
1

SYSLITE: Syntax-Guided Synthesis of PLTL
Formulas from Finite Traces

M. Fareed Arif, Daniel Larraz, Mitziu Echeverria, Andrew Reynolds, Omar Chowdhury, Cesare Tinelli
Department of Computer Science, The University of Iowa

Abstract— We present an efficient approach to learn past-time, propo-
sitional linear temporal logic formulas (PLTL) from a set of propositional
variables and a sample of finite traces over those variables. The efficiency
of our approach can be attributed to a careful encoding of the PLTL for-
mula learning problem as a bit-vector function synthesis problem, and the
use of an enhanced Syntax-Guided Synthesis (SyGuS) engine to solve the
latter. We implemented our approach in a tool called SYSLITE and em-
pirically evaluated its efficacy with two case studies. In these case studies,
we observe that SYSLITE on average enjoys a speedup of 44x over current
learning approaches for temporal formulas while learning the expected for-
mulas in the vast majority of cases.

I. INTRODUCTION

This paper focuses on the problem of synthesizing past-time,
propositional linear temporal logic (PLTL) formulas when given
an alphabet (i.e., a set of propositional variables) and a sample
of finite traces as inputs. The input sample consists of a set of
positive traces and a disjoint set of negative traces. The syn-
thesized PLTL formulas — containing the usual logical connec-
tives, past-time temporal operators, and propositional variables
from the input alphabet — then are required to be satisfied by
each of the positive traces and falsified by each of the negative
traces. In machine learning terms, our goal is to learn classifiers
for the input traces. However, in contrast to statistical learning
approaches, our setting requires an exact classifier for the sam-
ple traces, that is, one that rejects no positive traces and accepts
no negative ones [1].

The synthesis of PLTL formulas from finite samples has a va-
riety of applications, including security policy mining from logs
[2, 3], debugging or understanding the behavior of a system [4],
and identifying the root cause of a protocol’s misbehavior [5,6].
The PLTL fragment we consider here represents safety proper-
ties amenable to efficient runtime verification [7–11]. This frag-
ment or its variants have been used to represent security, privacy,
and safety properties of a system which can then be efficiently
enforced through runtime monitoring [10–14].

We use PLTL formula synthesis to learn attack signatures for
cellular networks such as 3G, 4G LTE, and 5G from a set of
benign (i.e. positive) and attack (i.e. negative) traces. The
cellular network attacks we consider here are possible due to
the protocol state machine’s inability to handle particular out-
of-order protocol packets injected over-the-air by an adversary
[5,15–19]. Such attack signatures can be characterized by PLTL
formulas when considering the relative ordering of packets and
their payloads received/sent by the cellular device. One can en-
vision a protocol monitor installed on a mobile device which
captures messages from the cellular modem with the goal of de-
tecting particular attack signatures and notifies the user when
such attacks are detected. To our knowledge, there exist no at-
tack notification mechanisms of this kind currently. Efficiently

solving the PLTL formula synthesis problem is the first technical
step towards building such mechanisms.

Prior work. The prior work most relevant to ours is the one
described by Neider and Gavran [4]. They present two meth-
ods for synthesizing propositional, future-only linear temporal
logic (LTL) formulas given an alphabet and a sample of infinite
traces. The first method formulates the LTL formula synthe-
sis problem as a Boolean satisfiability problem and then uses
an off-the-shelf SAT solver to solve that problem. Because the
SAT-based approach does not scale, the authors then develop a
second method based on decision tree learning where the SAT-
based method is used as an oracle to generate predicates for
the decision tree. More recently, Riener [20] improves on Nei-
der and Gavran’s SAT-based method by precomputing models
for shape constraints required by the original method. The ap-
proaches following in these works are not directly applicable to
attack signature generation due to one or more of the following
reasons: (1) they consider samples with infinite traces only; (2)
they synthesize LTL formulas containing only future temporal
operators, which are not necessarily monitorable at runtime; (3)
they impose certain shape restrictions on the synthesized for-
mula which lead to lengthy formulas.

Exploring possible approaches. Since the prior methods
above [4,20] are not directly applicable to our problem domain,
we started by first adapting them to the synthesis of PLTL for-
mulas from finite traces. In our evaluation, we observe that these
approaches either do not scale or do not yield succinct formu-
las. We then tried to reduce the synthesis problem to a Satisfi-
ability Modulo Theory (SMT) problem where the PLTL syntax
is encoded as an algebraic data-type (ADT) and the formula to
synthesize is represented by a free variable f with that type. We
encoded the requirements of acceptance of the positive traces
and rejection of the negative traces as constraints on f and used
an SMT solver with finite model finding capabilities [21, 22] to
obtain models of the ADT problem. Such models assign to f a
datatype value representing a candidate solution to the synthesis
problem. Unfortunately, this SMT-based approach is not scal-
able either, which prompted us to consider an encoding of our
synthesis problem as a Syntax-Guided Synthesis (SyGuS) prob-
lem [23] over ADTs. Similarly to previous approach, however,
the SyGuS approach proved to be not scalable. The main reason
in both cases seems to be that ADTs are user-defined and hence
are do not benefit from the sort of specialized optimizations that
SMT solvers employ for other builtin theories.

Our approach. This brings us to our final approach in which
we encode the problem as a SyGuS problem with fixed-size bit-
vectors and use a specific SyGuS engine [24] to solve the prob-
lem. In our encoding, we view the projection of a trace with

2

respect to a propositional variable as a fixed-size bit-vector and
then lift the semantics of logical and past temporal connectives
to operate over bit-vectors. Such an encoding has the follow-
ing advantages: (1) since fixed-size bit-vectors are natively sup-
ported by the SyGuS solver, we benefit from the solver’s var-
ious optimization techniques (e.g., rewrite rules) for them; (2)
restrictions on the shape of the formula to be learned can be
readily added as syntactic constraints on the SyGuS problem;
(3) semantics constraints capturing the formula’s consistency
with sample traces can be efficiently evaluated through direct
bit-vector operations on whole traces, unlike prior approaches
which operate on each individual point on a trace; (4) with an ap-
propriate term enumeration strategy within the SyGuS solver, it
is possible to obtain candidate formula of minimal size together
with other candidates; (5) thanks to the SyGuS solver’s sym-
metry breaking criteria (i.e., agreement over the sample traces),
our approach can enumerate different shapes of formulas while
maintaining scalability.
Implementation and evaluation. We have implemented our
approach in a novel tool called SYSLITE which uses the CVC4SY
SyGuS engine [24]. We also adapted for our setting and imple-
mented the prior methods [4, 20] mentioned earlier and consid-
ered them as baselines in our experiments. We evaluated the
various approaches based on their scalability and ability to syn-
thesize succinct PLTL formulas. To verify the generality of our
SyGuS approach, in a first case study, we collected a number of
PLTL formulas from the literature and considered them as tar-
get formulas to be learned. For each seed formula, we generated
random traces and classified them as positive or negative based
on whether they satisfied or falsified the formula. We then fed
a subset of these classified random traces to both SYSLITE and
our implementation of the baseline approaches, and compared
the synthesized formulas with the corresponding target formu-
las. We observed that SYSLITE enjoys an average 60x speedup
over the baseline while synthesizing a formula logically equiva-
lent to the seed formula in most cases.

In a second case study, we used real-world cellular network
traces for 11 known attacks [5, 15–19] and compared SYSLITE
with the baseline. We observed that on-average SYSLITE can
learn the attack signatures 28x times faster than the baseline
while still being able to generate succinct attack signatures.
Contributions. To summarize, this paper makes the following
technical contributions:

1. We studied a number of possible approaches for PLTL formula
learning from samples, including extensions of prior SAT-based
approaches originally applied to learning LTL formulas with fu-
ture operators only. Our empirical evaluations of the approaches
demonstrate that none of these explored approaches scale to re-
alistic trace lengths and numbers of input traces.

2. We propose a new, more scalable learning approach which for-
mulates the learning problem as a SyGuS problem and relies
on a high-performance SyGuS engine to generate candidate so-
lutions. Our encoding uses the theory of fixed-size bit-vectors
which is natively supported by the underlying SyGuS solver, en-
abling us to benefit from several specific optimizations.

3. Our PLTL formula learning approach is implemented in a new
tool, SYSLITE, which uses the CVC4SY SyGuS engine as a
backend. We have empirically evaluated its efficacy on two case

studies while considering previous state-of-the-art methods as
baselines. The case studies show that that SYSLITE on-average
enjoys a 44x speed-up over the baselines while, at the same time,
being able to learn the expected behavior in almost all cases.

II. TECHNICAL PRELIMINARIES

Many-Sorted First-Order Logic. We start off by briefly re-
viewing the usual notions and terminology of many-sorted first-
order logic with equality ('). We assume the usual definitions
of signature, well-sorted terms, literals, and formulas [25]. A
theory is a pair T = (Σ, I) where Σ is a signature and I is a non-
empty class of Σ-interpretations, the models of T , that is closed
under variable reassignment and isomorphism. A Σ-formula ϕ
is T -satisfiable (respectively, T -unsatisfiable) if it is satisfied by
some (resp., no) interpretation in I . A satisfying interpretation
for ϕ models ϕ. A formula ϕ is valid in T (or, T -valid), written
|=T ϕ, if every model of T is a model of ϕ.
Theory of Fixed-size bit-vectors. The theory TBV =
(ΣBV, IBV) of fixed-size bit-vectors as defined in the SMT-
LIB 2 standard [26] consists of the class of interpretations IBV

and signature ΣBV, which includes a unique sort for each pos-
itive integer n (representing the bit-vector width). We assume
that ΣBV includes all bit-vector constants for each n, repre-
sented here as bit-strings or, to simplify the notation, by the cor-
responding natural number in {0, . . . , 2n−1}. We write a ΣBV-
term (or, bit-vector term) t of width n as t[n] when we want to
specify its bit-width explicitly. We refer to the i-th bit of t[n] as
t[i] with 0 ≤ i < n. We consider t[0] as the least significant bit
(LSB), and t[n − 1] as the most significant bit (MSB) of t, and
denote the subvector of t from index j down to i as t[j : i]. We
will use the following arithmetic bit-vector operators: addition
(+), arithmetic negation (−), and unsigned shift to the left (<<),
as well as the following bitwise operators: logical negation (∼),
conjunction (&), and disjunction (|).
SyGuS Problem. A SyGuS problem for a function f in a the-
ory T consists of (1) semantic restrictions, or a specification,
given by a (second-order) T -formula of the form ∃f. ϕ, and (2)
syntactic restrictions on the definitions for f , given by a context-
free grammar R. A solution for f is a lambda term λx. e of the
same type as f , such that (i) ϕ{f 7→ λx. e} is T -valid (modulo
beta-reductions) and (ii) e is in the language generated by R.
Past-Time Propositional Linear Temporal Logic (PLTL).
The formulas we learn are of the formf Φ where Φ is a PLTL
formula and f is a future temporal operator over finite traces
(discussed below).

Definition 1 (Syntax). We use meta-variables Φ and Ψ to de-
note well-formed PLTL formulas, which are defined as follows:

Φ,Ψ ::= > | ⊥ | p | ◦1 Φ | Φ ◦2 Ψ

where p belongs to a non-empty set, or alphabet, A of propo-
sitional variables. The language also has unary operators
◦1 ∈ {¬,,,} and binary operators ◦2 ∈ {∧,∨, S }. A
core formula is a formula that does not contain the operators ∨,
, and . The size of a formula Φ, denoted with |Φ|, is the
number of its proper subformulas.

Informally, > and ⊥ are the universally true and the uni-
versally false formulas, respectively, and ∧,∨, and ¬ are the

3

usual Booleans operators. On the other hand, ,,, and
S are past temporal operators, respectively read as “yester-
day”, “once”, “historically”, and “since. Unary operators have a
higher precedence than binary operators, and temporal operators
have a higher precedence than logical operators.

We fix an alphabet A for the PLTL formulas we consider
in the rest of the paper. The standard PLTL semantics is de-
fined over infinite traces in a Kripke structure [27]. For our
purposes, however, it is more useful to define a semantics of
PLTL over finite traces. A finite trace σ (of length n ∈ N over
A) is a sequence (σ0, . . . , σn−1) of states where a state is a to-
tal mapping from A to the set {t, f} of Boolean values. Let
σ = (σ0, . . . , σn−1) be a trace of length n. For a propositional
variable p ∈ A and we denote by σ(p) the projection of σ over
p, that is, the sequence of Boolean values (σ0(p), . . . , σn−1(p)).

Definition 2 (Semantics). The semantics of PLTL is provided
by a ternary satisfiability relation |= defined inductively over
core PLTL formulas as follows for all finite traces σ =
(σ0, . . . , σn−1) and positions i ∈ [0, n− 1].

• σ, i |= >
• σ, i |= p if σi(p) = t
• σ, i |= ¬Φ if (σ, i) 6|= Φ
• σ, i |= Φ ∧Ψ if (σ, i) |= Φ and (σ, i) |= Ψ
• σ, i |= Φ if i > 0 and (σ, i− 1) |= Φ
• σ, i |= ΦS Ψ if there is an j ∈ [0, i] such that (σ, j) |= Ψ and

(σ, k) |= Φ for all k ∈ [j + 1, i].

This semantics is extended to the full language of PLTL by
treating the additional operators as syntactic sugar according to
the following equivalences: ⊥ ≡ ¬>; Φ ∨ Ψ ≡ ¬(¬Φ ∧ ¬Ψ);
Φ ≡ >S Φ; Φ ≡ ¬¬Φ. We write σ |= Φ as a short-
hand for σ, 0 |= Φ. Finally, we write σ |= fΦ to indicate that
σ, i |= Φ for all i ∈ [0, n− 1] where n is the length of σ.

III. PROBLEM DEFINITION AND POSSIBLE APPROACHES

In this section, we formalize the problem of PLTL formula
synthesis from finite samples and discuss potential but ineffi-
cient approaches for solving it. We start by introducing the aux-
iliary notion of consistency used in our problem definition.

Definition 3 (Consistency). A PLTL formula Φ is consistent
with a finite sample D = (P,N) of positive finite traces P
and negative finite traces N with P ∩ N = ∅ if and only if the
following two conditions hold.

1. σ+ |= fΦ for all traces σ+ ∈ P .
2. σ− 6|= fΦ for all traces σ− ∈ N .

A formula Φ consistent withD is minimal if no PLTL formula
Ψ with |Ψ| < |Φ| is consistent with D.

Problem Definition 1 (PLTL Formula Synthesis from Finite
Samples). The PLTL formula synthesis problem for a given
sampleD = (P,N) is the problem of finding one or more PLTL
formulas Φ that are consistent with D.

A. Possible Approaches

We considered several natural approaches to the PLTL syn-
thesis problem. Unfortunately, our experimental evaluation re-
vealed that they do not scale well. It is, however, valuable to

discuss them here because their weaknesses point to potential
performance bottlenecks which any synthesis algorithm must
overcome to be effective in practice. We describe a better ap-
proach in Section IV
SAT-based Approaches. We adapted to our context prior SAT-
based approaches for learning LTL formulas from samples con-
taining only infinite traces [4, 20]. These approaches look for
formulas of increasing size, measured as the depth of the for-
mula’s abstract syntax tree (AST) which, in essence, guarantees
the identification of minimal formulas consistent with a given
sample D. As in the approach by Neider and Gavran [4], for a
given depth d, the PLTL formula synthesis problem can be posed
as the problem of checking the satisfiability of a formula γd of
propositional logic. The reduction is meant to be such that, γd is
satisfiable exactly when the original synthesis problem is solv-
able. Moreover, it is possible to construct a PLTL solving the
synthesis problem from any propositional model of γd. The for-
mula γd has the form γdsyn ∧ γdsem where γdsyn tries to captures
syntactic restrictions on the expected solution (a well-formed
PLTL formula with depth d) whereas γdsem captures the seman-
tic restriction that the extracted solution is consistent with the
sample.1 In turn, γdsyn has the form γdshape∧γdlabel where models
of γdshape determine possible AST shapes of depth d (including
some infeasible ones) and models of γdlabel assign labels (i.e.,
propositions, logical or temporal operators) to the AST nodes.
To identify different feasible formulas, this SAT-based approach
can be executed in enumerative mode by blocking a returned
model of γd and reissuing a call to the SAT solver with γd as
well as the blocking formula. Similarly to the original work,
this approach does not scale to realistically sized traces or large
or numbers of them, as we discuss in our evaluation section.

Recently, Riener [20] improved on Neider and Gavran’s
method by precomputing the models of the formula γdshape for
a given depth d and then supplying them with the rest of the
formulas in γd. Unlike the approach by Neider and Gavran,
models of γdshape are well-formed AST shapes. Thus, models of
γdsyn are indeed well-formed PLTL formulas. Riener achieves
these stronger syntactic restrictions using an underlying repre-
sentation based on chains instead of directed acyclic graphs as
in Neider and Gavran. This approach essentially trades-off input
size for execution time. We adapted this approach to our context
but observed that scalability issues persist, especially, when the
alphabet size is larger than 3.

Finally, we also considered a second approach by Neider and
Gavran [4] which combines a classical decision tree learning
algorithm with their SAT-based approach. In a first phase of
this approach, the SAT-based algorithm is executed over k pos-
itive and k negative traces to obtain a candidate formula. The
approach keeps choosing randomly from 2k traces until all the
example traces can be separated or a timeout is reached. At that
point, it invokes the decision tree learning algorithm which es-
sentially uses the candidate formulas generated in the first phase
as possible predicates for the decision tree. Because the decision
tree learning algorithm combines these predicates into if-then-

1In reality, models of γd
syn can actually lead to ill-formed PLTL formulas

since the syntactic restrictions are not strong enough to rule out some ill-formed
ASTs. So some a posteriori filtering is required.

4

else clauses, it only applies to logical languages that are closed
under negation. Unfortunately, the presence of the outermostf
operator in our PLTL fragment of interest, makes this fragment
not closed under negation and hence this second approach is not
applicable to our case.
SMT-based Approach. One of the scalability challenges of
SAT-based algorithms can be attributed to the inefficient enu-
meration of the well-formed PLTL formulas. This is particularly
apparent in the approach of Riener [20] who attempts to address
this challenge through precomputation. A natural potential solu-
tion is to move to an SMT-based approach where the formula to
be synthesized is a value of an algebraic data type (ADT) ∆ that
captures the abstract syntax of well-formed PLTL formulas di-
rectly. Each PLTL propositional constant and (logical and tem-
poral) operator is modeled by a corresponding constructor of ∆
with the same arity. Traces can be encoded as (partially defined)
Boolean maps from propositional constants and trace positions.
The PLTL semantics is captured by an evaluation function, a re-
cursively defined total function that takes a trace t and a data
type d as input and returns true if and only if t satisfies the for-
mula represented by d. The synthesis problem then reduces to
adding constraints on a fresh constant ϕ of type ∆, standing for
the formulas to be synthesized, stating that evaluation of ϕ is
true for all the positive traces and false for all the negative ones.
Synthesizing the PLTL formula thus reduces to asking the SMT
solver to find a model of the problem. If it succeeds, the ADT
value assigned to ϕ describes a possible solution. In our evalu-
ation, we observed that such an approach is unfortunately also
not scalable, possibly due to the inherent complexity of solving
SMT problems over ADTs.
SyGuS-based Approach. We explored next a SyGuS-based
approach where the PLTL syntax is encoded as a context-free
grammar whereas the consistency with the sample set is given as
the specification. Although more scalable than the SMT-based
one, this approach is still not sufficiently scalable for our case
studies. An analysis of our SyGuS encoding revealed the fol-
lowing two weaknesses whose mitigation led us to our final ap-
proach, discussed in the next section. First, since algebraic data
types are user-defined, reasoning about them does not benefit
from the specialized optimizations (e.g., rewrite rules, symme-
try breaking) available to SMT solvers for other builtin theories
such as bit-vectors or linear integer arithmetic. Second, both
this and the SMT-based approach require evaluating a candidate
solution at each position of each trace in order to guarantee con-
sistency with the sample. Expressing such a constraint requires
the use of quantified formulas (with quantification over traces
and positions) and recursive function definitions (for the evalu-
ation function) both of which are expensive to reason about.

B. Lessons learned

After analyzing the different approaches above to the PLTL
synthesis problem, we identified the following performance bot-
tlenecks, which we tried to address in our final approach. First,
the SAT-based approaches do not have an efficient way of con-
sidering only well-formed PLTL formulas, a substantial bottle-
neck. Second, except for the SyGus-based approach, none of the
aforementioned ones apply any form of symmetry breaking op-
timizations to rule out or reduce the generation of formulas sim-

ilar to previously generated ones, substantially hampering the
generation of diverse PLTL formulas consistent with the input
sample. Finally, all the approaches attempt to achieve sample-
consistency through (quantified or explicit) constraints on in-
dividual trace positions, thus missing out on whole-trace-level
optimizations, which are crucial to scalability. (Examples of our
SMT-based and SyGus-based encodings can be found in Appendix A.)

IV. PLTL SYNTHESIS WITH SYGUS

In this section, we present an efficient approach for synthe-
sizing a PLTL formula consistent with a finite sample D using
a SyGuS solver over the theory of fixed-sized bit-vectors. The
approach relies on the observation that a PLTL formula over fi-
nite traces of length at most n can be encoded as a function over
bit-vectors of size n. Thus, the problem of synthesizing a PLTL
formula is reduced to the synthesis of a bit-vector function.

Similarly to a bit-vector encoding presented by Baresi et
al. [28], we use bit-vectors of size n > 0 to represent the truth
values of PLTL formulae at positions [0, n− 1] of a given trace
of length n. More precisely, for each atomic proposition p ∈ A,
we use a bit-vector variable←−p [n] such that←−p [n][i] captures the
value of proposition p at all instants i from 0 to n − 1. The bit-
vector representation of ⊥ for length n, denoted with

←−
⊥ [n], is

the bit-vector constant 0 of size n, while the bit-vector represen-
tation of >, denoted with

←−
> [n], is the value of ∼

←−
⊥ [n]. For any

other PLTL formula Φ, we describe the value of Φ at positions
0 through n − 1 in a trace by the bit-vector obtained by recur-
sively performing operations on the bit-vectors corresponding to
the sub-formulas of Φ. The operations performed depend on the
structure of Φ and follow the transformations shown in Table I.

TABLE I. Translation of a PLTL formulas to bit-vector terms.
Φ

←−
Φ unfolded bit-vector encoding

¬Ψ ∼
←−
Ψ ∼

←−
Ψ

Ψ1 ∧Ψ2
←−
Ψ1 &

←−
Ψ2

←−
Ψ1 &

←−
Ψ2

Ψ1 ∨Ψ2
←−
Ψ1 |

←−
Ψ2

←−
Ψ1 |

←−
Ψ2

Ψ
←−
Ψ <<

←−
Ψ

Ψ
←−
Ψ −

←−
Ψ |
←−
Ψ

Ψ
←−
Ψ ∼(1 +

←−
Ψ) &

←−
Ψ

Ψ1 S Ψ2
←−
Ψ1
←−
S
←−
Ψ2

←−
Ψ2 | (∼((

←−
Ψ1 |

←−
Ψ2) +

←−
Ψ2) &

←−
Ψ1)

Table I also introduces new bit-vector operators, ,,,
and
←−
S to denote, respectively, the bit-vector encodings for the

temporal operators ,,, and S . To establish the correct-
ness of the connection between the bit-vector encoding and the
semantics of PLTL (see Theorem 1) and also for explaining the
example we first introduce the following notation: for a proposi-
tional variable p ∈ A and a trace σ of length n,

←−−
σ(p) denotes the

bit-vector representation of σ(p), that is, for all i ∈ [0, n − 1],
←−−
σ(p)[i] = 1 if σi(p) = t, and

←−−
σ(p)[i] = 0 if σi(p) = f .

To see more concretely how the translation works we explain,
for instance, the correspondence between the unary PLTL oper-
ator (read: true at least once in the present or past) and its
bit-vector counterpart with an example.

Example 1. Let p be a propositional variable and let σ be a

5

trace of length 6 with p is true only at positions 3 and 4 of σ.
The projection σ(p) is represented by the bit vector 011000 with
the most significant (i.e., leftmost) bit corresponding σ5(p), the
next most significant bit corresponding to σ4(p) and so on. So
←−−
σ(p) = 011000. Intuitively, the valuation ofp over σ should
then be represented by the bit-vector 111000. To verify that let
←−p [6] be the bit-vector variable corresponding to p. According to

our translation,
←−
p = (←−p) = −←−p | ←−p = −←−p [6] | ←−p [6]

where | is bitwise disjunction and − is arithmetic negation
(two’s complement). If we evaluate the resulting bit-vector for-
mula with the valuation α = {←−p [6] 7→ 011000} we have

α(−←−p [6] | ←−p [6]) = −011000 | 011000
= 101000 | 011000 = 111000

as expected.

Theorem 1. Let Φ be a PLTL formula over the alphabet A =
{p1, . . . , pm} and let σ be a trace of length n over A. Then,

σ |= fΦ iff |=TBV

←−
Φ {p̄ 7→ σ̄} '

←−
> [n]

where p̄ = (←−p1[n], . . . ,←−pm[n]) and σ̄ = (
←−−−
σ(p1), . . . ,

←−−−
σ(pm)).

Proof. By induction on the structure of Φ. (A more detailed proof
can be found in Appendix B).

We show now how we use the bit-vector encoding above to
reduce the problem of synthesizing a PLTL formula consistent
with a sample into a SyGuS problem over bit-vectors. More pre-
cisely, given propositional variables pi ∈ A, with 1 ≤ i ≤ m,
and a sample D = (P,N) whose longest trace has length n, we
propose to synthesize a bit-vector function f(←−p1[n], . . . ,←−pm[n])
such that if λ←−p1[n], . . . , λ←−pm[n]. e is a solution for the SyGuS
problem, then there exists a PLTL formula Φ consistent with D
whose bit-vector encoding is e (that is,

←−
Φ = e).

To meet the requirements on f , we impose the following syn-
tactic and semantic restrictions. The former are given by the
following context-free grammar:

Ψ ::=
←−
> [n] |

←−
⊥ [n] | ←−p [n] | ◦1 Ψ | Ψ ◦2 Ψ

where←−p is←−pj [n] for some j ∈ [0,m], ◦1 ∈ {∼,,,} are
the unary operators, and ◦2 ∈ {&, |,

←−
S } are the binary opera-

tors. Notice that, although ,,, and
←−
S do not belong to

the theory of bit-vectors, they can be defined using a bit-vector
function in the SyGuS problem (see Table I).

In addition, the function f is subject to the following semantic
restrictions where |σ| denotes the length of trace σ:

1.
∧
σ∈P

f(
←−−−
σ(p1), . . . ,

←−−−
σ(pm))[|σ| − 1 : 0] '

←−
> [n][|σ| − 1 : 0]

2.
∧
σ∈N

f(
←−−−
σ(p1), . . . ,

←−−−
σ(pm))[|σ| − 1 : 0] 6'

←−
> [n][|σ| − 1 : 0]

The two constraints enforce the consistency of the solution
respectively with the positive traces and the negative traces. No-
tice that, since an input may include traces of different length,
we compare only the relevant positions for each trace.

V. IMPLEMENTATION AND EVALUATION OF SYSLITE

In this section, we discuss the implementation of SYSLITE
and our empirical evaluation of it based on two case studies.

A. SYSLITE Implementation

SYSLITE is a wrapper around the syntax-guided synthe-
sis solver (SyGuS) CVC4SY which is part of the SMT solver
CVC4 [29] and now incorporates additional optimizations for
PLTL synthesis. CVC4SY supports various theories, including
that of fixed-size bit-vectors, used in our encoding, and imple-
ments several specialized synthesis algorithms for various types
of synthesis conjectures [30]. We rely on its support for enu-
merative counterexample-guided inductive synthesis (CEGIS)
which was recently improved with several novel strategies [31].

In enumerative CEGIS [32], candidate solutions are gener-
ated based on some ordering, typically on term size. In our
setting, a candidate solution is a function whose definition in-
volves the bit-vector symbols from Section IV. CVC4SY uses
advanced techniques to aggressively reduce the number of can-
didate solutions it generates. In particular, it uses fast incom-
plete techniques based on term rewriting to avoid generating
candidate solutions s′ that can be shown to be logically equiv-
alent to some previous candidate s. This technique, which is a
form of symmetry breaking, is critical for the scalability of enu-
merative approaches [30]. Our encoding of PLTL formulas as
bit-vector constraints was motivated by the intent to capitalize
on CVC4SY’s existing infrastructure for establishing the equiva-
lence of bit-vector terms, in particular, dedicated rewriting tech-
niques developed to accelerate SyGuS enumeration [33].

For synthesis conjectures (i.e., semantic restrictions) ∃f. ϕ
where all applications of f in ϕ have concrete values as argu-
ments, CVC4SY can apply a stronger version of symmetry break-
ing that considers equivalence under examples. Let the concrete
inputs for f in ϕ be c1, . . . , cn. Using this technique, the solver
discards from consideration while constructing a new candidate
solution for f any term t′ that over the inputs c1, . . . , cn eval-
uates exactly as some previously discarded term t. For exam-
ple, the terms x &y and x take the same value over the inputs
(0001, 0001), (0000, 0001), (1010, 1110) for (x, y). Hence, one
of them (x &y, due to its larger size) will be excluded from con-
sideration in candidate solutions since it is equivalent to x for
all relevant inputs as specified in the conjecture. In practice, this
heuristics is traditionally applied when the synthesis conjecture
specifies a set of input/output pairs for the function f to synthe-
size (with constraints of the form f(ci) = oi). We have gener-
alized symmetry breaking in CVC4SY to apply the heuristics to
any conjecture ∃f. ϕ where f is applied to concrete inputs, even
when ϕ is not just a conjunction of input/output constraints. In
our specific context, this enables symmetry breaking constraints
for the negative traces, and also allows us to have traces of dif-
ferent length in the same problem.

Since evaluation of terms on concrete examples is a major
bottleneck in syntax-guided synthesis solvers, we have addition-
ally implemented in CVC4SY several low-level optimizations for
quickly computing the result of PLTL terms on concrete in-
puts. Thanks to our encoding of PLTL formulas as bit-vector
constraints, we can capitalize on the data structures in the core

6

of CVC4 for representing and efficiently evaluating bit-vectors
terms. Our experiments confirm that this is critical to achieving
scalability for synthesis tasks we considered.

B. Empirical Analysis Criteria and Configuration

Research questions. In our evaluation of SYSLITE, we aimed
to answer the following research questions.
RQ1. How effective is SYSLITE compared to a baseline in syn-
thesizing succinct, diverse, and accurate PLTL formulas?
RQ2. How scalable is SYSLITE compared to the baseline?

Case studies. We address the above questions in the context of
the two case studies presented in Sections V-C and V-D, respec-
tively. The first focuses on RQ1 whereas the second focuses on
RQ2 based on SYSLITE’s ability to synthesize attack signatures
from real cellular network traces.
Baseline. In our evaluation, we compare SYSLITE against a
baseline represented by our own implementation of the (first)
SAT-based method by Neider and Gavran [4]. We use our
own implementation and not theirs because the latter applies to
traditional LTL, as opposed to PLTL. We do not discuss here
the other approaches we tried, that is, Reiner’s SAT-based ap-
proach [20] and our encodings to algebraic data types, since they
proved either not scalable or ineffective.
Sample sizes. For both of our case studies, we considered the
following sample sizes, each with the same number of positive
and negative traces: 50, 100, 250, 500, and 1250. For Case
Study I, traces were generated randomly and have length 10
whereas for Case Study II the traces were collected from a cel-
lular network and have length 100.
Training and testing configuration. We used the stan-
dard Pareto-principle of classifier evaluation which suggests an
(80%–20%) partition of the provided sample into training and
testing datasets, respectively. By considering a synthesized
PLTL formula Φ as a classifier for the traces in the testing set,
its quality can be measured in terms of precision (the percent-
age of correctly classified traces among all traces classified as
positive by Φ), recall (the ratio of correctly classified positive
traces over the total number of positive traces) and their har-
monic mean (F1 score). Moreover, the evaluation method also
performs cross-validation. It considers the first five solutions
generated by SYSLITE and by the baseline, selecting the for-
mula (or formulas, in case of ties) with the highest F1 score.
Evaluation infrastructure. We performed all our evaluations
on a 3.40GHz Intel(R) Xeon(R) E3-1240 CPU running CentOS
(Linux Kernel 3.10.0-1062.9.1) on 16GB RAM. For each in-
stance of our experiment, we set 3600 seconds as the timeout.

C. Case Study I: PLTL Formulae from Literature

In this case study, our goal was to measure SYSLITE’s effec-
tiveness in synthesizing succinct and accurate formulas given a
sample set of traces. For this, we first collected a few repre-
sentative PLTL formulas from the literature (see Table II). For
each of these seed formulas, we generated a sample consisting
of randomly generated traces and then checked if SYSLITE and
the baseline were able to learn the original formula or an equiv-
alent one. We had both synthesis approaches generate up to 5
candidate formulas before a given timeout.

TABLE II. Seed formulas from the literature.
Literature Formula PLTL Formula

Chinese Wall Policy [10]
f ((access org1 records⇒ ¬(access org2 records)) ∧

(access org2 records⇒ ¬(access org1 records)))

Bank Transaction Policy [10]
f (Transaction over threshold performed⇒
(Transaction over threshold approved))

Secure File [10]
f ((secure file open⇒ (((¬(secure file open))) ∨

(¬secure file openS secure file closed))))
Financial Institute Policy [10] f (grant⇒ (¬grantS request))

GLBA-6802 [11, 14]
f (institution discloses to affiliate customers npi⇒

(¬customer opt outS notice of disclosure))

HIPPA-164508A2 [11, 14]
f (covered entity discloses patient psych notes⇒

(¬authorization psych notes revoked)S
receive patient authorization psych notes)

HIPPA-164508A3 [11, 14]
f (covered entity discloses patient info for marketing⇒

(receive patient authorization marketing))

Dynamic Separ. of Duty [10]
f (member activates role1⇒

(((¬member activates role2)) ∨
(¬member activates role2S member deactivates role2)))

Trace generation: Given a seed formula ϕ from Table II, a de-
sired trace length `, and a desired sample size 2n, our trace gen-
eration process uses a cryptographically-secure pseudorandom
number generator to produce a sample set P of n positive traces
and a sample set N of n negative traces, all of length `. It gen-
erates a trace σ of length ` by randomly assigning truth values
to ϕ’s propositional variables for each of the ` states of σ. The
trace goes in the set P or N depending on whether it satisfies ϕ
or not, as long as the set in question contains less than n traces;
otherwise, it is discarded. Note that, depending on the formula
ϕ, we may have to oversample for positive or negative traces.
Measuring quality of synthesized formulas. To evaluate the
quality of the synthesized formulas, in addition to rely on the
usual statistical measures (i.e., precision, recall, and F1 score)
on the test dataset, we considered logical equivalence with the
seed formula (i.e., being satisfied by exactly the same set of pos-
sible traces) as another metric of effectiveness. We used the
GOAL tool [34] to check for logical equivalence in PLTL.

TABLE III. Case Study I: Quality of Synthesis Methods.
SYSLITE SAT

Seed Formula Count Quality Count Quality
Chinese Wall Policy [10] 5/5 1/5 4/5 0/5
Bank Transaction Policy [10] 5/5 5/5 4/5 4/5
Secure File [10] 5/5 5/5 0/5 0/5
Financial Institute [10] 5/5 5/5 2/5 1/5
GLBA-6802 [11, 14] 5/5 5/5 1/5 2/5
HIPPA-164508A2 [11, 14] 5/5 5/5 1/5 0/5
HIPPA-164508A3 [11, 14] 5/5 5/5 4/5 4/5
Dynamic Separation of Duty [10] 2/5 0/5 2/5 0/5

Total: 37/40 (92%) 31/40 (76%) 18/40 (45%) 11/40 (27%)

Quality of synthesized formulas. Our results on the synthe-
sized formulas’ quality (i.e., equivalence to seed formula) and
count are summarized in Table III. For each run of SYSLITE
and the baseline for a particular dataset and a seed formula, we
select the highest-ranked formula after cross validation2 among
those synthesized in the allotted time, if any. For each original
(seed) formula, column Count reports the total of number se-
lected formulas across the 5 training sets of different size. For
instance, a value of 2/5 indicates that the algorithm was able to
synthesize formulas for 2 of the 5 training sets. Column Quality
reports how many of the selected formulas are logically equiva-
lent to the seed formula.

Our evaluation confirms that SYSLITE can learn the seed for-
mula or an equivalent one for each of the five random sample
sets in almost all cases. The only exceptions are the Dynamic

2In this case study, we did not observe any ties after cross-validation.

7

0 200 400 600 800 1,000

101

102

103

Training Dataset Size

Tr
ai

ni
ng

Ti
m

e
(s

ec
on

ds
in

lo
g

sc
al

e)

HIPPA-164508A3 / SAT HIPPA-164508A3 / SYSLITE

Chinese Wall Policy / SAT Chinese Wall Policy / SYSLITE

Bank Transaction Policy / SAT Bank Transaction Policy / SYSLITE

Fig. 1. Training Results of Case Study I.

Separation of Duty formula, for which SYSLITE generates two
formulas neither of which is equivalent to the seed formula, and
the Chinese Wall Policy formula, for which it generates one for-
mula and only for the sample set of size 1250. To put things
in perspective, however, note that since the Chinese Wall Pol-
icy formula has two variables and traces have length 10, a set
of 1250 traces covers just 0.1% of the set of all possible 410

traces. Remarkably, SYSLITE is able to learn the right formula
with much smaller sample sets in all the other cases, with perfect
precision, recall, and F1 scores.

Looking at the baseline approach, it performs gracefully with
a few simple seed formulas such as Bank Transaction Policy
and HIPAA-164508A3. However, it cannot synthesize any can-
didates for the Secure File seed formula. Moreover, its synthe-
sized formulas for HIPPA-164508A2, Dynamic Separation of
Duty, and Chinese Wall Policy are not equivalent to the seed.
Detailed results are available in Appendix D-C.

Scalability. The training results for case study I are shown in
Figure 1. The X-axis of the graph represents the different train-
ing set sizes: 80% of 50, 100, 250, 500, and 1250, while the Y-
axis (in log-scale) represents the training time in seconds. Cross
validation times are not shown because they are uniform and
negligible. The horizontal red line on the top of the graph rep-
resents the timeout (3600 seconds). In the graph, we only show
results for the 3 seed-formulas for which the SAT-method per-
forms best. Complete results are presented in Appendix D.

In our evaluation, SYSLITE was able to generate results for
almost all combinations of seed formula and training set size
while exhibiting an average 60x speedup over the baseline. The
exception, already mentioned, is the Dynamic Separation of
Duty formula where it timed-out on the training sets with more
than 100 traces. This is likely due to the large size of the for-
mulas to be synthesized which requires SYSLITE to enumerate
internally a very large number of terms. The baseline method
was unable to generate any formula and timed-out, even for the
smallest sample (of 50 traces) for the Secure File formula. For a

TABLE IV. Table summarizing the attacks used for
evaluation of 4G LTE Attack Signature Generation.

(= NAS Protocol Layer, # = RRC Protocol Layer)
Name of Attack SYSLITE-synthesized Attack Signature PL

Numb Attack [5]
f (authentication reject⇒
(authentication response))

Authentication Failure [5] f (¬(authentication failure))
IMSI Cracking Attack
Against 4G [15] f (¬(paging IMSI and TMSI))

IMSI Catching [15] f (¬(identity request IMSI))

Measurement Report [16]
f (measurementReport⇒

(¬(rrcConnectionSetup)S
securityModeComplete))

#

RLF Report [16]
f (ueInformationResponse⇒

(¬(rrcConnectionRequest)S
securityModeCommand))

#

AKA Bypass Attack [17]
f (rrcConnectionReconfiguration⇒

(¬(rrcConnectionSetupComplete)S
securityModeCommand))

#

Malformed Identity
Request [18] f (¬(identity request malformed))

Null Encryption
Chosen by MME f (¬(MME null encryption chosen))

EMM Information
Spoofing [19] f (¬(emm information insecure)) #

Paging with IMSI [15]
f (¬(paging IMSI ∨

paging IMSI and TMSI))

few of the other seed formulas, it failed to synthesize a candidate
even for the small sample sets (of size 50 and 100). For example,
in HIPPA-164508A2 policy it failed to synthesize any formula
for sample size larger than 50 traces; for the Dynamic Separa-
tion of Duty and Financial Institute it was unable to deal with
sample sets with more than 100 traces. These scalability prob-
lems are the main cause of its low formula-quality scores (shown
in Table III) and low statistical measures scores (not shown).

D. Case Study II: 4G LTE Attack Signature Generation

Our second case study focused on synthesizing attack sig-
natures, represented as PLTL formulas, for cellular networks
from a set of benign (i.e., positive) and attack (i.e., negative)
traces. Once again, we considered the scalability and effective-
ness of SYSLITE versus the SAT-based baseline. The choice of
this application domain was motivated by the vital role cellular
networks play in a modern nation’s infrastructure, which makes
them a frequent target for malicious attacks [5, 15–17, 35, 36].

As with any protocol, the cellular network protocol allows
only specific orderings of messages (packets) sent or received
by a cellular device, and predicates over their payload (e.g., the
sequence number is in a range). For a given type of attack, the
synthesized attack signature is expected to be satisfied, ideally,
by all and only the benign protocol executions, those not con-
taining an attack. This way, one can deploy a runtime mon-
itor [37] for each attack type that checks whether the current
execution violates (i.e., falsifies) the attack signature and issues
an alert as soon as it detects a violation. Currently, there are no
mechanisms that can achieve this goal efficiently. Being able to
automatically synthesize effective attack signatures is the natu-
ral first step towards that.

In light of this, our case study focused on 11 known, rep-
resentative attacks that are detectable from the vantage point
of a cellular device (see Table IV). These attacks target weak-
nesses of the cellular network protocol in the Non-Access Stra-

8

tum (NAS) layer, responsible for communication between a cel-
lular device and the core network, and the Radio Resource Con-
trol (RRC) layer, responsible for the communication between a
device and the base station [5, 15–19]. While other attacks exist
[6, 15–17, 38–45], they are not detectable from a device’s point
of view and thus are not considered in our case study.

0 200 400 600 800 1,000

101

102

103

Training Dataset Size

Tr
ai

ni
ng

Ti
m

e
(s

ec
on

ds
in

lo
g

sc
al

e)

Null Encryption / SAT Null Encryption / SYSLITE

Malformed Identity Request / SAT Malformed Identity Request / SYSLITE

IMSI Cracking Attack (4G) / SAT IMSI Cracking Attack (4G) / SYSLITE

IMSI Catching / SAT IMSI Catching / SYSLITE

EMM Information / SAT EMM Information / SYSLITE

Fig. 2. Training Results of Case Study II.

Trace gathering. We now discuss how we gathered benign
traces and generated attack traces through testbed experiments.

Benign Traces: We collected benign traces through random
sampling of traces from a crowd-sourced platform to which
users all over the world submit their cellular network traces
through an Android app called MobileInsight [46]. Our col-
lected traces include 1892 NAS layer traces containing about
52K messages and 2045 RRC layer traces containing about
1,5M messages. We cleaned up the traces so that each contained
100 states as this is sufficient for the attacks we considered.

Malicious Traces: To collect malicious traces, we first im-
plemented each attack and its variants using srsLTE [47] and
software-defined radios in a testbed. srsLTE is an open-source
cellular network stack which permits the modification of differ-
ent components of the network. Then, to collect the attack traces
we used SCAT [48], a desktop application capable of extract-
ing 4G LTE modem traffic exposed by certain devices through
a USB interface. Finally, we inserted one or more copies of the
malicious traces at arbitrary positions of some arbitrarily cho-
sen benign traces to obtain our set of malicious traces. Such an
approach mimics a real-world scenario in which attacks occur
within a few sessions of the protocol.
Quality of the synthesized attack signatures. In this case
study, our quality criteria are signature succinctness and cor-
rectness in capturing the attack. We consider an attack signa-
ture to be succinct if it can concisely capture the attack’s root
cause without including any superfluous events (e.g., messages
received/sent) or conditions (e.g., predicates over message pay-
load). Visual inspection of the signatures returned by SYSLITE
and the baseline shows that those generated by SYSLITE are

more succinct. Those returned by SYSLITE are shown in Ta-
ble IV.

Looking at correctness, our evaluation shows that all the at-
tack signatures synthesized by either the SAT-based baseline or
SYSLITE for the NAS layer have a perfect (100%) precision,
recall and F1 on the testing set. However, the baseline is able
to synthesize signature only with samples of small size. For the
RRC layer attacks, SYSLITE is able to score perfectly on the
test dataset based on statistical measures (i.e., precision, recall,
F1). The baseline, however, does not achieve a 100% precision,
recall, and F1 score as it cannot synthesize any signature for the
Measurement Report attack. We have also manually vetted the
correctness of the synthesized attack signatures by both SYS-
LITE and the baseline based on our domain expertise on cellular
security and observed that the signatures, when generated, cor-
rectly identified (i.e., rejected) traces in which the attacks occur.
Scalability. The scalability results for Case Study II are shown
in Figure 2. The graph’s X-axis shows the sizes of the differ-
ent training sets we used whereas the Y-axis (in log-scale) re-
ports the corresponding training time in seconds. Timeout time
is shown as a red horizontal line. For ease of exposition, we
show only the training results for 3 NAS and 2 RRC layers at-
tacks. For the rest of attacks, the results follow a similar trend.
Complete results are presented in Appendix D.

We conjecture that the performance of the baseline is compa-
rable with that of SYSLITE when learning attack signatures on
the NAS protocol layer because it induces attacks spanning only
a single protocol session. Thus, the patterns are relatively easier
to learn. On the other hand, for the RRC layer attacks, the se-
quences of attack steps can be complex and the attack may span
over multiple sessions thus making it challenging to learn (see
Appendix D). Indeed, the baseline timed out more frequently
while synthesizing multi-session attacks from RRC traffic. In
case of the Measurement Report attack, the baseline timed out
for all sample sizes and did not yield any signature. In contrast,
and as illustrated in Figure 2, we observed that the SYSLITE is
scalable and efficient in synthesizing multi-session attacks sig-
natures exhibiting on average a 28x speedup over the baseline.
We stress that scalability is essential in this context to promptly
generate attack signatures for newly discovered attacks before
attackers can cause substantial damage.

VI. CONCLUSION

We have presented an efficient approach for synthesizing
PLTL formulas from a set of finite traces. The approach reduces
the problem to a bit-vector function synthesis problem and then
uses an enhanced version of the CVC4SY SyGuS solver to solve
the latter. The reduction to bit-vector function synthesis proves
critical for performance not only because CVC4SY implements
specific optimization for bit-vectors but also because it allows us
to express efficiently the requirements capturing the consistency
of the solution with the samples. The conventional wisdom that
SyGuS solvers are more efficient for problems over natively sup-
ported theories compared to reductions to other SMT theories
(such as algebraic datatypes) or to SAT is corroborated by our
experimental evaluation.

Possible directions for future work include understanding the
impact of grammar representation (i.e., which temporal opera-

9

tors to be included in the syntactic specification of the SyGuS
problem) in the efficiency of PLTL formula synthesis as well
as extending the current approach to synthesizing past, proposi-
tional metric temporal logic.

REFERENCES

[1] Nader H Bshouty. Exact learning via the monotone theory. In Proceedings
of 1993 IEEE 34th Annual Foundations of Computer Science, pages 302–
311. IEEE, 1993.

[2] Scott D. Stoller and Thang Bui. Mining hierarchical temporal roles with
multiple metrics. Journal of Computer Security, 26(1):121–142, 2018.

[3] Zhongyuan Xu and Scott D. Stoller. Mining attribute-based access control
policies from logs. In Vijay Atluri and Guenther Pernul, editors, Proceed-
ings of the 28th Annual IFIP WG 11.3 Working Conference on Data and
Applications Security and Privacy (DBSec 2014), volume 8566 of Lecture
Notes in Computer Science, pages 276–291. Springer-Verlag, 2014.

[4] Daniel Neider and Ivan Gavran. Learning linear temporal properties. In
2018 Formal Methods in Computer Aided Design (FMCAD), pages 1–10.
IEEE, 2018.

[5] Syed Rafiul Hussain, Omar Chowdhury, Shagufta Mehnaz, and Elisa
Bertino. LTEInspector: A Systematic Approach for Adversarial Testing
of 4G LTE. In 25th Annual Network and Distributed System Security Sym-
posium, NDSS, San Diego, CA, USA, February 18-21, 2018.

[6] Syed Rafiul Hussain, Mitziu Echeverria, Imtiaz Karim, Omar Chowdhury,
and Elisa Bertino. 5greasoner: A property-directed security and privacy
analysis framework for 5g cellular network protocol. In Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications
Security, pages 669–684, 2019.

[7] Klaus Havelund and Grigore Roşu. Synthesizing monitors for safety prop-
erties. In International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, pages 342–356. Springer, 2002.

[8] Andreas Bauer, Martin Leucker, and Christian Schallhart. Comparing ltl
semantics for runtime verification. Journal of Logic and Computation,
20(3):651–674, 2010.

[9] Shaohui Wang, Anaheed Ayoub, Oleg Sokolsky, and Insup Lee. Runtime
verification of traces under recording uncertainty. In International Confer-
ence on Runtime Verification, pages 442–456. Springer, 2011.

[10] David Basin, Felix Klaedtke, and Samuel Müller. Monitoring security
policies with metric first-order temporal logic. In Proceedings of the 15th
ACM Symposium on Access Control Models and Technologies, SACMAT
’10, page 23–34, New York, NY, USA, 2010. Association for Computing
Machinery.

[11] Omar Chowdhury, Limin Jia, Deepak Garg, and Anupam Datta. Temporal
mode-checking for runtime monitoring of privacy policies. In Armin Biere
and Roderick Bloem, editors, Computer Aided Verification, pages 131–
149, Cham, 2014. Springer International Publishing.

[12] Deepak Garg, Limin Jia, and Anupam Datta. Policy auditing over incom-
plete logs: Theory, implementation and applications. In Proceedings of the
18th ACM Conference on Computer and Communications Security, CCS
’11, page 151–162, New York, NY, USA, 2011. Association for Comput-
ing Machinery.

[13] Omar Chowdhury, Andreas Gampe, Jianwei Niu, Jeffery von Ronne, Jared
Bennatt, Anupam Datta, Limin Jia, and William H. Winsborough. Privacy
promises that can be kept: A policy analysis method with application to
the hipaa privacy rule. In Proceedings of the 18th ACM Symposium on
Access Control Models and Technologies, SACMAT ’13, page 3–14, New
York, NY, USA, 2013. Association for Computing Machinery.

[14] Henry DeYoung, Deepak Garg, Limin Jia, Dilsun Kaynar, and Anupam
Datta. Experiences in the logical specification of the hipaa and glba pri-
vacy laws. In Proceedings of the 9th Annual ACM Workshop on Privacy
in the Electronic Society, WPES ’10, page 73–82, New York, NY, USA,
2010. Association for Computing Machinery.

[15] Syed Rafiul Hussain, Mitziu Echeverria, Omar Chowdhury, Ninghui Li,
and Elisa Bertino. Privacy Attacks to the 4G and 5G Cellular Paging Pro-
tocols Using Side Channel Information. In 26th Annual Network and Dis-
tributed System Security Symposium, NDSS, San Diego, CA, USA, Febru-
ary 24-27, 2019, 2019.

[16] Altaf Shaik, Jean-Pierre Seifert, Ravishankar Borgaonkar, N. Asokan,
and Valtteri Niemi. Practical Attacks Against Privacy and Availability
in 4G/LTE Mobile Communication Systems. In 23nd Annual Network
and Distributed System Security Symposium, NDSS, San Diego, CA, USA,
February 21-24, 2016.

[17] Hongil Kim, Jiho Lee, Lee Eunkyu, and Yongdae Kim. Touching the
Untouchables: Dynamic Security Analysis of the LTE Control Plane. In
Proceedings of the IEEE Symposium on Security & Privacy (SP). IEEE,
2019.

[18] Benoit Michau and Christophe Devine. How to Not Break LTE Crypto. In
ANSSI Symposium sur la sécurité des technologies de l’information et des
communications (SSTIC), 2016.

[19] Shinjo Park, Altaf Shaik, Ravishankar Borgaonkar, and Jean-Pierre
Seifert. White Rabbit in Mobile: Effect of Unsecured Clock Source in
Smartphones. In Proceedings of the 6th Workshop on Security and Pri-
vacy in Smartphones and Mobile Devices, pages 13–21. ACM, 2016.

[20] Heinz Riener. Exact synthesis of LTL properties from traces. In 2019
Forum for Specification and Design Languages (FDL), pages 1–6. IEEE,
2019.

[21] Andrew Reynolds, Cesare Tinelli, Amit Goel, and Sava Krstić. Finite
model finding in smt. In International Conference on Computer Aided
Verification, pages 640–655. Springer, 2013.

[22] Andrew Reynolds, Jasmin Christian Blanchette, Simon Cruanes, and Ce-
sare Tinelli. Model finding for recursive functions in smt. In International
Joint Conference on Automated Reasoning, pages 133–151. Springer,
2016.

[23] Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo MK Martin, Mukund
Raghothaman, Sanjit A Seshia, Rishabh Singh, Armando Solar-Lezama,
Emina Torlak, and Abhishek Udupa. Syntax-guided synthesis. IEEE, 2013.

[24] Andrew Reynolds, Haniel Barbosa, Andres Nötzli, Clark Barrett, and Ce-
sare Tinelli. cvc 4 sy: smart and fast term enumeration for syntax-guided
synthesis. In International Conference on Computer Aided Verification,
pages 74–83. Springer, 2019.

[25] Herbert B. Enderton. A mathematical introduction to logic. Academic
Press, 2 edition, 2001.

[26] Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB Standard:
Version 2.0. In A. Gupta and D. Kroening, editors, Proceedings of the
8th International Workshop on Satisfiability Modulo Theories (Edinburgh,
UK), 2010.

[27] S. Kripke. Semantical Considerations on Modal Logic. Acta Phil. Fennica,
16:83–94, 1963.

[28] Luciano Baresi, Mohammad Mehdi Pourhashem Kallehbasti, and Mat-
teo Rossi. Efficient scalable verification of LTL specifications. In 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering,
volume 1, pages 711–721. IEEE, 2015.

[29] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean,
Dejan Jovanovic, Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4.
In Computer Aided Verification - 23rd International Conference, CAV
2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings, pages 171–177,
2011.

[30] Andrew Reynolds, Morgan Deters, Viktor Kuncak, Cesare Tinelli, and
Clark W. Barrett. Counterexample-guided quantifier instantiation for syn-
thesis in SMT. In Computer Aided Verification - 27th International Con-
ference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceed-
ings, Part II, pages 198–216, 2015.

[31] Andrew Reynolds, Haniel Barbosa, Andres Nötzli, Clark W. Barrett, and
Cesare Tinelli. cvc4sy: Smart and fast term enumeration for syntax-guided
synthesis. In Computer Aided Verification - 31st International Conference,
CAV 2019, New York City, NY, USA, July 15-18, 2019, Proceedings, Part
II, pages 74–83, 2019.

[32] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and
Vijay Saraswat. Combinatorial sketching for finite programs. SIGPLAN
Not., 41(11):404–415, October 2006.

[33] Andres Nötzli, Andrew Reynolds, Haniel Barbosa, Aina Niemetz, Mathias
Preiner, Clark W. Barrett, and Cesare Tinelli. Syntax-guided rewrite rule
enumeration for SMT solvers. In Theory and Applications of Satisfiability
Testing - SAT 2019 - 22nd International Conference, SAT 2019, Lisbon,
Portugal, July 9-12, 2019, Proceedings, pages 279–297, 2019.

[34] Yih-Kuen Tsay, Yu-Fang Chen, Ming-Hsien Tsai, Kang-Nien Wu, and
Wen-Chin Chan. Goal: A graphical tool for manipulating büchi automata
and temporal formulae. In International Conference on Tools and Al-
gorithms for the Construction and Analysis of Systems, pages 466–471.
Springer, 2007.

[35] Adrian Dabrowski, Nicola Pianta, Thomas Klepp, Martin Mulazzani, and
Edgar Weippl. Imsi-catch me if you can: Imsi-catcher-catchers. In Pro-
ceedings of the 30th annual computer security applications Conference,
pages 246–255, 2014.

[36] Syed Rafiul Hussain, Mitziu Echeverria, Ankush Singla, Omar Chowd-
hury, and Elisa Bertino. Insecure connection bootstrapping in cellular net-
works: the root of all evil. In Proceedings of the 12th Conference on
Security and Privacy in Wireless and Mobile Networks, pages 1–11, 2019.

[37] Viktor Schuppan and Armin Biere. Shortest counterexamples for symbolic
model checking of ltl with past. In International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, pages 493–509.
Springer, 2005.

[38] Iosif Androulidakis. Intercepting mobile phone calls and short messages

10

using a gsm tester. In International Conference on Computer Networks,
pages 281–288. Springer, 2011.

[39] Myrto Arapinis, Loretta Mancini, Eike Ritter, Mark Ryan, Nico Golde,
Kevin Redon, and Ravishankar Borgaonkar. New privacy issues in mobile
telephony: fix and verification. In Proceedings of the 2012 ACM confer-
ence on Computer and communications security, pages 205–216, 2012.

[40] Byeongdo Hong, Sangwook Bae, and Yongdae Kim. Guti reallocation
demystified: Cellular location tracking with changing temporary identifier.
In NDSS, 2018.

[41] Katharina Kohls, David Rupprecht, Thorsten Holz, and Christina Pöpper.
Lost traffic encryption: fingerprinting lte/4g traffic on layer two. In Pro-
ceedings of the 12th Conference on Security and Privacy in Wireless and
Mobile Networks, pages 249–260, 2019.

[42] Denis Foo Kune, John Koelndorfer, Nicholas Hopper, and Yongdae Kim.
Location leaks on the gsm air interface. ISOC NDSS (Feb 2012), 2012.

[43] Ulrike Meyer and Susanne Wetzel. A man-in-the-middle attack on umts.
In Proceedings of the 3rd ACM workshop on Wireless security, pages 90–
97, 2004.

[44] David Rupprecht, Katharina Kohls, Thorsten Holz, and Christina Pöpper.
Breaking lte on layer two. In 2019 IEEE Symposium on Security and
Privacy (SP), pages 1121–1136. IEEE, 2019.

[45] David Rupprecht, Katharina Kohls, Thorsten Holz, and Christina Pöpper.
Imp4gt: Impersonation attacks in 4g networks.

[46] Yuanjie Li, Chunyi Peng, Zengwen Yuan, Jiayao Li, Haotian Deng, and
Tao Wang. Mobileinsight: Extracting and analyzing cellular network in-
formation on smartphones. In Proceedings of the 22nd Annual Interna-
tional Conference on Mobile Computing and Networking, MobiCom ’16,
pages 202–215, New York, NY, USA, 2016. ACM.

[47] Ismael Gomez-Miguelez, Andres Garcia-Saavedra, Paul D Sutton, Pablo
Serrano, Cristina Cano, and Doug J Leith. srsLTE: An Open-source Plat-
form for LTE Evolution and Experimentation. In Proceedings of the Tenth
ACM International Workshop on Wireless Network Testbeds, Experimental
Evaluation, and Characterization, pages 25–32, 2016.

[48] Byeongdo Hong, Shinjo Park, Hongil Kim, Dongkwan Kim, Hyunwook
Hong, Hyunwoo Choi, Jean-Pierre Seifert, Sung-Ju Lee, and Yongdae
Kim. Peeking over the cellular walled gardens-a method for closed net-
work diagnosis. IEEE Transactions on Mobile Computing, 17(10):2366–
2380, 2018.

APPENDIX

I. ENCODING OF SMT-BASED AND SYGUS-BASED
APPROACHES

In this section, we present all proposed the encodings for
PLTL synthesis that were explained earlier in the section III
and IV. We have instantiated these encodings using traces shown
in Table V. These traces were generated using the following seed
formula.

Seed Formula. The seed formula describes a common situ-
ation in an emergency alert system (EAS), ”Every time if there
is a failure, then since last failure there has been some alarm
previously or there was no failure at all”.

f (failure⇒ ¬((¬alarmS failure)))

Generated Traces. Using the above seed formula and
cryptographically-secure pseudo-random number generator
(CSPRNG), we generate a sample dataset containing 3 positive
and 6 negative traces.

SYSLITE 3 can be used to synthesize the seed formula from
these randomly generated input traces.

A. SMT-based Encoding using SMT-LIB 2.

For detailed discussion please refer to section III.

(set-logic ALL)
;; Options
(set-option :fmf-bound true)

3SYSLITE is available on https://github.com/CLC-UIowa/SySLite/

TABLE V. Generated sample set containing positive traces
[1-3] and negative traces [4-9].

failure alarm
σ0σ1σ2σ3σ4 σ0σ1σ2σ3σ4

1. 11000 10000

2. 10010 01111

3. 01001 01001

4. 11 00

5. 101 000

6. 10111 10010

7. 01011 11100

8. 00111 00101

9. 00011 10111

(set-option :fmf-fun true)
(set-option :produce-models true)

;; Declare Variable Sort
(define-sort VarId () Int)

;; Declare Unary Operators.
(declare-datatype UNARY_OP ((NOT) (Y) (G) (H) (O)))

;; Declare Binary Operators
(declare-datatype BINARY_OP ((AND) (OR) (IMPLIES) (S)))

;; Syntax of PLTL
(declare-datatype Formula (
(Top)
(Bottom)
(P (Id VarId))
(Op1 (op1 UNARY_OP) (f Formula))
(Op2 (op2 BINARY_OP) (f1 Formula) (f2 Formula))
)
)

;; Trace Constructs
(define-sort Trace () Int)
(define-sort Time () Int)

;; Length of Positive [1-3] and Negative Traces [4-5]
from Table V

(define-fun len ((tr Trace)) Int
(ite (= tr 1) 4
(ite (= tr 2) 4
(ite (= tr 3) 4
(ite (= tr 4) 1
(ite (= tr 5) 2
(ite (= tr 6) 4
(ite (= tr 7) 4
(ite (= tr 8) 4
(ite (= tr 9) 4 0)))))))))

)

;; Positive [1-3] and Negative Traces [4-9]
instantiation using values from Table V

(define-fun val ((tr Trace) (t Time) (x VarId)) Bool
(or
(and (= tr 1) (= t 0) (= x 0))
(and (= tr 1) (= t 0) (= x 1))
(and (= tr 1) (= t 1) (= x 1))
(and (= tr 2) (= t 0) (= x 0))
(and (= tr 2) (= t 1) (= x 1))
(and (= tr 2) (= t 2) (= x 1))
(and (= tr 2) (= t 3) (= x 0))
(and (= tr 2) (= t 3) (= x 1))
(and (= tr 2) (= t 4) (= x 1))
(and (= tr 3) (= t 1) (= x 0))

https://github.com/CLC-UIowa/SySLite/

11

(and (= tr 3) (= t 2) (= x 1))
(and (= tr 3) (= t 4) (= x 0))
(and (= tr 3) (= t 4) (= x 1))
(and (= tr 4) (= t 0) (= x 0))
(and (= tr 4) (= t 1) (= x 0))
(and (= tr 5) (= t 0) (= x 0))
(and (= tr 5) (= t 2) (= x 0))
(and (= tr 6) (= t 0) (= x 0))
(and (= tr 6) (= t 0) (= x 1))
(and (= tr 6) (= t 2) (= x 0))
(and (= tr 6) (= t 3) (= x 0))
(and (= tr 6) (= t 3) (= x 1))
(and (= tr 6) (= t 4) (= x 0))
(and (= tr 7) (= t 0) (= x 1))
(and (= tr 7) (= t 1) (= x 0))
(and (= tr 7) (= t 1) (= x 1))
(and (= tr 7) (= t 2) (= x 1))
(and (= tr 7) (= t 3) (= x 0))
(and (= tr 7) (= t 4) (= x 0))
(and (= tr 8) (= t 1) (= x 0))
(and (= tr 8) (= t 2) (= x 0))
(and (= tr 8) (= t 2) (= x 1))
(and (= tr 8) (= t 3) (= x 0))
(and (= tr 8) (= t 4) (= x 0))
(and (= tr 8) (= t 4) (= x 1))
(and (= tr 9) (= t 0) (= x 1))
(and (= tr 9) (= t 2) (= x 1))
(and (= tr 9) (= t 3) (= x 0))
(and (= tr 9) (= t 3) (= x 1))
(and (= tr 9) (= t 4) (= x 0))
(and (= tr 9) (= t 4) (= x 1)))

)

;; Semantics of PLTL
(define-fun-rec holds ((f Formula) (tr Trace) (t Time))

Bool
(let ((tn (len tr)))
(and (<= 0 t tn)
(match f (

(Top true)

(Bottom false)

((P i) (val tr t i))

((Op1 op g)
(match op (
(NOT (not (holds g tr t)))

(Y (and (< 0 t) (holds g tr (- t 1))))

(H (and (holds g tr t) (or (= t 0) (holds f
tr (- t 1)))))

(O (or (holds g tr t) (and (< 0 t) (holds f
tr (- t 1)))))

(G (and (holds g tr t) (or (= t tn) (holds f
tr (+ t 1)))))

)))

((Op2 op f1 g)
(match op (
(AND (and (holds f1 tr t) (holds g tr t)))

(OR (or (holds f1 tr t) (holds g tr t)))

(IMPLIES (or (not (holds f1 tr t)) (holds g
tr t)))

(S (or (holds g tr t) (and (holds f1 tr t)
(and (< 0 t) (holds f tr (- t 1))))))

)))))
)
)
)

;; phi is the formula to be synthesized
(declare-const phi Formula)

;; checking all positive traces
(define-fun-rec holds-for-all-traces ((tr Trace) (f

Formula)) Bool
(or (< tr 1)
(and (holds (Op1 G f) tr 0)

(holds-for-all-traces (- tr 1) f))
)
)

;; Positive Traces endpoint
(define-const pos_tr Int 3)

;; Constraint phi w.r.t. positive traces
(assert (holds-for-all-traces pos_tr phi))

;; checking all negative traces
(define-fun-rec fail-for-all-traces ((tr Trace) (f

Formula)) Bool
(or (<= tr pos_tr)
(and (not (holds (Op1 G f) tr 0))

(fail-for-all-traces (- tr 1) f))
)
)

;; Constraint phi w.r.t. negative Traces
(assert (fail-for-all-traces 9 phi))

(check-sat)

(get-value (phi))
;Example Formula:
;(Infix) failure => !(Y(!(alarm) S failure))
;(Prefix) =>(failure, !(Y(S(!(alarm), failure)))

B. SyGuS-ADT Encoding using SMT-LIB 2 & ADT Gram-
mar.

For detailed discussion please refer to section III.

(set-logic ALL)
;Options
(set-option :sygus-out status-and-def)
(set-option :sygus-rec-fun true)
(set-option :e-matching false)

; Declare Variable Sort
(define-sort VarId () Int)

; Declare Unary Operators.
(declare-datatype UNARY_OP ((NOT) (Y) (G) (H) (O)))

; Declare Binary Operators.
(declare-datatype BINARY_OP ((AND) (OR) (IMPLIES) (S)))

; Syntax of the Formula
(declare-datatype Formula (
(Top)
(Bottom)
(P (Id VarId))
(Op1 (op1 UNARY_OP) (f Formula))
(Op2 (op2 BINARY_OP) (f1 Formula) (f2 Formula))
)
)

12

; Context-free Grammar
(synth-fun phi () Formula
((<F> Formula) (<I> Int) (<O1> UNARY_OP) (<O2> BINARY_OP))
((<F> Formula (
Top
Bottom

(P <I>)
(Op1 <O1> <F>)
(Op2 <O2> <F> <F>)
)
)
(<I> Int (0 1))
(<O1> UNARY_OP (NOT Y O H))
(<O2> BINARY_OP (AND OR IMPLIES S))
)

)

; Trace Constructs
(define-sort Trace () Int)
(define-sort Time () Int)

;; Length of Positive [1-3] and Negative Traces [4-5] from
Table V

(define-fun len ((tr Trace)) Int
(ite (= tr 1) 4
(ite (= tr 2) 4
(ite (= tr 3) 4
(ite (= tr 4) 1
(ite (= tr 5) 2
(ite (= tr 6) 4
(ite (= tr 7) 4
(ite (= tr 8) 4
(ite (= tr 9) 4 0)))))))))

)

;; Positive [1-3] and Negative Traces [4-9] instantiation
using values from Table V

(define-fun val ((tr Trace) (t Time) (x VarId)) Bool
(or
(and (= tr 1) (= t 0) (= x 0))
(and (= tr 1) (= t 0) (= x 1))
(and (= tr 1) (= t 1) (= x 1))
(and (= tr 2) (= t 0) (= x 0))
(and (= tr 2) (= t 1) (= x 1))
(and (= tr 2) (= t 2) (= x 1))
(and (= tr 2) (= t 3) (= x 0))
(and (= tr 2) (= t 3) (= x 1))
(and (= tr 2) (= t 4) (= x 1))
(and (= tr 3) (= t 1) (= x 0))
(and (= tr 3) (= t 2) (= x 1))
(and (= tr 3) (= t 4) (= x 0))
(and (= tr 3) (= t 4) (= x 1))
(and (= tr 4) (= t 0) (= x 0))
(and (= tr 4) (= t 1) (= x 0))
(and (= tr 5) (= t 0) (= x 0))
(and (= tr 5) (= t 2) (= x 0))
(and (= tr 6) (= t 0) (= x 0))
(and (= tr 6) (= t 0) (= x 1))
(and (= tr 6) (= t 2) (= x 0))
(and (= tr 6) (= t 3) (= x 0))
(and (= tr 6) (= t 3) (= x 1))
(and (= tr 6) (= t 4) (= x 0))
(and (= tr 7) (= t 0) (= x 1))
(and (= tr 7) (= t 1) (= x 0))
(and (= tr 7) (= t 1) (= x 1))
(and (= tr 7) (= t 2) (= x 1))
(and (= tr 7) (= t 3) (= x 0))
(and (= tr 7) (= t 4) (= x 0))
(and (= tr 8) (= t 1) (= x 0))
(and (= tr 8) (= t 2) (= x 0))
(and (= tr 8) (= t 2) (= x 1))
(and (= tr 8) (= t 3) (= x 0))
(and (= tr 8) (= t 4) (= x 0))
(and (= tr 8) (= t 4) (= x 1))

(and (= tr 9) (= t 0) (= x 1))
(and (= tr 9) (= t 2) (= x 1))
(and (= tr 9) (= t 3) (= x 0))
(and (= tr 9) (= t 3) (= x 1))
(and (= tr 9) (= t 4) (= x 0))
(and (= tr 9) (= t 4) (= x 1)))

)

; Semantics of PLTL
(define-fun-rec holds ((f Formula) (tr Trace) (t Time)) Bool
(let ((tn (len tr)))
(and (<= 0 t tn)
(match f (

(Top true)

(Bottom false)

((P i) (val tr t i))

((Op1 op g)
(match op (
(NOT (not (holds g tr t)))

(Y (and (< 0 t) (holds g tr (- t 1))))

(H (and (holds g tr t) (or (= t 0) (holds f tr
(- t 1)))))

(O (or (holds g tr t) (and (< 0 t) (holds f tr
(- t 1)))))

(G (and (holds g tr t) (or (= t tn) (holds f tr
(+ t 1)))))

)))

((Op2 op f1 g)
(match op (
(AND (and (holds f1 tr t) (holds g tr t)))

(OR (or (holds f1 tr t) (holds g tr t)))

(IMPLIES (or (not (holds f1 tr t)) (holds g tr
t)))

(S (or (holds g tr t) (and (holds f1 tr t) (and
(< 0 t) (holds f tr (- t 1))))))

)))))
)
)
)

;; checking all positive traces
(define-fun-rec holds-for-all-traces ((tr Trace) (f

Formula)) Bool
(or (< tr 1)
(and (holds (Op1 G f) tr 0)

(holds-for-all-traces (- tr 1) f))
)
)

;; positive traces endpoint
(define-const pos_tr Int 3)

;; Constraint phi w.r.t. positive traces
(constraint (holds-for-all-traces pos_tr phi))

;; checking all negative traces
(define-fun-rec fail-for-all-traces ((tr Trace) (f

Formula)) Bool
(or (<= tr pos_tr)
(and (not (holds (Op1 G f) tr 0))

(fail-for-all-traces (- tr 1) f))

13

)
)

;; Constraint phi w.r.t. negative traces
(constraint (fail-for-all-traces 9 phi))

;Example Formula:
;(Infix) failure => !(Y(!(alarm) S failure))
;(Prefix) =>(failure, !(Y(S(!(alarm), failure)))

(check-synth)

C. SyGuS-BV Encoding using SMT-LIB 2 & BitVector Gram-
mar.

For detailed discussion please refer to section III.

(set-logic BV)
(set-option :sygus-out status-and-def)
(set-option :e-matching false)

;Trace length
(define-sort Stream () (_ BitVec 5))
(define-fun ZERO () Stream (_ bv0 5))
(define-fun ONE () Stream (_ bv1 5))

(define-fun S_FALSE () Stream ZERO)
(define-fun S_TRUE () Stream (bvnot S_FALSE))

; Yesterday(X): X << 1
(define-fun
Y ((X Stream)) Stream
(bvshl X ONE)
)

; Once(X): X | -X
(define-fun
O ((X Stream)) Stream
(bvor X (bvneg X))
)

; Historically(X): X & ˜(1 + X)
(define-fun
H ((X Stream)) Stream
(bvand X (bvnot (bvadd ONE X)))
)

; Since(X,Z): Z | (X & ˜((X | Z) + Z))
(define-fun
S ((X Stream) (Z Stream)) Stream
(bvor Z
(bvand X
(bvnot (bvadd (bvor X Z) Z))
)
)
)

; Implies(X,Z): ˜X | Z
(define-fun
bvimpl ((X Stream) (Z Stream)) Stream
(bvor (bvnot X) Z)
)

; Context-free Grammar
; Alphabet {failure, alarm}
(synth-fun phi ((failure Stream) (alarm Stream)) Stream
((<F> Stream))
((<F> Stream (
S_TRUE
S_FALSE
(Variable Stream)
(bvnot <F>)

(bvand <F> <F>)
(bvor <F> <F>)
(bvimpl <F> <F>)
(Y <F>)
(O <F>)
(H <F>)
(S <F> <F>)
)))

)

;; Positive examples [1-3] from Table V
;; Sequence these traces is reversed
(constraint
(and
(= (phi #b00001 #b00011) S_TRUE)
(= (phi #b01001 #b11110) S_TRUE)
(= (phi #b10010 #b10100) S_TRUE)
)

)

;; Negative examples [4-9] from Table V
;; Sequence these traces is reversed
(constraint
(and
(not (= ((_ extract 1 0) (phi #b00011 #b00000)) ((_

extract 1 0) S_TRUE)))
(not (= ((_ extract 2 0) (phi #b00101 #b00000)) ((_

extract 2 0) S_TRUE)))
(not (= (phi #b11101 #b01001) S_TRUE))
(not (= (phi #b11010 #b00111) S_TRUE))
(not (= (phi #b11110 #b10100) S_TRUE))
(not (= (phi #b11000 #b11101) S_TRUE))
)

)

;Example Formula:
;(Infix) failure => !(Y(!(alarm) S failure))
;(Prefix) =>(failure, !(Y(S(!(alarm), failure)))
;(SMTLib) (bvnot (bvand failure (Y (S (bvnot alarm)

failure))))

(check-synth)

II. PROOF OF CORRECTNESS FOR BIT-VECTOR BASED
ENCODING OF PLTL SEMANTICS

Theorem 1. Let Φ be a PLTL formula over the alphabet A =
{p1, . . . , pm} and let σ be a trace of length n over A. Then,

σ |= fΦ iff |=TBV

←−
Φ {p̄ 7→ σ̄} '

←−
> [n]

where p̄ = (←−p1[n], . . . ,←−pm[n]) and σ̄ = (
←−−−
σ(p1), . . . ,

←−−−
σ(pm)).

Proof. The proof follows by induction in the structure of Φ. For
the cases in which Φ is a propositional variable pi ∈ A, >, or
⊥, and for the cases in which Φ is of the form ¬Ψ, Ψ1 ∧ Ψ2,
Ψ1 ∨ Ψ2, Ψ, Ψ1 S Ψ2, we refer the reader to the proofs by
Baresi et al. [28]. We only show here the proofs for the cases in
which we provide a different bit-vector encoding, that is, when
Φ is of the formΨ orΨ.

• Case Φ = Ψ. From the semantics of PLTL and the definition
of f , we know that σ |= fΨ if and only if for all i ∈
[0, n − 1], there is a j ∈ [0, i] such that (σ, j) |= Ψ. So, by the
previous definition and the induction hypothesis,

←−
Ψ should

be the bit-vector with zeros at all positions (i.e.,
←−
⊥ [n]) if

←−
Ψ =

←−
⊥ [n], or a bit-vector with zeros at positions [0, k − 1] and ones
at positions [k, n − 1], where k is the index of the first least

14

significant non-zero bit of
←−
Ψ . Now we will prove that this is the

case indeed. If
←−
Ψ =

←−
⊥ [n], then −

←−
Ψ |
←−
Ψ '

←−
⊥ [n] |

←−
⊥ [n] '←−

⊥ [n], as we wanted to prove. Otherwise, −
←−
Ψ[i] = ∼

←−
Ψ[i] for

all i ∈ [k + 1, n − 1], −
←−
Ψ[k] = 1, and −

←−
Ψ[i] = 0 for all

i ∈ [0, k− 1]. Thus, (−
←−
Ψ |
←−
Ψ)[i] = 1 for all i ∈ [k+ 1, n− 1],

(−
←−
Ψ |
←−
Ψ)[k] = 1, and (−

←−
Ψ[i] |

←−
Ψ)[i] = 0 for all i ∈ [0, k−1].

• Case Φ = Ψ. From the semantics of PLTL and the definition
of f , we know that σ |= fΨ if and only if for all i ∈
[0, n− 1], and for all j ∈ [0, i], (σ, j) |= Ψ. So, by the previous
definition and the induction hypothesis,

←−
Ψ should be the bit-

vector with ones at all positions (i.e.,
←−
> [n]) if

←−
Ψ =

←−
> [n], or a

bit-vector with ones at positions [0, k− 1] and zeros at positions
[k, n − 1], where k is the index of the first least significant zero
bit of

←−
Ψ . Now we will prove that this is the case indeed. If

←−
Ψ =

←−
> [n], then ∼(1 +

←−
> [n]) &

←−
> [n] ' ∼(

←−
⊥ [n]) '

←−
> [n], as

we wanted to show. Otherwise, ∼(1 +
←−
Ψ)[i] = ∼

←−
Ψ[i] for all

i ∈ [k + 1, n − 1], ∼(1 +
←−
Ψ)[k] = 0, and ∼(1 +

←−
Ψ)[i] = 1

for all i ∈ [0, k − 1]. Therefore, (∼(1 +
←−
Ψ) &

←−
Ψ)[i] = 0

for all i ∈ [k + 1, n − 1], (∼(1 +
←−
Ψ) &

←−
Ψ)[k] = 0, and

(∼(1 +
←−
Ψ) &

←−
Ψ)[i] = 1 for all i ∈ [0, k − 1].

III. EXAMPLE

In Table VI, we show evaluation of an example formula over
a simple trace σ using bit-vector encoding described in A-C.

TABLE VI. Φ = ¬p ∨(¬pS q)
←−
Φ σ = (σ4σ3σ2σ1σ0)

1 ←−p [5]
←−
Ψ1 00001

2 ←−q [5]
←−
Ψ2 11100

3 ∼←−p [5]
←−
Ψ3 ∼

←−
Ψ1 11110

4
←−
Ψ4 (

←−
Ψ3 |

←−
Ψ2) 11110

5
←−
Ψ5

←−
Ψ4 +

←−
Ψ2 11010

6
←−
Ψ6 ∼(

←−
Ψ5 &

←−
Ψ3) 00101

7 ∼←−p [5]
←−
S←−q [5]

←−
Ψ7

←−
Ψ2 |

←−
Ψ6 11101

8 (∼←−p [5]
←−
S←−q [5])

←−
Ψ8 <<

←−
Ψ7 11010

9 ∼←−p [5] | (∼←−p [5]
←−
S←−q [5])

←−
Ψ9

←−
Ψ3 |

←−
Ψ8 11110

1. Formula Φ = ¬p ∨(¬pS q) holds at any time point if either
¬p is true (i.e.

←−
Ψ3) OR(¬pS q) holds

2.
←−
Ψ8 (i.e. (¬pS q)) is true if the yesterday of ¬pS q is true that
carry over the truth value from the previous time point to the
current time point (i.e. <<

←−
Ψ7). It is to note that σ0 is set to ’0’

because yesterday of the initial point is always false
3.
←−
Ψ7 (i.e. ¬pS q) is true at any time point if q (i.e.

←−
Ψ2) is true OR

←−
Ψ6 set state to true at any time point when both ¬p and carried
over q value from previous state (i.e.

←−
Ψ5) are true because the

sum is ’0’ in that case
4.
←−
Ψ5 using addition carry over the truth to the left when q holds,
as long as ¬p holds captured by

←−
Ψ4.

IV. ADDITIONAL EXPERIMENTAL DATA

A. Training Dataset for Case Study I.

Table VII shows the training time of SYSLITE and the base-
line SAT-based method in Case Study I. We consider enumerat-
ing first five solutions returned by each synthesis algorithm and

[∗N] are the maximum number of learned formula before the
process timed-out. It is marked that SYSLITE achieves a 60x
speedup over the existing state-of-the-art method.

TABLE VII. Table of Training Results for Case Study I.
Sample Size Formula Type SYSLITE SAT

40 Chinese Wall Policy 2.79 97.17
80 Chinese Wall Policy 1.53 78.96

200 Chinese Wall Policy 2.99 738.05
400 Chinese Wall Policy 5.39 1515.02

1000 Chinese Wall Policy 37.19 3600

40 Bank Transaction Policy 3.5 44.33
80 Bank Transaction Policy 2.97 96.86

200 Bank Transaction Policy 5.25 312.91
400 Bank Transaction Policy 6.63 841.94

1000 Bank Transaction Policy 17.94 3600

40 Secure File 870.55 3600
80 Secure File 513.1 [*4] 3600

200 Secure File 161.21 [*2] 3600
400 Secure File 230.56[*2] 3600

1000 Secure File 2952.12 [*2] 3600

40 Financial Institute 11.7 1020.44
80 Financial Institute 32.43 3257.56

200 Financial Institute 49.92 3600
400 Financial Institute 222.9 3600

1000 Financial Institute 2810.14 3600

40 GLBA-6802 7.63 1651.74
80 GLBA-6802 82.07 3600

200 GLBA-6803 167.97 3600
400 GLBA-6804 1040.92 3600

1000 GLBA-6805 2637.34 [*3] 3600

40 HIPPA-164508A2 4.37 287.98
80 HIPPA-164508A2 83.39 3600

200 HIPPA-164508A2 175.09 3600
400 HIPPA-164508A2 286.8 3600

1000 HIPPA-164508A2 2740.32 [*3] 3600

40 HIPPA-164508A3 5.33 50.78
80 HIPPA-164508A3 3.27 81.37

200 HIPPA-164508A3 4.56 342.7
400 HIPPA-164508A3 8.29 823.67

1000 HIPPA-164508A3 14.44 3600

40 Dynamic Separation of Duty 76.34 2985.05
80 Dynamic Separation of Duty 94.66 2184.23

200 Dynamic Separation of Duty 3600 3600
400 Dynamic Separation of Duty 3600 3600

1000 Dynamic Separation of Duty 3600 3600

B. Training Dataset for Case Study II.

Table VII shows the training time of SYSLITE and the base-
line SAT-based method in Case Study II. Here SYSLITE gains a
28x speedup over the existing state-of-the-art method

15

TABLE VIII. Table of Training Results for Case Study II.
Sample Size LTE Attack Name SYSLITE SAT

40 Numb Attack 384.72 67.62
80 Numb Attack 340.73 165.56
200 Numb Attack 870.78 493.41
400 Numb Attack 56.53 [*3] 1381.28

1000 Numb Attack 296.41 2970.24

40 Paging with IMSI 13.33 432.57
80 Paging with IMSI 19.69 770.78
200 Paging with IMSI 31.71 1641.48
400 Paging with IMSI 56.27 3600

1000 Paging with IMSI 154.36 3600

40 EMM Information 3.69 41.76
80 EMM Information 3.61 73.66
200 EMM Information 8.49 255.16
400 EMM Information 14.7 555.68

1000 EMM Information 35.76 3600

40 NULL Encryption 4.9 23.14
80 NULL Encryption 2.53 50.18
200 NULL Encryption 4.96 234.46
400 NULL Encryption 6.16 483.44

1000 NULL Encryption 14.14 1204.13

40 RLF Report 193.63 [*3] 3083
80 RLF Report 207.61 [*2] 3600
200 RLF Report 656.84 [*4] 3600
400 RLF Report 332.89 [*1] 3600

1000 NULL Encryption 14.14 1204.13
RLF Report 1022.75 [*2] 3600

40 Malformed Identity Request 2.34 31.63
80 Malformed Identity Request 3.59 74.47
200 Malformed Identity Request 6.86 229.06
400 Malformed Identity Request 10.23 549.56

1000 Malformed Identity Request 23.61 1768.12

40 IMSI Cracking 6.29 48.47
80 IMSI Cracking 8.99 102.33
200 IMSI Cracking 21.03 244.42
400 IMSI Cracking 13.35 1064.41

1000 IMSI Cracking 97.47 3600

40 Authentication Failure 2.72 18.85
80 Authentication Failure 2.38 51
200 Authentication Failure 3.82 159.8
400 Authentication Failure 8.13 509.88

1000 Authentication Failure 17.31 1445.6

40 IMSI Catching 3.3 35.77
80 IMSI Catching 4.41 77.25
200 IMSI Catching 5.68 195.26
400 IMSI Catching 8.98 471.71

1000 IMSI Catching 22.43 1434.77

40 Measurement Report 805.03 [*4] 3600
80 Measurement Report 307.73 [*2] 3600
200 Measurement Report 742.41 [*2] 3600
400 Measurement Report 231.77 [*2] 3600

1000 Measurement Report 3600 3600

40 Aka Bypass 601.64 2521.27
80 Aka Bypass 224.94 [*2] 1841.37
200 Aka Bypass 375.96 [*2] 3600
400 Aka Bypass 580.47 [*2] 3600

1000 Aka Bypass 305.4 [*1] 3600

16

C. Evaluation Dataset for Case Study I

The detailed evaluation results of SYSLITE and the baseline method in Case Study I is presented in Table IX. We have used
PLTL to Büchi automata translation implementation in a tool called GOAL [34] for checking the equivalence between seed and the
synthesized formulas.

TABLE IX. Table of Evaluation Results for Case Study I.
Literature Formula Total Sample

Size Precision Recall F1 Equivalence to Seed Synthesized Formulas

SYSLITE SAT SYSLITE SAT SYSLITE SAT SYSLITE SAT SYSLITE SAT
Chinese Wall Policy 50 100% 100% 100% 100% 100% 100% 5 5 f (¬(∧(access org1 records,(access org2 records)))) f (⇒ ((access org2 records),¬(access org1 records)))
Chinese Wall Policy 100 100% 100% 100% 100% 100% 100% 5 5 f (¬(∧(access org1 records, access org2 records))) f (¬(∧(access org2 records,(access org1 records))))
Chinese Wall Policy 250 100% 100% 100% 100% 100% 100% 5 5 f (¬(∧(access org1 records,(access org2 records)))) f (¬(∧(access org1 records,(access org2 records))))
Chinese Wall Policy 500 100% 100% 100% 100% 100% 100% 5 5 f (¬(∧(access org1 records,(access org2 records)))) f (¬(∧(access org1 records,(access org2 records))))
Chinese Wall Policy 1250 100% 100% 100% 3 f (¬(∧((access org1 records),(access org2 records))))

Bank Transaction Policy 50 100% 100% 100% 100% 100% 100% 3 3
f (⇒ (Transaction over threshold performed,
(Transaction over threshold approved)))

f (⇒ (Transaction over threshold performed,
(Transaction over threshold approved)))

Bank Transaction Policy 100 100% 100% 100% 100% 100% 100% 3 3
f (⇒ (Transaction over threshold performed,
(Transaction over threshold approved)))

f (⇒ (Transaction over threshold performed,
(Transaction over threshold approved)))

Bank Transaction Policy 250 100% 100% 100% 100% 100% 100% 3 3
f (⇒ (Transaction over threshold performed,
(Transaction over threshold approved)))

f (⇒ (Transaction over threshold performed,
(Transaction over threshold approved)))

Bank Transaction Policy 500 100% 100% 100% 100% 100% 100% 3 3
f (⇒ (Transaction over threshold performed,
(Transaction over threshold approved)))

f (⇒ (Transaction over threshold performed,
(Transaction over threshold approved)))

Bank Transaction Policy 1250 100% 100% 100% 3
f (⇒ (Transaction over threshold performed,
(Transaction over threshold approved)))

Secure File 50 100% 100% 100% 3
f (⇒ (secure file open,(S (¬(secure file open),

⇒ ((TRUE), secure file closed)))))

Secure File 100 100% 100% 100% 3
f (⇒ (secure file open,(S (¬(secure file open),

⇒ ((TRUE), secure file closed)))))

Secure File 250 100% 100% 100% 3
f (⇒ (secure file open,(S (¬(secure file open),

⇒ ((TRUE), secure file closed)))))

Secure File 500 100% 100% 100% 3
f (⇒ (secure file open,(S (¬(secure file open),

⇒ ((TRUE), secure file closed)))))

Secure File 1250 100% 100% 100% 3
f (⇒ (secure file open,(S (¬(secure file open),

⇒ ((TRUE), secure file closed)))))

GLBA 6802 50 100% 100% 100% 100% 100% 100% 3 3
f (⇒ (institution dislcloses to affiliate customers npi,
S (¬(customer opt out), notice of disclosure)))

f (⇒ (institution dislcloses to affiliate customers npi,
S (¬(customer opt out), notice of disclosure)))

GLBA 6802 100 100% 100% 100% 3
f (⇒ (institution dislcloses to affiliate customers npi,
S (¬(customer opt out), notice of disclosure)))

GLBA 6802 250 100% 100% 100% 3
f (⇒ (institution dislcloses to affiliate customers npi,
S (¬(customer opt out), notice of disclosure)))

GLBA 6802 500 100% 100% 100% 3
f (⇒ (institution dislcloses to affiliate customers npi,
S (¬(customer opt out), notice of disclosure)))

GLBA 6802 1250 100% 100% 100% 3
f (⇒ (institution dislcloses to affiliate customers npi,
S (¬(customer opt out), notice of disclosure)))

Financial Institute 50 100% 100% 100% 100% 100% 100% 3 3 f (⇒ (grant,(S (¬(grant), request))) f (⇒ (grant,(S (¬(grant), request))))
Financial Institute 100 100% 100% 100% 100% 100% 100% 3 3 f (⇒ (grant,(S (¬(grant), request))) f (⇒ (grant,(S (¬(grant), request))))
Financial Institute 250 100% 100% 100% 3 f (⇒ (grant,(S (¬(grant), request))))
Financial Institute 500 100% 100% 100% 3 f (⇒ (grant,(S (¬(grant), request))))
Financial Institute 1250 100% 100% 100% 3 f (⇒ (grant,(S (¬(grant), request))))

HIPPA 164508A2 50 100% 91.70% 100% 90% 100% 89.90% 3 5
f (⇒ (covered entity discloses patient psych notes,

S (¬(authorization psych notes revoked),
receive patient authorization psych notes)))

f (⇒ (∧(covered entity discloses patient psych notes,
authorization psych notes revoked),

receive patient authorization psych notes))

HIPPA 164508A2 100 100% 100% 100% 3
f (⇒ (covered entity discloses patient psych notes,

S (¬(authorization psych notes revoked),
receive patient authorization psych notes)))

HIPPA 164508A2 250 100% 100% 100% 3
f (⇒ (covered entity discloses patient psych notes,

S (¬(authorization psych notes revoked),
receive patient authorization psych notes)))

HIPPA 164508A2 500 100% 100% 100% 3
f (⇒ (covered entity discloses patient psych notes,

S (¬(authorization psych notes revoked),
receive patient authorization psych notes)))

HIPPA 164508A2 1250 100% 100% 100% 3
f (⇒ (covered entity discloses patient psych notes,

S (¬(authorization psych notes revoked),
receive patient authorization psych notes)))

HIPAA 164508a3 50 100% 100% 100% 100% 100% 100% 3 3
f (⇒ (covered entity discloses patient info for marketing,

(receive patient authorization marketing)))
f (⇒ (covered entity discloses patient info for marketing,

(receive patient authorization marketing)))

HIPAA 164508a3 100 100% 100% 100% 100% 100% 100% 3 3
f (⇒ (covered entity discloses patient info for marketing,

(receive patient authorization marketing)))
f (⇒ (covered entity discloses patient info for marketing,

(receive patient authorization marketing)))

HIPAA 164508a3 250 100% 100% 100% 100% 100% 100% 3 3
f (⇒ (covered entity discloses patient info for marketing,

(receive patient authorization marketing)))
f (⇒ (covered entity discloses patient info for marketing,

(receive patient authorization marketing)))

HIPAA 164508a3 500 100% 100% 100% 100% 100% 100% 3 3
f (⇒ (covered entity discloses patient info for marketing,

(receive patient authorization marketing)))
f (⇒ (covered entity discloses patient info for marketing,

(receive patient authorization marketing)))

HIPAA 164508a3 1250 100% 100% 100% 3
f (⇒ (covered entity discloses patient info for marketing,

(receive patient authorization marketing)))

Dynamic Separation of Duty 50 100% 100% 100% 100% 100% 100% 5 5
f (S ((⇒ (member activates role2,member deactivates role2)),

¬(member activates role1)))
f (⇒ (member activates role1,

(⇒ (member activates role2,member deactivates role2))))

Dynamic Separation of Duty 100 100% 100% 100% 100% 100% 100% 5 5
f (S ((⇒ (member activates role2,member deactivates role2)),

¬(member activates role1)))
f (⇒ (member activates role1,

(⇒ (member activates role2,member deactivates role2))))
Dynamic Separation of Duty 250
Dynamic Separation of Duty 500
Dynamic Separation of Duty 1250

D. Evaluation Dataset for Case Study II

The detailed evaluation results of SYSLITE and the baseline method in Case Study II are shown in Table X.

17

TABLE X. Table of Evaluation Results for Case Study II.
LTE Attacks Total Sample

Size Precision Recall F1 Synthesized Formulas

SYSLITE SAT SYSLITE SAT SYSLITE SAT SYSLITE SAT

Numb Attack 50 100% 100% 100% 100% 100% 100% f (⇒ (authentication reject,(authentication response))))
f (⇒ (authentication reject,

S (authentication reject, authentication response)))

Numb Attack 100 100% 100% 100% 100% 100% 100% f (⇒ (authentication reject,(authentication response)))
f (⇒ (authentication reject,

S (authentication reject, authentication response)))

Numb Attack 250 100% 100% 100% 100% 100% 100% f (⇒ (authentication reject,(authentication response)))
f (⇒ (authentication reject,

S (authentication reject, authentication response)))

Numb Attack 500 100% 100% 100% 100% 100% 100% f (⇒ (authentication reject,(authentication response)))
f (⇒ (authentication reject,

S (authentication reject, authentication response)))

Numb Attack 1250 100% 100% 100% 100% 100% 100% f (⇒ (authentication reject,(authentication response)))
f (⇒ (authentication reject,

S (authentication reject, authentication response)))

Paging with IMSI 50 100% 100% 100% 100% 100% 100% f (¬(∨(paging IMSI, paging IMSI and TMSI)) f (¬(∨(paging IMSI and TMSI, paging IMSI)))
Paging with IMSI 100 100% 100% 100% 100% 100% 100% f (¬(∨(paging IMSI, paging IMSI and TMSI)) f (¬(∨(paging IMSI, paging IMSI and TMSI)))
Paging with IMSI 250 100% 100% 100% 100% 100% 100% f (¬(∨(paging IMSI and TMSI, paging IMSI)) f (¬(∨(paging IMSI, paging IMSI and TMSI)))
Paging with IMSI 500 100% 100% 100% f (¬(∨(paging IMSI and TMSI, paging IMSI)))
Paging with IMSI 1250 100% 100% 100% f (¬(∨(paging IMSI and TMSI, paging IMSI)))

Null Encryption 50 100% 100% 100% 100% 100% 100% f (¬(MME null encryption chosen) f (¬(MME null encryption chosen)))
Null Encryption 100 100% 100% 100% 100% 100% 100% f (¬(MME null encryption chosen) f (¬(MME null encryption chosen)))
Null Encryption 250 100% 100% 100% 100% 100% 100% f (¬(MME null encryption chosen) f (¬(MME null encryption chosen)))
Null Encryption 500 100% 100% 100% 100% 100% 100% f (¬(MME null encryption chosen) f (¬(MME null encryption chosen)))
Null Encryption 1250 100% 100% 100% 100% 100% 100% f (¬(MME null encryption chosen) f (¬(MME null encryption chosen)))

RLF Report 50 100% 100% 100% 100% 100% 100%
f (⇒ (ueInformationResponse-r9,

S (¬(rrcConnectionRequest), securityModeCommand))

f (⇒ (ueInformationResponse-r9,
S (→ (rrcConnectionRelease,

ueInformationResponse-r9), securityModeComplete)))

RLF Report 100 100% 100% 100%
f (⇒ (ueInformationResponse-r9,

S (¬(rrcConnectionSetupComplete), securityModeCommand)))

RLF Report 250 100% 100% 100%
f (⇒ (rrcConnectionReconfigurationComplete,

S (¬(rrcConnectionRelease), securityModeCommand)))

RLF Report 500 100% 100% 100%
f (⇒ (ueInformationResponse-r9,

S (¬(rrcConnectionSetupComplete), securityModeComplete)))

RLF Report 1250 100% 100% 100%
f (⇒ (ueInformationResponse-r9,

S (¬(rrcConnectionRequest), securityModeCommand)))

Malformed Identity 50 100% 100% 100% 100% 100% 100% f (¬(identity request not well formed) f (¬(identity request not well formed)))
Malformed Identity 100 100% 100% 100% 100% 100% 100% f (¬(identity request not well formed) f (¬(identity request not well formed)))
Malformed Identity 250 100% 100% 100% 100% 100% 100% f (¬(identity request not well formed) f (¬(identity request not well formed)))
Malformed Identity 500 100% 100% 100% 100% 100% 100% f (¬(identity request not well formed) f (¬(identity request not well formed)))
Malformed Identity 1250 100% 100% 100% 100% 100% 100% f (¬(identity request not well formed) f (¬(identity request not well formed)))

IMSI Catching 50 100% 100% 100% 100% 100% 100% f (¬(identity request IMSI) f (¬(identity request IMSI)))
IMSI Catching 100 100% 100% 100% 100% 100% 100% f (¬(identity request IMSI) f (¬(identity request IMSI)))
IMSI Catching 250 100% 100% 100% 100% 100% 100% f (¬(identity request IMSI) f (¬(identity request IMSI)))
IMSI Catching 500 100% 100% 100% 100% 100% 100% f (¬(identity request IMSI) f (¬(identity request IMSI)))
IMSI Catching 1250 100% 100% 100% 100% 100% 100% f (¬(identity request IMSI) f (¬(identity request IMSI)))

Measurement Report 50 100% 100% 100%
f (⇒ (measurementReport,

S (¬(rrcConnectionRelease), securityModeComplete)))

Measurement Report 100 100% 100% 100%
f (⇒ (measurementReport,

S (¬(rrcConnectionSetup), securityModeCommand)))

Measurement Report 250 100% 100% 100%
f (⇒ (measurementReport,

S (¬(rrcConnectionSetup), securityModeCommand)))

Measurement Report 500 100% 100% 100%
f (⇒ (measurementReport,

S (¬(rrcConnectionSetup), securityModeComplete)))
Measurement Report 1250

Aka Bypass 50 100% 100% 100% 100% 100% 100%
f (⇒ (rrcConnectionReconfiguration,

S (¬(rrcConnectionRequest), securityModeCommand))

f (⇒ (rrcConnectionReconfiguration,
S (⇒ (rrcConnectionRequest,

securityModeComplete), securityModeComplete)))

Aka Bypass 100 100% 100% 100% 100% 100% 100%
f (⇒ (rrcConnectionReconfiguration,

S (¬(rrcConnectionRequest), securityModeComplete))
f (⇒ (rrcConnectionReconfiguration,

S (¬(rrcConnectionRelease), securityModeCommand)))

Aka Bypass 250 100% 100% 100%
f (⇒ (rrcConnectionReconfiguration,

S (¬(rrcConnectionRelease), securityModeCommand))

Aka Bypass 500 100% 100% 100%
f (⇒ (rrcConnectionReconfiguration,

S (¬(rrcConnectionSetupComplete), securityModeCommand))
Aka Bypass 1250

IMSI Cracking 50 100% 100% 100% 100% 100% 100% f (¬(paging IMSI and TMSI) f (¬(paging IMSI and TMSI)))
IMSI Cracking 100 100% 100% 100% 100% 100% 100% f (¬(paging IMSI and TMSI) f (¬(paging IMSI and TMSI)))
IMSI Cracking 250 100% 100% 100% 100% 100% 100% f (¬(paging IMSI and TMSI) f (¬(paging IMSI and TMSI)))
IMSI Cracking 500 100% 100% 100% 100% 100% 100% f (¬(paging IMSI and TMSI) f (¬(paging IMSI and TMSI)))
IMSI Cracking 1250 100% 100% 100% f (¬(paging IMSI and TMSI))

	Introduction
	Technical Preliminaries
	Problem Definition and Possible Approaches
	Possible Approaches
	Lessons learned

	PLTL Synthesis with SyGuS
	Implementation and Evaluation of SYSLITE
	SysLite Implementation
	Empirical Analysis Criteria and Configuration
	Case Study I: PLTL Formulae from Literature
	Case Study II: 4G LTE Attack Signature Generation

	Conclusion
	Encoding of SMT-based and SyGuS-based Approaches
	SMT-based Encoding using SMT-LIB 2.
	SyGuS-ADT Encoding using SMT-LIB 2 & ADT Grammar.
	SyGuS-BV Encoding using SMT-LIB 2 & BitVector Grammar.

	Proof of Correctness for Bit-vector based Encoding of PLTL Semantics
	Example
	Additional Experimental Data
	Training Dataset for Case Study I.
	Training Dataset for Case Study II.
	Evaluation Dataset for Case Study I
	Evaluation Dataset for Case Study II

