
Formal Methods in Computer-Aided Design 2020

Reductions for Strings and
Regular Expressions Revisited

Andrew Reynolds˚ , Andres Nötzli: , Clark Barrett: , and Cesare Tinelli˚

˚The University of Iowa, :Stanford University

Abstract—The theory of strings supported by solvers in formal
methods contains a large number of operators. Instead of
implementing a semi-decision procedure that reasons about all
the operators directly, string solvers often reduce operators
to a core fragment and implement a semi-decision procedure
over that fragment. These reductions considerably increase the
number of constraints and thus have to be done carefully to
achieve good performance. We propose novel reductions from
regular expressions to string constraints and a framework for
minimizing the introduction of new variables in current reduc-
tions of string constraints. The reductions of regular expression
constraints enable string solvers to handle a significant fragment
of such constraints without using dedicated reasoning over
regular expressions. Minimizing the number of variables in the
reduced constraints makes those constraints significantly cheaper
to solve by the core solver. An experimental evaluation of our
implementation of both techniques in CVC4, a state-of-the-art
SMT solver with extensive support for the theory of strings, shows
that they significantly improve the solver’s performance.

I. INTRODUCTION

Most software processes strings in some fashion, and as a
result, modern programming languages include functionality
to manipulate strings in various ways. The semantics of
these string manipulations are often complex, which makes
automated reasoning about programs that use them challenging.
In recent years, researchers have proposed various approaches
to tackle this challenge with dedicated solvers for string
constraints [16], [18], [5], [10], [4], [3]. Dedicated solvers
have been successfully used in a wide range of applications
such as finding or proving the absence of SQL injections
and XSS vulnerabilities in web applications [23], [21], [28],
reasoning about access policies in cloud infrastructure [7],
[6], and generating database tables from SQL queries for unit
testing [26].

Modern string solvers natively support an extensive set of
high-level string operations commonly found in programming
languages, such as regular language membership, string re-
placement, and computing the index of one string in another.
Reasoning about string constraints can be roughly divided
into three areas: piq reasoning about basic word equations
with length constraints, piiq reasoning about extended string
constraints, and piiiq reasoning about regular membership
constraints. One common approach to handling extended string
constraints is to reduce the high-level operators to a set of
basic operators and implement a semi-decision procedure for
the latter. In such a design, the overall performance of a
string solver depends on the efficiency of those reductions.

In particular, these reductions tend to introduce fresh string
variables, which affect the difficulty of the problem for the
solver for basic constraints.

The expressive power of the signature for string constraints
often enables the user to write the same constraints in multiple
equivalent ways. As a simple example, consider the following
three formulas, each stating in effect that string y is the result
of removing the first character from another string x:

Dz. x « z ¨ y ^ |z| « 1 (1)
substrpx, 1, |x| ´ 1q « y (2)
x P rconpΣ, to repyqq (3)

Equation (1) states that there exists some string z of length
one such that x is the result of concatenating that string and
y. Equation (2) uses the extended string function substr to
state that y is the substring of x starting at position one and
having length |x| ´ 1. Equation (3) states that x is in the
regular language consisting of the set of strings obtained by
concatenating (rcon) the regular language of single character
strings (Σ) with the (singleton) regular language containing
just y. In this work, we observe that many string constraints
like those above share common properties and can be handled
based on reductions that lead to a more effective collaboration
between the various subsolvers in current string solvers.

The contributions of this paper are as follows:
‚ We introduce witness sharing, a novel technique that can sig-

nificantly reduce the number of variables introduced by string
solvers that reason about combinations of word equations,
extended string constraints, and regular expressions.

‚ We verify the correctness of our technique by generating
verification conditions that encode some of its soundness
properties and solve them using multiple string solvers.

‚ We describe new techniques for encoding regular expressions
using extended functions whose reductions take advantage
of witness sharing.

‚ We implement these techniques in the state-of-the-art string
subsolver of the SMT solver CVC4, showing that they lead
to significant performance improvements.

In the remainder of this section, we discuss related work. We
discuss preliminaries in Section II, introduce the concept of
witness sharing in Section III, and discuss the reduction of
regular expression constraints to extended string functions in
Section IV. Finally, we evaluate our approach in Section V.

This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD20
https://orcid.org/0000-0002-3529-8682
https://orcid.org/0000-0001-8669-0011
https://orcid.org/0000-0002-9522-3084
https://orcid.org/0000-0002-6726-775X
https://creativecommons.org/licenses/by/4.0/

n : Int for all n P N l : Str for all l P A˚
` : Intˆ Int Ñ Int ´ : Int Ñ Int ě : Intˆ Int Ñ Bool
¨ . . . ¨ : Str ˆ ¨ ¨ ¨ ˆ Str Ñ Str | | : Str Ñ Int

substr : Str ˆ Intˆ Int Ñ Str ctn : Str ˆ Str Ñ Bool
indexof : Str ˆ Str ˆ Int Ñ Int replace : Str ˆ Str ˆ Str Ñ Str

P : Str ˆ Lan Ñ Bool Σ : Lan
rcon : Lanˆ ¨ ¨ ¨ ˆ Lan Ñ Lan to re : Str Ñ Lan
inter : Lanˆ ¨ ¨ ¨ ˆ Lan Ñ Lan star : Lan Ñ Lan
union : Lanˆ ¨ ¨ ¨ ˆ Lan Ñ Lan rangec1,c2 : Lan

Fig. 1. Functions in the signature of the theory of strings TS.

Related Work String solvers typically reduce the input con-
straints to a basic representation. Common basic representations
include finite automata [22], [14], [15], [25], [13]; a variation of
word equations and length constraints [20], [11], [29], [23]; bit-
vectors [16]; and arrays [17]. The reductions to word equations
and length constraints are similar to those studied in this work,
and our techniques would apply there in a similar manner.

To the best of our knowledge, improving the efficiency of
reductions themselves was not a major factor in previous work,
although there is work on avoiding unnecessary reductions.
Reynolds et al. [19] propose the use of aggressive rewriting
to eliminate or simplify extended string constraints before
performing reductions. In earlier work, Reynolds et al. [20]
describe an approach to perform reductions lazily after sim-
plifying extended functions based on other constraints in the
current solving context. The general approach proposed here
tackles the cost of reductions from a different angle and can
be combined with these approaches.

Backes et al. [7] reduce a fragment of regular expression
constraints to extended string constraints. In contrast to our
approach, their technique is not integrated within a solver and
is restricted to a smaller fragment.

II. PRELIMINARIES

We work in the context of many-sorted first-order logic with
equality and assume the reader is familiar with the notions
signature, term, literal, (quantified) formula, and free variable.
We consider many-sorted signatures Σ that contain an (infix)
logical symbol « for equality—which has type σ ˆ σ for all
sorts σ in Σ and is always interpreted as the identity relation.
A theory is a pair T “ pΣ, Iq, where Σ is a signature and I is
a class of Σ-interpretations, the models of T . A Σ-formula ϕ
is satisfiable (resp., unsatisfiable) in T if it is satisfied by some
(resp., no) interpretation in I. We write |ùT ϕ to denote that
the Σ-formula ϕ is T -valid, i.e., is satisfied in every model of
T . By convention and unless otherwise stated, we use letters
x, y, z to denote variables and s, t to denote terms.

We consider an (extended) theory TS of strings whose
signature ΣS is given in Figure 1. We fix a totally ordered
finite alphabet A of characters. The signature includes the
sorts Str, Lan, and Int denoting A˚, regular languages over
A, and integers, respectively. The core signature is given on
the first three lines in the figure. It includes the usual symbols

of linear integer arithmetic, interpreted as expected. We will
write t1 ’ t2, with ’ P tą,ă,ďu, as syntactic sugar for the
equivalent inequality between t1 and t2 expressed using only
ě. The core string symbols are given on the first and third line.
They consist of a constant symbol, or string constant, for each
word of A˚ (including ε for the empty word), interpreted as that
word; a variadic function symbol ¨. . .¨ : Strˆ. . .ˆStr Ñ Str,
interpreted as word concatenation; and a function symbol
| | : Str Ñ Int, interpreted as the word length function.

The four function symbols in the next two lines of Figure 1
encode operations on strings that often occur in applications.
We refer to these function symbols as extended functions.
Informally, their semantics are as follows. A position in a
string x is a non-negative integer smaller than the length of
x that identifies a character in x—with 0 identifying the first
character, 1 the second, and so on. For all x, y, z, n,m, the
term substrpx, n,mq is interpreted as the maximal substring
of x starting at position n with length at most m, or the empty
string if n is an invalid position or m is negative; the predicate
ctnpx, yq is interpreted as true if and only if x contains y,
i.e., if y is a substring of x (every string contains the empty
string); indexofpx, y, nq is interpreted as the position of the
first occurrence of y in x starting at position n, or ´1 if y is
empty, n is an invalid position, or if no such occurrence exists;
replacepx, y, zq is interpreted as the result of replacing the first
occurrence in x of y by z, or just x if x does not contain y.
We write substrpx, nq as a shorthand for substrpx, n, |x| ´ nq.

The signature includes an infix binary predicate symbol
P : Str ˆ Lan Ñ Bool, which denotes word membership

in the given regular language. The remaining symbols are
used to construct regular expressions. In particular, Σ denotes
(the language of) all strings of length one; to repsq denotes
the singleton language containing just the word denoted by s;
rconpR1, . . . , Rnq denotes all strings that are a concatenation of
the strings in the languages denoted by R1, . . . , Rn; the Kleene
star operator starpRq denotes all strings that are obtained as
the concatenation of zero or more repetitions of the strings de-
noted by R; interpR1, . . . , Rnq and unionpR1, . . . , Rnq denote
respectively the intersection and the union of the languages
denoted by their arguments; Finally, we include the class of
indexed regular expression symbols of the form rangec1,c2
where c1 and c2 are strings of length one. We call this a
regular expression range, which is interpreted as the language
containing all strings of length one that are between c1 and
c2 (inclusive) in the ordering associated with A. We refer to
atomic or negated atomic formulas over the signature above
as string constraints.

III. WITNESS SHARING FOR STRING SOLVING

In this section, we introduce a technique we call witness
sharing, which can be used to improve the performance of string
solvers that reason in logics that combine: piq word equations
with length constraints; piiq extended string constraints (with
operators like ctn, replace, and so on); and piiiq regular
membership constraints. The goal of this technique is to reduce
the number of variables introduced internally by SMT solvers

when solving various kinds of string constraints. Our key
observation is that these variables have common properties,
and consequently they can often be shared across multiple
inferences, according to a policy that preserves the soundness
of the solver. Before describing the technique, it is helpful to
review how CDCLpT q-based string solvers operate.
CDCLpT q A CDCLpT q-based solver [9] with support for
string constraints works via a cooperation between a proposi-
tional SAT solver and a theory solver. A theory solver checks
the satisfiability of constraints in a background theory T such as
arithmetic or strings (the theory solver may consist of multiple
cooperating solvers when T is a combination of theories).
For a given input formula F , the SAT solver is responsible
for determining whether F is propositionally unsatisfiable,
that is, unsatisfiable when treating its atomic subformulas as
propositional variables. In that case, F is also T -unsatisfiable.
Otherwise, the SAT solver generates a propositionally satisfying
assignment for the atoms of F in the form of a set of theory
literals M . The theory solver then tries to determine if M is
consistent with the theory T . If so, F is T -satisfiable; otherwise,
the theory solver adds a new (T -valid) formula ϕ to F , and
the above loop repeats.

The formula ϕ, usually called a theory lemma, may cor-
respond to a conflict clause, that is, a clause of the form
`1 _ . . . _ `n, where each literal `i is forced to be false by
M . The addition of a conflict clause causes the SAT solver to
choose a new satisfying assignment. Note that not all theory
lemmas are conflict clauses. Some are simply T -valid formulas
added to F to help the SAT solver refocus its search to
assignments that satisfy those lemmas too. The theory solvers
for strings we describe next produce this sort of lemmas.
Theory Solvers for String Constraints In this section, we
focus on the behavior of the theory solver for strings in a
CDCLpT q loop. Such solvers are often designed with sub-
solvers that handle word equations, extended string constraints,
and regular expressions over the signature for TS provided in
Figure 1, or some variant of it. Their design and implementation
have been thoroughly described in previous work [18], [5],
[24]. For the purposes of this paper, it suffices to view a theory
solver for strings as a method that takes as input a set MS of
string constraints, which we also refer to as the context, and
either paq returns (a set of) theory lemmas ϕ to be added to
the set of constraints F maintained by the SAT solver, or pbq
returns sat, indicating that MS is TS-satisfiable.

We can view a string solver abstractly as a set S of inference
schemas. An inference schema is a mapping from TS-literals `
(called its premise) to a list of the form pC1 ñ ϕ1q, . . . , pCn ñ

ϕnq where C1, . . . , Cn and ϕ1, . . . , ϕn are formulas. We
assume without loss of generality that all models of TS satisfy
exactly one of C1, . . . , Cn. Intuitively, an inference schema
specifies that a list of conclusions ϕ1, . . . , ϕn are implied
by literal ` under the conditions C1, . . . , Cn respectively. An
abstract procedure for a theory solver for strings can be
summarized by the following definition.

Definition 1 (Theory Solver for Strings). A theory solver

for TS based on an inference schema set S takes as input
a set of TS-literals MS and adds formulas to an initially
empty set F as follows. For each inference schema of the form
` ÞÑ pC1 ñ ϕ1, . . . , Cn ñ ϕnq and literal `σ PMS, where σ
is a substitution mapping the variables of ` to ground terms:

1) if MS |ù Ciσ for some i, then add pp`^ Ciq ñ ϕiqσ to
F unless this lemma is already in F ;

2) otherwise, add pC1 _ . . ._ Cnqσ to F .
If no formulas were added to F , return sat.

In other words, for each inference schema for which there
exists a ground TS-literal `σ in the current context MS that
matches the premise `, if any condition Ci is implied by the
current assertions, we add a theory lemma stating that the
conclusion ϕi must hold when the premise and its condition
hold (under substitution σ). The theory lemma is added to the
set of formulas F known by the SAT solver if it does not
already occur in F . If none of the conditions C1, . . . , Cn are
implied, the solver adds the splitting lemma pC1_ . . ._Cnqσ,
which will force the SAT solver to pick a condition to satisfy,
which in turn will force the theory solver to derive one of
the conclusions ϕ1σ, . . . , ϕnσ. A theory solver for strings is
refutation-sound if it adds only TS-valid formulas to F . It is
model-sound if it returns sat only when MS is TS-satisfiable.
We do not provide complete details on the strategies used by
a theory solver for strings in this paper and instead refer the
reader to previous work [18], [5], [24].

It is important to note that, in contrast to traditional theory
solvers, many state-of-the-art theory solvers for strings generate
lemmas that do not necessarily correspond to conflict clauses.
In fact, the generated lemmas may contain new literals or even
literals with new (string) variables. A common example is the
lemma for handling equality between two string concatenations.

Example 1. Consider the TS-literal ` of the form x ¨x1 « y ¨y1,
where x, y, x1, y1 are variables. A possible inference schema
maps ` to:

pp|x| « |y| ñ x « yq, p|x| ą |y| ñ Dk1. x « y ¨ k1q,

p|x| ă |y| ñ Dk2. x ¨ k2 « yqq

When x ¨ x1 « y ¨ y1 holds, if x and y have the same length
then they must be equal. If x is longer than y then y is a prefix
of x, a fact expressed by the formula Dk1. x « y ¨ k1, stating
that x is the concatenation of y with some other string k1. The
case for when y is longer than x is analogous.

Notice that conclusions in the inference schema described above
contain existentially quantified variables. In practice, existential
quantifiers are eliminated eagerly by Skolemization, i.e., by
instantiating them by fresh variables before the theory lemma is
added to the set F . Thus, in the above example, a theory solver
for strings may return px ¨x1 « y ¨ y1^ |x| ą |y|q ñ x « y ¨ v1
where v1 is a fresh variable. Later in this section, we argue
that variables introduced in lemmas such as this one can be
shared amongst multiple theory lemmas based on a careful
analysis of the inference schemas.

Premise Conclusion Condition Witness Terms

(V-Split) x ¨ x1 « y ¨ y1

#

x « y ^ x1 « y1 |x| « |y|
Dk1.x « y ¨ k1 ^ k1 ¨ x

1 « y1 |x| ą |y| k1 ÞÑ sufpx, |y|q
Dk2.y « x ¨ k2 ^ x

1 « k2 ¨ y
1 |x| ă |y| k2 ÞÑ sufpy, |x|q

(C-Split) x ¨ x1 « c ¨ y1

#

x « c^ x1 « y1 |x| « 1
Dk1.x « c ¨ k1 ^ k1 ¨ x

1 « y1 |x| ą 1 k1 ÞÑ sufpx, 1q
x1 « c ¨ y1 |x| « 0

(Deq-V-Split) x ¨ x1 ff y ¨ y1

$

’

’

’

&

’

’

’

%

x ff y _ x1 ff y1 |x| « |y|
Dk1k2. x « k1 ¨ k2 ^ |k1| « |y| |x| ą |y| k1 ÞÑ prepx, |y|q

k2 ÞÑ sufpx, |y|q
Dk3k4. y « k3 ¨ k4 ^ |k3| « |x| |x| ă |y| k3 ÞÑ prepy, |x|q

k4 ÞÑ sufpy, |x|q

(Deq-C-Split) x ¨ x1 ff c ¨ y1

#

x ff c_ x1 ff y1 |x| « 1
Dk1k2. x « k1 ¨ k2 ^ |k1| « 1 |x| ą 1 k1 ÞÑ prepx, 1q
x1 ff c ¨ y1 |x| « 0 k2 ÞÑ sufpx, 1q

Fig. 2. Inference schemas that introduce existential variables in string solvers for word equations. Above, prepx, nq is shorthand for substrpx, 0, nq and
sufpx, nq is shorthand for substrpx, n, |x| ´ nq.

Inference Schemas for String Solvers To give further context
on how theory solvers for strings operate, we describe a
representative list of inference schemas that introduce new
variables in theory lemmas in a typical state-of-the-art string
solver. Figures 2 to 4 list commonly applied inferences in
the core equation solver (Figure 2), the solver for extended
string functions (Figure 3), and the solver for regular expression
memberships (Figure 4). In these figures, the first column gives
the premise of the inference, the second column gives (possibly
multiple) conclusions that can be derived from that premise,
given the conditions in the third column. We will address the
fourth column in later parts of this section.

In Figure 2, the first inference schema V-Split is used when
we have inferred an equality between two string terms of the
form x¨x1 and y ¨y1. Given this constraint, the string solver may
be also able to infer whether x is equal to y, y is a prefix of x
or vice versa, as discussed in Example 1. Based on these three
cases, a (set of) equalities can be inferred possibly involving a
new existentially quantified variable k1 or k2. The inference
schema C-Split is similar to V-Split and handles the case where
one side of an equality begins with a character constant c.
There are two analogous schemas for string disequalities. The
schema Deq-V-Split handles disequalities where both sides of
the disequality begin with a variable (x and y). As in the
equality case, the conditions split on the subcases where the
length of x is equal, greater, or less than that of y. If they
have equal length, the disequality is satisfied if and only if x
and y differ or their remainders differ. If x is longer than y,
then x can be decomposed into two parts k1 and k2 where k1
has the same length as y. The case when y is longer than x is
analogous. Schema Deq-C-Split is similar and handles the case
where one side of the disequality begins with a constant. These
four schemas do case splitting based on the first argument of
concatenation terms; although not shown here, four analogous
inference schemas are used for splitting based on the last

argument of concatenation terms. In practice, when splitting
a string in the schemas for disequalities, there is no need to
include the literal ` in the lemma since it is valid without `.

The inference schemas in Figure 3 cover the support for
reducing the extended string functions ctn, substr, replace, and
indexof respectively. To simplify the exposition we assume with
no loss of generality that for every extended string term t in
the input set MS of constraints, MS contains an equality of the
form t « x for some variable x, which we call the purification
variable for term t. The schema R-Ctn states that if x contains
y then it must be equal to the concatenation term k1 ¨ y ¨ k2 for
some (possibly empty) k1 and k2. The schema R-Substr relates
the purification variable y for a substring term substrpx, n,mq
with its arguments. Namely, the first conclusion holds when
n is a valid position and m is positive, as expressed by its
condition. It states that x must be of the form k1 ¨ y ¨k2, where
k1 must have length n (to ensure y is a substring of x starting
at position n). The remainder of the conclusion ensures that
the length of y matches the semantics of substr. The length
of the remainder string k2 must equal either the length of the
remaining portion of x after position n`m, or 0 (in the case
that n`m ě |x|). Moreover, unless y equals the empty string,
it must have length at most m.1 The schema R-Replace applies
to premise replacepx, y, zq « w and introduces a conclusion
with existential variables when x contains a non-empty string
y. In that case, the first occurrence of y in x is immediately
preceded by some prefix k1 of x. This is expressed by the
constraint x « k1 ¨ y ¨ k2 ^ ctnpk1 ¨ prepy, |y| ´ 1q, yq, where
prepy, |y| ´ 1q is shorthand for substrpy, 0, |y| ´ 1q, which
denotes the result of removing the last character from y. If
y is empty, the result of replace is to prepend z to x. If x
does not contain y at all, the result of replace is the original

1 The form of this conclusion is slightly different than ones provided in
previous work [20].

Premise Conclusion Condition Witness Terms

(R-Ctn) ctnpx, yq Dk1k2. x « k1 ¨ y ¨ k2 J
k1 ÞÑ preCpx, yq
k2 ÞÑ sufCpx, yq

(R-Substr) substrpx, n,mq « y

#

Dk1k2.x « k1 ¨ y ¨ k2 ^ |k1| « n^ |y| ď m 0 ď n ă |x| k1 ÞÑ prepx, nq
^ p|k2| « |x| ´ pn`mq _ |k2| « 0q ^m ą 0 k2 ÞÑ sufpx, n`mq

y « ε otherwise

(R-Replace) replacepx, y, zq « w

$

’

&

’

%

Dk1k2. w « k1 ¨ z ¨ k2 ^ x « k1 ¨ y ¨ k2^ ctnpx, yq^ k1 ÞÑ preCpx, yq
 ctnpk1 ¨ prepy, |y| ´ 1q, yq y ff ε k2 ÞÑ sufCpx, yq
w « z ¨ x y « ε
w « x ctnpx, yq

(R-Indexof) indexofpx, y, nq « m

$

’

&

’

%

Dk1k2. ctnpk1 ¨ prepy, |y| ´ 1q, yq 0 ď n ď |x| ^ y ff ε k1 ÞÑ
^m « n` |k1| ^ sufpx, nq « k1 ¨ y ¨ k2 ^ ctnpsufpx, nq, yq preCpsufpx, nq, yq

m « n 0 ď n ď |x| ^ y « ε k2 ÞÑ
m « ´1 otherwise sufCpsufpx, nq, yq

Fig. 3. Inference schemas that introduce existential extended functions. Above, prepx, nq is shorthand for substrpx, 0, nq and sufpx, nq is shorthand for
substrpx, n, |x| ´ nq.

string x. The schema R-Indexof introduces one conclusion with
existential variables for premise indexofpx, y, nq « m when n
is a valid position in x and the substring of x after position n
(written sufpx, nq) contains non-empty string y. In this case,
the variable k1 is introduced as the prefix of sufpx, nq before
the first occurrence of y in sufpx, nq. If y is empty and n is a
valid position in x, the result is n. If n is an invalid position,
the result is ´1.

The inference schemas in Figure 4 introduce existential
variables when reasoning about regular expressions. U-RCon is
applied to reduce (positively asserted) membership constraints
in a language expressed as the concatenation of two regular
expressions R1 and R2. In this case, x must consist of two
strings k1 and k2 that occur in R1 and R2, respectively. Finally,
the rule for Kleene star U-RStar is similar to the rule U-RCon:
if x occurs in R or is empty, then x P R˚ holds trivially (so
the conclusion is just J). Otherwise x must be decomposable
into three pieces k1, k2 and k3 where k1 and k3 occur in R
and k2 occurs in R˚.

Example 2. Using double quotes to denote string constants,
let MS be tx « “a” ¨ y, x P rconpΣ, Rq, y R R, |x| ą 1u. We
may apply U-RCon to literal x P rconpΣ, Rq, which matches
the premise of that schema, to obtain its conclusion:

Dk1k2. px « k1 ¨ k2 ^ k1 P Σ^ k2 P Rq (4)

Similarly we may C-Split 2 for literal x « “a” ¨ y to obtain:

Dk3. x « “a” ¨ k3 ^ k3 « y (5)

After passing theory lemmas with these conclusions to the SAT
solver, where existential variables k1, k2, k3 are Skolemized
respectively with fresh variables v1, v2, v3, the string solver
will be invoked again with a context extended with the set
tx « v1 ¨ v2, v1 P Σ, v2 P R, x « “a” ¨ v3, v3 « yu.

2 We assume matching is modulo empty strings in concatenation terms, so
that string t matches x ¨ x1 under the substitution tx ÞÑ t, x1 ÞÑ εu.

In the above example, observe that both v2 and v3 represent
the result of removing the first character from x. Thus, it is
sound to use the same Skolem variable to witness both k2
and k3. This can easily be inferred based on a policy that we
describe in the following, which will make it easier for the
string solver to conclude that sets of assertions like the one
above are unsatisfiable.

A. Witness Sharing by Smart Quantifier Elimination

In total, there are 22 places where the string solver in CVC4
introduces existentially quantified variables in its inference
schemas (9 for word equations, 8 for extended string functions,
5 for regular expressions). A naive approach for Skolemizing
those variables would replace each of them by a fresh Skolem
variable for each derived conclusion. However, in the following,
we argue that the witnesses for existential quantified formulas in
these rules can be shared across multiple formulas. A majority
of the 22 kinds of variables can be summarized as being the
witness of one of four kinds, namely the variable is intended to
represent either the prefix/suffix of a string s up to/after some
fixed position n, or the prefix/suffix of a string s up to/after
the position at which it contains another string t.

In essence, this means that the quantified formulas introduced
by the various inference schemas admit quantifier elimination
in the extended string signature. For example, in the second
conclusion of schema V-Split, the formula

Dk1.x « y ¨ k1 ^ k1 ¨ x
1 « y1

is equivalent to

x « y ¨ substrpx, |y|q ^ substrpx, |y|q ¨ x1 « y1 .

when the premise and corresponding condition for that schema
hold. In principle, we could eliminate those quantifiers instead
of Skolemizing them. This would not be efficient, however,
because of the cost of processing terms with extended functions
such as substrpx, |y|q. Instead, we observe that each existential

Premise Conclusion Condition Witness Terms

(U-RCon) x P rconpR1, R2q Dk1k2. x « k1 ¨ k2 ^ k1 P R1 ^ k2 P R2 J
k1 ÞÑ prepx, ‖R1‖q
k2 ÞÑ sufpx, ‖R1‖q

(U-RStar) x P R˚
#

Dk1k2k3. x « k1 ¨ k2 ¨ k3 x ff ε^ x R R k1 ÞÑ prepx, ‖R‖q
^ k1 P R^ k2 P R

˚ ^ k3 P R k2 ÞÑ substrpx, ‖R‖, |x| ´ 2 ˚ ‖R‖q
J otherwise k3 ÞÑ sufpx, |x| ´ ‖R‖q

Fig. 4. Inference schemas that introduce existential variables in string solvers for regular expressions. Above, prepx, nq is shorthand for substrpx, 0, nq and
sufpx, nq is shorthand for substrpx, n, |x| ´ nq.

variable in a inference schema conclusion has a witness term,
i.e., can be equivalently replaced by a term over the extended
string signature, as is the case for k1 above.

Based on this observation, instead of eliminating existential
variables by instantiating them with their witness term t, we
instantiate them with a witness variable, a Skolem variable that
is associated with t. We do that by constructing and maintaining
a mapping from witness terms to Skolem variables with the
goal of mapping pairs of witness terms to the same Skolem
variable whenever we recognize (inexpensively, as described in
Section III-B) that the two witness terms are equivalent. This
way, we can recycle Skolem variables introduced earlier, and
keep their number low, without loss of generality.

Witness Terms For variables that represent the prefix (resp.,
suffix) of string x before (resp., after) a given position n, the
corresponding witness term can be expressed using the sub-
string operator, namely with terms of the form substrps, 0, nq
and substrps, nq. For convenience, we will write preps, nq
and sufps, nq as shorthand for these terms. Furthermore, we
will write preCps, tq to abbreviate preps, indexofps, t, 0qq which
denotes the term equivalent to the prefix of s before the first
occurrence of t in s when one exists. We will additionally write
sufCps, tq to denote the suffix of s after the first occurrence of
t in s if one exists, which abbreviates sufps, |preCps, tq| ` |t|q.

The last column in Figures 2 to 4 lists the witness terms
for each inference schema. The justifications for most witness
terms are straightforward. R-Ctn, R-Replace, and R-Indexof
use preC and sufC because they involve reasoning about the
occurrence of one string in another. Witness terms for the
regular expression schema U-RCon can be constructed for
regular expressions R for which there exists a term of integer
type, which we denote by ‖R‖ here, such that all strings that
belong to R have length ‖R‖. For example, ‖to repxq‖ “ |x|.
We call ‖R‖ the regular expression length of R. We use a
simple (incomplete) recursive method for determining whether
‖R‖ can be inferred for a regular expression R, summarized
in Figure 5. For U-RCon, which applies to the premise
x P rconpR1, R2q, multiple choices for witness terms may exist.
If a regular expression length can be computed for R1, then we
know that k1 and k2 can be given witness terms prepx, ‖R1‖q
and sufpx, ‖R1‖q respectively. Although not shown in the
figure, witness terms prepx, |x|´‖R2‖q and sufpx, |x|´‖R2‖q
can be given when a ‖R2‖ can be inferred. For U-RStar, we
assume witness terms are used only in cases where ‖R‖ can

‖Σ‖ “ 1
‖rangepc1, c2q‖ “ 1

‖to repsq‖ “ |s|
‖unionpR1, ¨ ¨ ¨ , Rkq‖ “ u, if @i. ‖Ri‖ “ u
‖interpR1, ¨ ¨ ¨ , Rkq‖ “ u, if Di. ‖Ri‖ “ u
‖rconpR1, ¨ ¨ ¨ , Rkq‖ “ ‖R1‖` ¨ ¨ ¨ ` ‖Rk‖

Fig. 5. Definition of ‖R‖ for cases in which a regular expression R only
accepts strings of a fixed length.

be inferred. For this rule, k1 is the prefix of x whose length
is ‖R‖, k3 is the suffix of x whose length is ‖R‖, and k2 is
remaining string after removing these two substrings.

Example 3. We revisit the inference schemas applied for Exam-
ple 2. In that example, we applied U-RCon to x P rconpΣ, Rq to
obtain the conclusion given by (4) over existentially quantified
variables k1 and k2. According to Figure 4 and since ‖Σ‖ “ 1,
the witness terms for k1 and k2 are prepx, 1q and sufpx, 1q
respectively. Similarly, we applied C-Split to the equality
x « “a” ¨ y to obtain the conclusion given by (5) over the
existentially quantified variable k3. According to Figure 2,
the witness term for k3 is sufpx, 1q. Since k2 and k3 have
the same witness term, they can be witnessed by the same
variable vsufpx,1q. Using this (shared) variable results in a
context where the string solver is given as input the set of
assertions tvsufpx,1q P R, vsufpx,1q « y, y R Ru which can
easily be shown to be unsatisfiable: the first two constraints
imply that y P R which is contradicts the third constraint.

In the above example, the string solver was able to derive
a contradiction in the state resulting from the application of
two inference schemas. This was made possible by witnessing
existential variables for two inference schemas with the same
variable vsufpx,1q. A solver without witness sharing requires
further case splitting before finding a similar contradiction.
In practice, using witness sharing to reduce introduction of
variables like the ones demonstrated here leads to significant
performance improvements as we show in Section V.

B. Implementation Details

We list some of the important optimizations and implemen-
tation details for witness sharing in the following.
Witness Sharing based on Term Rewriting Two existential
variables can be witnessed with the same variable when their
witness terms s and t are such that s « t. Many string solvers
implement aggressive rewriting techniques on string terms,

which we can leverage to perform fast but incomplete checks
of s « t. For a recent overview of aggressive rewrite rules for
strings, see [19]. We write sÓ to denote the rewritten form of
term s, which in practice is computed by the component of
the SMT solver called its rewriter. A rewriter is designed to
be sound, that is, sÓ “ tÓ implies s « t. It is, however, also
designed to be incomplete for performance reasons, so that two
equivalent terms may have different rewritten forms. We apply
the rewriter to witness terms before mapping them to witness
variables to obtain improved sharing of witness variables.
Relaxing the Witness for the First Occurrence It is
important to note that witness variables vt are not necessarily
constrained to be equal to the corresponding witness term
t, i.e. they may permit additional models. This is not a
problem because the value of a witness variable in any
model is guaranteed to be a witness for the corresponding
existentially quantified variable. We can use this fact to
avoid introducing additional constraints on witness variables.
Recall that term preCpx, yq is the prefix of x before the
first occurrence of y in x if there is one. Constraints for
witness variables are derived from the conclusions of rules.
Indeed, R-Replace from Figure 3 introduces the constraint
 ctnpvpreCpx,yq ¨substrpy, 0, |y|´1q, yq to insists that vpreCpx,yq
is the prefix of x before the first occurrence. It is, however, not
necessary to add the same constraint in the conclusion of R-Ctn.
Instead, it is sufficient to insist that vpreCpx,yq is the prefix of
x before any such occurrence. Applying the latter schema in
isolation may permit models where vpreCpx,yq corresponds to
a prefix of x prior to an occurrence of y in x other than the
first one. Nevertheless, the inference schema R-Ctn may use
preCpx, yq as a witness term because vpreCpx,yq can be assumed
(when necessary, and without loss of generality) to be the prefix
before the first occurrence. Avoiding additional constraints is
important in practice because negative containment constraints
like the one above are notoriously expensive to reason about.
This can be seen as constraining the witness variables lazily.
Equivalence of Witness Variables and Substring Terms If
we have a witness term t and we have an assertion of the form
y “ t where y is a variable then we can use y as the witness
variable for the witness term t instead of introducing a fresh
variable vt. This insight is particularly useful for applications of
substring. Recall that we assume that we purify extended string
terms, so applications of substring only appear in assertions
of the form substrpx, n,mq « y where y is the purification
variable. As a result, we can use y as the witness variable
if we have a witness term of the form substrpx, n,mq. This
means that witness variables are entailed to be equal to existing
substring terms that occur in MS whenever applicable.
Propagation Based on Adjacent Literals While not shown
in Figure 2, a solver for word equations can be optimized by
inferring when a string must contain a constant prefix. This
can be inferred for equalities where one side is of the form
x ¨ l1 ¨ x

1, and the other side begins with a constant that cannot
overlap with l1. We demonstrate this in the following example.

Example 4. Let ` be the literal x ¨ “b” ¨ x1 « “aaaa” ¨ y1.

Since x is followed by “b” on the left hand side, it must be
the case that x begins with “aaaa” or otherwise “b” would
overlap with “aaaa” and the two strings would be disequal.
Thus, the conclusion Dk1. x « “aaaa” ¨ k1 is implied by `.

CVC4 implements an inference schema where Dk1. x « l1 ¨ k1
is derived as a conclusion from the premise x ¨ l2 ¨x1 « l1 ¨ l3 ¨y

1

under the condition that no non-empty prefix of l2 is a suffix
of l1, nor is l2 contained in l1. While the justification of this
conclusion is complex, witness sharing can be applied in a
straightforward way. Namely, k1 in the above conclusion can
be mapped to the witness term sufpx, |l1|q and shared with
variables from other inference schemas in the usual way.

C. Checking Soundness for Witness Terms

As we have seen, witness sharing derives (implicit) equiva-
lences between witnesses for existential variables. It is critical
that the implementation of witness sharing preserves the
soundness of the solver. To verify that this is indeed the case,
we have constructed a set of 8 benchmarks that check the
correctness of inference schemas that leverage witness sharing.
In particular, for each inference schema from Figures 2 and 3
with premise ` and conclusion Dk1, . . . , kn. ϕ under condition
Ci, we generate a formula that checks the entailment:

`^ Ci |ùTS
ϕtk1 ÞÑ t1, . . . , kn ÞÑ tnu

where t1, . . . , tn are the witness terms for k1, . . . , kn. If this
entailment does not hold, then there is a case where adding
the conclusion with the witness terms to a set of assertions
makes them unsatisfiable despite the original set of assertions
being satisfiable (i.e. the schema makes the solver refutation-
unsound). On the other hand, if this entailment holds, then the
soundness of the inference schema (using witness sharing) is
confirmed. To see why this is the case, notice the entailment
check with witness terms is strictly stronger than the same
check with witness variables. This is because every model
for the variant with witness terms ϕtk1 ÞÑ t1, . . . , kn ÞÑ

tnu can be extended to a model for the variant with witness
variables ϕtk1 ÞÑ vt1 . . . , kn ÞÑ vtnu by interpreting witness
variables vt1 , . . . , vtn the same as the corresponding witness
terms. This is always possible because the variables themselves
are unconstrained. In other words, ϕtk1 ÞÑ t1, . . . , kn ÞÑ tnu
entails ϕtk1 ÞÑ vt1 , . . . , kn ÞÑ vtnu.

We generated one benchmark for each inference schemas in
Figures 2 and 3. We generated only one benchmark for schemas
that have multiple (symmetric) conclusions. We do not consider
the verification of the regular expression rules since neither
CVC4 or Z3 currently support reasoning over regular expression
variables. Overall, CVC4 (without witness sharing enabled) and
Z3 are capable of showing all 8 benchmarks are unsatisfiable,
thus corroborating the correctness of our approach.

IV. REGULAR EXPRESSION ELIMINATION

In this section, we discuss an alternate approach to solving
regular expression membership constraints by reducing them
to extended string operators. The key insight is that instead

x P rconpR1, R2q Ñprepx, ‖R1‖q P R1^

sufpx, ‖R1‖q P R2

x P rconpR1, R2q Ñprepx, |x| ´ ‖R2‖q P R1^

sufpx, |x| ´ ‖R2‖q P R2

x P rconpΣ˚, to repyq,Σ˚, Rq Ñindexofpx, y, 0q ff ´1^

sufCpx, yq P rconpΣ˚, Rq

x P rconpR1, to repyq, R2q ÑDi.0 ď i ă |x| ´ |y|^

prepx, iq P R1 ^ substrpx,i, |y|q « y ^ sufpx, i` |y|q P R2

x P R˚ Ñ@k.0 ď k ă divp|x|, ‖R‖q ùñ
substrpx, k ˚ ‖R‖, ‖R‖q P R

Fig. 6. Rules for regular expression elimination

of using the inference schemas from the previous section to
generate theory lemmas while solving, we can instead specialize
them and apply them eagerly to eliminate certain types of
regular expression membership constraints to extended string
operators. The advantage of eliminating regular expression
membership constraints eagerly is that we do not need to
rely on the cooperation between the subsolver for regular
expression membership constraints and the other subsolvers
and that the techniques from the previous section can be applied.
The following example demonstrates the potential advantages.

Example 5. Consider the constraint:

x P rconpΣ,Σ˚, to rep“abc”q,Σ˚q

If we applied the rule U-RCon, we would introduce variables
that are matched by the Σ˚ components. If we look at
this constraint through the lens of extended string opera-
tors, it is straightforward to show that it is equivalent to
ctnpsubstrpx, 1q,“abc”q. Our techniques for regular expres-
sion elimination may eagerly replace the regular expression
membership above with this extended string constraint, which
can subsequently be processed while leveraging our policy for
witness terms as described in the previous section.

First, all memberships in all regular expressions other than
regular expression concatenation and the Kleene star can
be eliminated eagerly by rewriting. For example, x P

interpΣ, unionpR, to rep“abc”qqq is equivalent to |x| « 1 ^
px P R_x « “abc”q. We have additionally extended CVC4 with
a set of rules for reducing the other kinds of regular expression
memberships (for rcon and Kleene star) to constraints involving
extended functions. The most prominent of these rules are given
in Figure 6. We give these rules in a form x P RÑ ϕ where
ϕ is a constraint involving extended string constraints that is
equivalent to x P R and does not contain the top-symbol of R.

The first two rules can be applied for regular expression
membership x P rconpR1, R2q when all strings belonging to
R1 or R2 are of a fixed length. These rules parallel the use
of witness terms for U-RCon when ‖R1‖ or ‖R2‖ is defined.
The next rule applies to the case where the regular expression
requires a string y followed by arbitrary characters in some
prefix of x. Its conclusion assumes the suffix x after the first

occurrence of y in x occurs in R. This can be assumed without
loss of generality since the regular expression allows to match
an arbitrary number of characters after the position y occurs in
x. The final rule for rcon is applicable to a larger set of regular
expressions where it cannot be assumed that the occurrence
of to repyq matches the position where it occurs in x. This
says that given that a regular expression requires some fixed
string y to appear in x, we can split x into three parts: the
prefix before the match on y (which occurs at some position
i between 0 and |x| ´ |y|), the match itself, and the suffix
after the match. In practice, the rules for regular expression
concatenation are ordered with decreasing order of precedence:
to reduce a constraint, we apply the first rule among those
listed that matches a given membership constraint. For Kleene
star, we only have a single rule: if ‖R‖ is defined, we can turn
such constraints into a (bounded) quantifier that ensures that
each substring of x at positions that are multiples of ‖R‖ and
have length ‖R‖ are in R.

We observe in our evaluation in Section V that regular ex-
pression elimination leads to further performance improvements
when combined with witness sharing. We attribute this to the
fact that replacing regular expression membership constraints
with extended string constraints may lead to a reduction in
the number of unique constraints to be processed by the SMT
solver for inputs that combine regular expressions and extended
functions. In other words, eliminating regular expressions may
in some cases enable the solver to detect conflicts at the
propositional level or by using high-level theory reasoning even
before shared witness variables are introduced, in particular for
input constraints that combine regular expression memberships
and extended string functions.

V. EVALUATION

In this section, we evaluate the impact of witness sharing
and regular expression elimination. To this end, we have
implemented our approach in CVC4, a state-of-the-art SMT
solver with extensive support for the theory of strings.

We evaluate our implementation on three benchmark sets:
PYEX, a benchmark set originating from the symbolic exe-
cution of Python code [20]; FSTRINT, a benchmark set [1]
originating from the concolic execution of Python code with
Py-Conbyte [27]; and TRANSF, which consists of industrial
benchmarks that were transformed using StringFuzz [12]. From
TRANSF, we omit 438 benchmarks that use regular expression
ranges with non-constant bounds and benchmarks that define
functions over regular expression arguments. Both of those
features are not supported by CVC4.

We compare four configurations of CVC4: cvc4+wr uses both
regular expression elimination and witness sharing, cvc4+r
uses just regular expression elimination, cvc4+w uses witness
sharing only, cvc4 does not use the new techniques. As a
point of reference, we compare our approach against Z3 4.8.8,
another state-of-the-art string solver. We omit a comparison
with Z3STR3 4.8.8 and Z3-TRAU 1.1 [2] (the new version of

Set cvc4+wr cvc4+r cvc4+w cvc4 Z3 R%

PYEX
sat 21256 20117 21254 20116 20214

10%unsat 3866 3847 3866 3847 3691
ˆ 299 1457 301 1458 1516

FSTRINT
sat 4403 4410 4404 4412 4323

8%unsat 17095 17085 17095 17089 16834
ˆ 75 78 74 72 416

TRANSF
sat 3690 3688 3670 3663 3771

7%unsat 4796 4780 4769 4771 4780
ˆ 259 277 306 311 194

Total
sat 29349 28215 29328 28191 28308
unsat 25757 25712 25730 25707 25305
ˆ 633 1812 681 1841 2126

TABLE I
NUMBER OF SOLVED PROBLEMS PER BENCHMARK SET. BEST RESULTS ARE

IN BOLD. ALL BENCHMARKS RAN WITH A TIMEOUT OF 300 SECONDS.

10 1 100 101 102

cvc4+r

10 1

100

101

102

cv
c4

+
w

r

10x
100x
1000x
sat
unsat

10 1 100 101 102

cvc4+w

10 1

100

101

102

cv
c4

+
w

r

10x
100x
1000x
sat
unsat

Fig. 7. Scatter plots of runtimes showing the impact of disabling witness
sharing and regular expression elimination. All benchmarks ran with a timeout
of 300 seconds.

TRAU) because our experiments have shown that these versions
are unsound.3

We ran our experiments on a cluster with Intel Xeon CPU E5-
2620 v4 CPUs running Ubuntu 16.04 and allocated a physical
CPU core, 8 GB of RAM, and 300 seconds for each job.

Table I summarizes our results. It lists the number of
satisfiable and unsatisfiable answers as well as timeouts (ˆ)
for each configuration and benchmark set. For solved problems,
we report the cumulative decrease in fresh variables introduced
in the column “R%.” To measure this, we instrument the code
of cvc4+wr to record how many fresh variables were created
by the inference schemas discussed in Section III using witness
sharing, and compare it to the number of variables that would
have been created with witness sharing disabled. Note that
this measurement does not take into account compounding
effects: Generating fewer variables at an earlier stage may
prevent the introduction of fresh variables later in the solving
process. Figure 7 shows the impact of disabling witness sharing
and regular expression elimination by providing scatter plots
that compare the performance of cvc4+wr with cvc4+r and
cvc4+w. It differentiates between satisfiable and unsatisfiable
instances. Overall, cvc4 performs better than Z3 and the other

3 Overall, CVC4 and Z3STR3 disagreed on 440 FSTRINT and 22 TRANSF
benchmarks whereas CVC4 and Z3-TRAU disagreed on 416 TRANSF bench-
marks. Out of those cases, Z3STR3 accepted all 325 models produced by
CVC4 and rejected all 137 of its models while Z3-TRAU accepted all 343
models produced by CVC4 and rejected all 73 of its own models.

configurations only improve on that, which shows that our
approach has the potential of improving a solver that is already
competitive with the state-of-the-art.

Witness sharing has a major impact on performance, espe-
cially for satisfiable instances as the scatter plot in Figure 7
visualizes. Without witness sharing, cvc4+r solves significantly
fewer satisfiable problems from PYEX and increases the number
of timeouts by over four times. The impact is less pronounced
on the other benchmark sets, although it makes a noticeable
impact on unsatisfiable benchmarks from the TRANSF set. As
expected, the performance impact depends on the structure of
the problem. The benchmarks in TRANSF primarily consist of
regular expression membership constraints, so there are fewer
opportunities for witness sharing. On the FSTRINT benchmarks,
cvc4+wr does not improve performance over cvc4+r despite
eliminating a similar amount of variables. Nevertheless, witness
sharing cumulatively over these three sets decreases the number
of timeouts of CVC4 from 1812 to 633. We believe this indicates
the importance of the use of witness sharing for advancing the
state of the art in current string solvers.

Although less impactful, comparing cvc4+wr and cvc4+w
indicates that our techniques for regular expression elimination
lead to gains in both the overall number of satisfiable and
unsatisfiable benchmarks. Regular expression elimination has
no impact on the PYEX benchmarks because they lack regular
expression membership constraints. Regular expression elimina-
tion has the biggest positive impact on the TRANSF benchmarks,
where it decreases the number of unsolved instances from
306 to 259. Notice those benchmarks are generated with a
fuzzing tool. Thus, they include regular expressions such as
rconprto rep“Q”qs˚, to rep“q”qq˚ that are less amendable to
regular expression elimination than real-world benchmarks.
Overall, we believe these results demonstrate the value of
exploring alternate encodings of regular expressions in combi-
nation with extended string function constraints.

VI. CONCLUSION

We have presented an approach for CDCLpT q theory solvers
for strings that leverages the observation that many variables
introduced by these solvers can be shared. Our implementation
of witness sharing for these variables, as well as related
techniques for recasting regular expressions as extended string
constraints, in the SMT solver CVC4 leads to significant
performance gains with respect to the state of the art both
in terms of number of benchmarks solved and run times.

As ongoing work, we are further investigating optimizations
to the reductions used in this paper. We believe that the principle
of witness sharing can be applied even more aggressively to
infer when (pairs of) input variables are constrained to be
equivalent to witness terms and hence can be equated as a
preprocessing step. More generally, it can be used as a way of
optimizing other CDCLpT q theory solvers that introduce fresh
variables within theory lemmas they generate. For example,
some procedures for reasoning about finite sets [8] use fresh
variables to witness when two sets are disequal. We conjecture
that witness sharing can be applied fruitfully there as well.

REFERENCES

[1] str int benchmarks. https://github.com/plfm-iis/str int benchmarks,
2019.

[2] Z3-TRAU. https://github.com/guluchen/z3/tree/new trau, 2019.
[3] P. A. Abdulla, M. F. Atig, Y. Chen, B. P. Diep, J. Dolby, P. Janku, H. Lin,

L. Holı́k, and W. Wu. Efficient handling of string-number conversion.
In A. F. Donaldson and E. Torlak, editors, Proceedings of the 41st ACM
SIGPLAN International Conference on Programming Language Design
and Implementation, PLDI 2020, London, UK, June 15-20, 2020, pages
943–957. ACM, 2020.

[4] P. A. Abdulla, M. F. Atig, Y. Chen, B. P. Diep, L. Holı́k, A. Rezine, and
P. Rümmer. Flatten and conquer: a framework for efficient analysis of
string constraints. In A. Cohen and M. T. Vechev, editors, Proceedings of
the 38th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2017, Barcelona, Spain, June 18-23, 2017,
pages 602–617. ACM, 2017.

[5] P. A. Abdulla, M. F. Atig, Y. Chen, L. Holı́k, A. Rezine, P. Rümmer,
and J. Stenman. String constraints for verification. In Computer Aided
Verification - 26th International Conference, CAV 2014, Held as Part
of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 18-22,
2014. Proceedings, pages 150–166, 2014.

[6] J. Backes, U. Berrueco, T. Bray, D. Brim, B. Cook, A. Gacek, R. Jhala,
K. S. Luckow, S. McLaughlin, M. Menon, D. Peebles, U. Pugalia,
N. Rungta, C. Schlesinger, A. Schodde, A. Tanuku, C. Varming, and
D. Viswanathan. Stratified abstraction of access control policies. In
S. K. Lahiri and C. Wang, editors, Computer Aided Verification - 32nd
International Conference, CAV 2020, Los Angeles, CA, USA, July 21-24,
2020, Proceedings, Part I, volume 12224 of Lecture Notes in Computer
Science, pages 165–176. Springer, 2020.

[7] J. Backes, P. Bolignano, B. Cook, C. Dodge, A. Gacek, K. S. Luckow,
N. Rungta, O. Tkachuk, and C. Varming. Semantic-based automated
reasoning for AWS access policies using SMT. In N. Bjørner and
A. Gurfinkel, editors, 2018 Formal Methods in Computer Aided Design,
FMCAD 2018, Austin, TX, USA, October 30 - November 2, 2018, pages
1–9. IEEE, 2018.

[8] K. Bansal, A. Reynolds, C. W. Barrett, and C. Tinelli. A new
decision procedure for finite sets and cardinality constraints in SMT. In
Proceedings of IJCAR’16, volume 9706 of LNCS, pages 82–98. Springer,
2016.

[9] C. Barrett and C. Tinelli. Satisfiability modulo theories. In E. Clarke,
T. Henzinger, H. Veith, and R. Bloem, editors, Handbook of Model
Checking. Springer, 2018.

[10] M. Berzish, V. Ganesh, and Y. Zheng. Z3str3: A string solver with
theory-aware heuristics. In D. Stewart and G. Weissenbacher, editors,
2017 Formal Methods in Computer Aided Design, FMCAD 2017, Vienna,
Austria, October 2-6, 2017, pages 55–59. IEEE, 2017.

[11] N. Bjørner, N. Tillmann, and A. Voronkov. Path feasibility analysis
for string-manipulating programs. In S. Kowalewski and A. Philippou,
editors, Tools and Algorithms for the Construction and Analysis of
Systems, 15th International Conference, TACAS 2009, Held as Part of
the Joint European Conferences on Theory and Practice of Software,
ETAPS 2009, York, UK, March 22-29, 2009. Proceedings, volume 5505
of Lecture Notes in Computer Science, pages 307–321. Springer, 2009.

[12] D. Blotsky, F. Mora, M. Berzish, Y. Zheng, I. Kabir, and V. Ganesh.
Stringfuzz: A fuzzer for string solvers. In H. Chockler and G. Weis-
senbacher, editors, Computer Aided Verification - 30th International
Conference, CAV 2018, Held as Part of the Federated Logic Conference,
FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part II, volume
10982 of Lecture Notes in Computer Science, pages 45–51. Springer,
2018.

[13] T. Chen, M. Hague, A. W. Lin, P. Rümmer, and Z. Wu. Decision
procedures for path feasibility of string-manipulating programs with
complex operations. PACMPL, 3(POPL):49:1–49:30, 2019.

[14] X. Fu and C. Li. A string constraint solver for detecting web application
vulnerability. In Proceedings of the 22nd International Conference
on Software Engineering and Knowledge Engineering, SEKE’2010.
Knowledge Systems Institute Graduate School, 2010.

[15] P. Hooimeijer and M. Veanes. An evaluation of automata algorithms for
string analysis. In Proceedings of the 12th international conference on
Verification, model checking, and abstract interpretation, pages 248–262.
Springer-Verlag, 2011.

[16] A. Kiezun, V. Ganesh, S. Artzi, P. J. Guo, P. Hooimeijer, and M. D.
Ernst. HAMPI: A solver for word equations over strings, regular

expressions, and context-free grammars. ACM Trans. Softw. Eng.
Methodol., 21(4):25:1–25:28, 2012.

[17] G. Li and I. Ghosh. Pass: string solving with parameterized array
and interval automaton. In Haifa Verification Conference, pages 15–31.
Springer, 2013.

[18] T. Liang, A. Reynolds, C. Tinelli, C. Barrett, and M. Deters. A DPLL(T)
theory solver for a theory of strings and regular expressions. In Computer
Aided Verification - 26th International Conference, CAV 2014, Held as
Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July
18-22, 2014. Proceedings, pages 646–662, 2014.

[19] A. Reynolds, A. Nötzli, C. W. Barrett, and C. Tinelli. High-level
abstractions for simplifying extended string constraints in SMT. In
I. Dillig and S. Tasiran, editors, Computer Aided Verification - 31st
International Conference, CAV 2019, New York City, NY, USA, July
15-18, 2019, Proceedings, Part II, volume 11562 of Lecture Notes in
Computer Science, pages 23–42. Springer, 2019.

[20] A. Reynolds, M. Woo, C. W. Barrett, D. Brumley, T. Liang, and C. Tinelli.
Scaling up DPLL(T) string solvers using context-dependent simplification.
In R. Majumdar and V. Kuncak, editors, Computer Aided Verification -
29th International Conference, CAV 2017, Heidelberg, Germany, July
24-28, 2017, Proceedings, Part II, volume 10427 of Lecture Notes in
Computer Science, pages 453–474. Springer, 2017.

[21] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song. A
symbolic execution framework for javascript. In 31st IEEE Symposium
on Security and Privacy, S&P 2010, 16-19 May 2010, Berleley/Oakland,
California, USA, pages 513–528. IEEE Computer Society, 2010.

[22] D. Shannon, S. Hajra, A. Lee, D. Zhan, and S. Khurshid. Abstracting
symbolic execution with string analysis. In Testing: Academic and
Industrial Conference Practice and Research Techniques-MUTATION
(TAICPART-MUTATION 2007), pages 13–22. IEEE, 2007.

[23] M. Trinh, D. Chu, and J. Jaffar. S3: A symbolic string solver for
vulnerability detection in web applications. In G. Ahn, M. Yung, and
N. Li, editors, Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, Scottsdale, AZ, USA, November
3-7, 2014, pages 1232–1243. ACM, 2014.

[24] M. Trinh, D. Chu, and J. Jaffar. Progressive reasoning over recursively-
defined strings. In Computer Aided Verification - 28th International
Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Pro-
ceedings, Part I, pages 218–240, 2016.

[25] M. Veanes, N. Bjørner, and L. De Moura. Symbolic automata constraint
solving. In Proceedings of the 17th International Conference on Logic
for Programming, Artificial Intelligence, and Reasoning, LPAR’10, pages
640–654. Springer-Verlag, 2010.

[26] M. Veanes, N. Tillmann, and J. de Halleux. Qex: Symbolic SQL
query explorer. In E. M. Clarke and A. Voronkov, editors, Logic for
Programming, Artificial Intelligence, and Reasoning - 16th International
Conference, LPAR-16, Dakar, Senegal, April 25-May 1, 2010, Revised
Selected Papers, volume 6355 of Lecture Notes in Computer Science,
pages 425–446. Springer, 2010.

[27] Wei-Cheng Wu. Py-Conbyte. https://github.com/spencerwuwu/
py-conbyte, 2019.

[28] F. Yu, M. Alkhalaf, and T. Bultan. Stranger: An automata-based string
analysis tool for PHP. In Tools and Algorithms for the Construction and
Analysis of Systems, 16th International Conference, TACAS 2010, Held
as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2010, Paphos, Cyprus, March 20-28, 2010. Proceedings,
pages 154–157, 2010.

[29] Y. Zheng, X. Zhang, and V. Ganesh. Z3-str: a z3-based string solver for
web application analysis. In B. Meyer, L. Baresi, and M. Mezini, editors,
Joint Meeting of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of Software Engineering,
ESEC/FSE’13, Saint Petersburg, Russian Federation, August 18-26, 2013,
pages 114–124. ACM, 2013.

https://github.com/plfm-iis/str_int_benchmarks
https://github.com/guluchen/z3/tree/new_trau
https://github.com/spencerwuwu/py-conbyte
https://github.com/spencerwuwu/py-conbyte

	Introduction
	Preliminaries
	Witness Sharing for String Solving
	Witness Sharing by Smart Quantifier Elimination
	Implementation Details
	Checking Soundness for Witness Terms

	Regular Expression Elimination
	Evaluation
	Conclusion
	References

