256 ASCII characters. To evaluate our solver
we did an experimental comparison with three of the string solvers mentioned in Sect. 1.1:
kaluza (latest version from its website), s3 (latest version from its website), and z3- str
(version 20140720). These solvers, which have been widely used in security analysis, were
chosen because they are publicly available and have an input language that largely intersects
with that of our solver. We also considered an experimental version of norn supporting the
concrete syntax of our benchmarks. We were, however, unable to produce meaningful results
with that version.11 As a consequence, we will not discuss norn in the following.

All results in this section were produced on StarExec [28], a specialized public execution
service that allows researchers to run comparative evaluations of logical solvers. The service

10 cvc4 is publicly available at http://cvc4.cs.nyu.edu/.
11 For many benchmarks, norn, which runs on the Java virtual machine, crashed when executed on StarExec
because of insufficient resources in the JVM. Also, for satisfiable problems, norn returns solutions in a
non-standard format, which made it difficult for us to validate those models.
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has been hosting regular solver competitions (e.g., SMT-COMP) since 2013. All experiments
were run in the all.q queue of the StarExec cluster, which consists of 160 identical nodes. Each
node uses a 2.40 GHz Intel Xeon E5-2609 with 10 MB cache and 256 GB main memory.12

Modulo superficial differences in the concrete input syntax, cvc4, kaluza, s3, and z3-
str accept as input a set of TSRL constraints, with the exception that z3- str does not accept
regular language constraints. All tools report on the satisfiability of the input problem with a
sat, unsat or unknown answer. In the first case, cvc4 and s3 and z3- str can also provide
a solution, i.e., a satisfying assignment for the variables in the input set. kaluza can do that
for at most one query variable which must be specified beforehand in the input file.

An initial series of regression tests on all four tools revealed several usability and correct-
ness issues with kaluza and a fewwith s3 and z3- str. In kaluza, they were caused by bugs
in its top level script which communicates with different external tools, e.g., the solvers Yices
andHampi, via the file system. Those bugs range from failure to clean up temporary files to an
incorrect use of the Unix grep tool to extract information from the output of underlying tools.
Since kaluza is not in active development anymore, we made an earnest, best-effort attempt
to fix these bugs ourselves. However, there seem to be more serious flaws in kaluza’s inter-
face or algorithm. Specifically, often kaluza incorrectly reports unsat for problems that are
satisfiable only if some of their input variables are assigned the empty string. Moreover, in
several cases, kaluza’s sat/unsat answer for the same input problem changes depending
on the query variable chosen. Because of this arbitrariness, in our experiments we removed
all query variables in kaluza’s input.

Our previous experiments [18] found that in several cases z3- str returned spurious solu-
tions, i.e., assignments to the input variables that do not in fact satisfy the input problem.Also,
it classified some satisfiable problems as unsat. Prompted by our inquiries, the z3- str devel-
opers produced and shared with us a new version of z3- str that fixes the spurious solutions
problem (Version 20140720). We are using that version for the comparison in this paper. In
that version of z3- str, we have detected no incorrect solutions on these Kudzu benchmarks.
However, we have discovered that z3- str sometimes generates incomplete solutions, that is,
it generates a satisfying assignment only for a subset of the variables in the input benchmark.
This happened for a large amount of benchmarks (6404) in our set. For example, for the
benchmark sat/big/100.corecstrs.readable.smt2, the returned solution does
not contain an assignment for three of the 243 declared input variables.

Similar errorswere observedwith s3,which is an extension for z3- str, although this solver
returns a smaller number of incomplete solutions (4826) for the same set of benchmarks than
z3- str. In contrast, s3 reports 95 unsound answers, i.e., it reports unsat in 95 cases where
both cvc4 and z3- str find a verifiable solution.

On our full set of benchmarks, we did not find any evidence of erroneous behavior in cvc4
when comparedwith the other three solvers. Every solution produced by cvc4 was confirmed
by cvc4, s3 and z3- str by appending the solution as a set of constraints to the input problem
and checking that the strengthened problem was satisfiable. Furthermore, no unsat answers
from cvc4 were contradicted by a confirmed solution from either s3 or z3- str.

7.1 Comparative evaluation

For our evaluation, we selected 47,284 benchmark problems from a set of about 50K bench-
marks generated by Kudzu, a symbolic execution framework for Javascript, and available

12 Both the solvers and the results are available, by logging in as a guest user, at https://www.starexec.org/
starexec/secure/details/job.jsp?id=6875 (cvc4) and https://www.starexec.org/starexec/secure/details/job.jsp?
id=6891 (z3- str and s3).
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Table 1 Comparative results

Result CVC4 S3 Z3-str Kaluza Kaluza-orig

� × ? � ? � × � × �

Sat 33,772 0 4826 26,099 6404 26,403 n/a 25,468 n/a 3

Unsat 11,625 95 11,313 11,340 7154 13,435 27,450 805

Timeout 1887 1647 2773 84 84

Unknown 0 896 364 3 0

Error 0 2414 0 1140 18,942

Avg.mem 14,130 60,447 82,160 n/a n/a

on the kaluza website [26]. The discarded problems either had syntax errors or included
a macro function (CapturedBrack) whose meaning is not fully documented.13 We trans-
lated those benchmarks into cvc4’s extension of the SMT-LIB 2 format to the language of
TSRL14 and into the z3- str format. Some benchmarks contain regular membership con-
straints (s in r), which z3- str does not support. However, in all of these constraints the
regular language denoted by r is finite and small, so we were able to translate them into
equivalent string constraints.

We ran cvc4, s3, z3- str and two versions of kaluza, the original one and the one with
our debugged script, on each benchmark with a 2-minute CPU time limit. (We obtained
the same results with timeouts up to 15 minutes.) The results are summarized in Table 1.
Column Kaluza-orig refers to the original version of kaluza, while the error line counts
the total number of runtime errors. The results for z3- str and the two versions of kaluza
are separated in (up to) three columns: the × column contains the number of provably
incorrect answers, the ? column contains the number of incomplete solutions, and the �
column contains the rest. By provably incorrect here we mean a spurious solution or an
unsat answer for a problem that actually has a verified solution.

Note that the figures for the two versions of kaluza are unfairly skewed in their favor
because neither version returns solutions, whichmeans that their sat answers are unverifiable
unless one of the other solvers produces a solution for the same problem. For a more detailed
discussion, we look at the benchmark problem set broken down by the cvc4 results. For
brevity, we discuss only our amended version of kaluza below.

All of cvc4’s 33,772 sat answers were corroborated by a confirmed solution. In addition,
any problem that is classified as sat by either s3 or z3- str, can be solved by cvc4. Among
these 33,772 sat answers, s3 agreed on 30,925 and generated 26,099 verifiable full solutions
but returned 4826 incomplete solutions; z3- str agreed on 32,807 and generated 26,403
verifiable full solutions but returned 6404 incomplete solutions.Neither s3 or z3- str returned
a spurious solution.

Noneof the 11,625unsat answers providedbycvc4were provably incorrect,meaning that
no other solver generated a confirmed solution for these benchmarks. Among these 11,625
unsat answers, both s3 and z3- str agreed on 11,313, and timed out on the remaining 312.

13 The Kaluza documentation does not specify the meaning of the function when its second argument, an
integer, is greater than 0.
14 The SMT-LIB 2 standard does not include a theory of strings yet although there are plans to do so. cvc4’s
extension is documented at http://cvc4.cs.nyu.edu/wiki/Strings.

123

http://cvc4.cs.nyu.edu/wiki/Strings


Form Methods Syst Des

Fig. 8 Runtime comparison of cvc4, s3, z3- str and the amended kaluza. Times are in seconds. The 0 line
stands for benchmarks cumulatively solved within 1 s

With respect to the total unsat answers on all benchmarks, s3 erroneously classified 95
sat problems as unsatisfiable, while z3- str distinctively reports an additional 27 unsat
problems. kaluza reported 11,394 unsat problems and 25,468 sat problems (unverifiable
because of the absence of solutions), erroneously classified 7154 as unsatisfiable, reported
unknown for 3, produced an error for 562, and timed out on 84.

cvc4 timed out on 1887 problems, but produced no errors and no unknown answers.
z3- str timed out on 2773 problems, and produced 364 unknown answers. s3 timed out on
1647 problems and produced 896 unknown answers and 2414 errors.

These results provide strong evidence that cvc4’s string solver is sound, i.e., any unsat
answers from cvc4 can be trusted. They also show that cvc4’s string solver answers sat
more often than s3 and z3- str and kaluza, providing a correct solution in each case. Thus,
it is overall the best tool for both satisfiable and unsatisfiable problems.

In terms of run time performance, a comparison with kaluza is not very meaningful
because of its high unreliability and the unverifiability of its sat answers. However, an
analysis of our detailed results shows that cvc4 has nonetheless better runtime performance
overall with respect to all of the solvers. This can be easily seen from the cactus plot in
Fig. 8, which shows for each of the four systems how many benchmarks it cumulatively
solves within a certain amount of time.

Thanks to the StarExec infrastructure, we can accurately measure the memory consump-
tion of each solver on every benchmark. cvc4 consumed the least memory on average
(14 MB), compared to s3 (60 MB) and z3- str (82 MB).

8 Conclusion and further work

We have presented an approach for solving quantifier-free constraints over a theory of
unbounded strings with length and regular language membership. Our approach integrates
a specialized theory solver for such constraints within the DPLL(T ) framework. We have
described the approach abstractly as a calculus and a general proof procedure for that cal-
culus. We have proven that the proof procedure is both solution sound and refutation sound.
We have also given experimental evidence that our implementation in the SMT solver cvc4
is highly competitive with existing tools.

We are currently extending the scope of our string solver to support a richer language of
string constraints that occur often in practice, especially in security applications. In prelimi-
nary implementation work in cvc4, we have found that commonly used predicates (such as
the predicate contains for string containment) can be handled efficiently by extending the
calculus described in this paper. We are also working on a more sophisticated approach for
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dealing with regular language constraints, using a separate dedicated solver that is similarly
integrated into the DPLL(T ) framework.

At the theoretical level, we would like to identify further interesting fragments of the TSRL
theory over which our proof procedure is both terminating and refutation complete.
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