
Lazy Proofs for DPLL(T)-Based SMT Solvers

Guy Katz, Clark Barrett
New York University

Cesare Tinelli, Andrew Reynolds
The University of Iowa

Liana Hadarean
Synopsys Inc.

Abstract—With the integration of SMT solvers into analysis
frameworks aimed at ensuring a system’s end-to-end correct-
ness, having a high level of confidence in these solvers’ results has
become crucial. For unsatisfiable queries, a reasonable approach
is to have the solver return an independently checkable proof
of unsatisfiability. We propose a lazy, extensible and robust
method for enhancing DPLL(T)-style SMT solvers with proof-
generation capabilities. Our method maintains separate Boolean-
level and theory-level proofs, and weaves them together into
one coherent artifact. Each theory-specific solver is called upon
lazily, a posteriori, to prove precisely those solution steps it is
responsible for and that are needed for the final proof. We
present an implementation of our technique in the CVC4 SMT
solver, capable of producing unsatisfiability proofs for quantifier-
free queries involving uninterpreted functions, arrays, bitvectors
and combinations thereof. We discuss an evaluation of our tool
using industrial benchmarks and benchmarks from the SMT-
LIB library, which shows promising results.

I. INTRODUCTION

Many different tools for system analysis and verification
exploit the reasoning capabilities of SMT solvers. Typically,
these tools dispatch satisfiability queries to an SMT solver
and then use the returned results to prove or disprove various
system properties. Thus, one’s ability to rely on the outcome
of the analysis depends on the level of confidence in the
results returned by the underlying SMT solver. Unfortunately,
obtaining the high level of trust required for, e.g., safety-
critical systems can be difficult, as the solvers themselves are
highly complex tools and may contain errors.

One reasonable approach to increasing one’s level of con-
fidence in an SMT solver’s answers is to have it produce
solution certificates checkable by simpler, external tools. In
the case of a satisfiable (quantifier-free) query, a natural
certificate is a satisfying assignment for the input formula,
which typically can be checked by straightforward means. In
the unsatisfiable case, the natural counterpart of a satisfying
assignment is a proof certificate, which details how to derive
a contradiction from the input assertions using a reasonably
small set of trusted inference rules. Proof certificates can then
be checked by a small trusted proof-checker, thus removing
the need to trust the SMT solver.

Proof certificates provide several additional benefits. For
instance, they can be used for interpolant generation [23] and

The project or effort depicted was sponsored by the Air Force Research
Laboratory (AFRL) and the Defense Advanced Research Projects Agency
(DARPA) under contracts FA8750-13-2-0241 and FA8750-15-C-0113. Any
opinions, findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views
of AFRL or DARPA.

certified compilation [11]. Notably, they can be used also to
improve the performance of skeptical proof assistants. The
proof assistant discharges subgoals to the SMT solver and
then uses the proof certificates to internally reconstruct a
proof [1], [7], [13].

Instrumenting SMT solvers to generate proofs is a complex
task. One challenge is that modern solvers reason about their
input on multiple levels: typically an underlying SAT en-
gine performs Boolean reasoning, whereas multiple dedicated
theory solvers (e.g. array, arithmetic, and bitvector solvers)
perform theory-specific deductions. The various components
interact with each other in subtle ways—the theory solvers
interact with the SAT engine and also with each other—and
all of these interactions need to be properly captured in the
produced proofs. Another challenge is to produce fine-grained
proofs, i.e., proofs that are sufficiently detailed to be checked
by simple means.

In previous work, we presented a proof generation tech-
nique for input queries in the logic of quantifier-free fixed-
width bitvectors [15]. A main limitation there was that the
technique was specifically tailored for that particular logic. In
this work we make three major contributions that considerably
enhance our previous approach:

1) We present and formalize a general approach for fine-
grained proof generation in DPLL(T)-style SMT solvers.
This approach is not limited to one specific theory (e.g,
fixed-width bitvectors); in fact, it even supports proof
generation for combinations of theories. We explain the
approach in terms on an abstract description of DPLL(T)
and also discuss ways to implement it in practice.

2) We demonstrate how our approach can be realized using
lazy proof generation, which incurs a lower overhead.
During search, an SMT solver will often generate a
multitude of lemmas that are not actually needed to
derive a contradiction from the input. Our lazy approach
postpones proof construction for such lemmas until after
the contradiction has been found, and then generates
proofs just for those lemmas that were actually used.

3) We present lazy proof generation procedures for the
theory of uninterpreted functions with equality and the
extensional theory of arrays.

For evaluation purposes, we implemented our technique
in CVC4, a state-of-the-art SMT solver [2]. We conducted
extensive experiments using the relevant benchmarks from the
SMT-LIB library [4]. Our tool was able to produce proofs in
the vast majority of cases.

Before describing our work, we give a high-level de-
scription of the DPLL(T) framework for SMT solvers in
Section II. Next, in Section III, we explain how proofs of
unsatisfiability can be generated in a DPLL(T) setting. In
Section IV we discuss our approach to lazy proof production,
and in Section V we cover proof production for three theories:
uninterpreted functions, arrays, and fixed-width bitvectors.
An experimental evaluation of our approach is summarized
in Section VI, followed by a discussion of related work in
Section VII, and a few concluding remarks in Section VIII.

II. DPLL(T)-BASED SMT SOLVERS

In its most general formulation, SMT is the problem of
determining the satisfiability of a set of formulas in some
background theory T . This work focuses on quantifier-free
formulas and on SMT solvers based on the DPLL(T) ar-
chitecture [21], which modularly combines a generic CDCL
SAT solver (the SAT engine) with one or more reasoners (the
theory solvers). Each theory solver decides the satisfiability
of constraints (i.e., conjunctions of ground literals), in a
specific background theory. Commonly supported theories
include equality over uninterpreted functions (TUF), linear
arithmetic over the integers (TLIA) or the reals (TLRA), fixed-
width bitvectors (TBV), arrays (TAX), and their combinations.

Abstract DPLL(T) Framework. We follow a recent abstract
formalization of DPLL(T)-style SMT solvers by Reynolds et
al. [22], which in turn is an elaboration of the one first intro-
duced by Nieuwenhuis et al. [21]. We consider a background
theory T that is a combination of m theories T1, . . . , Tm with
respective many-sorted (i.e., typed) signatures Σ1, . . . ,Σm.
For convenience, and without loss of generality, we assume
that the theories have no predicate symbols besides equality1

and that they all have the same set S of sort symbols. We also
assume that the theories share no function symbols except for
a set C =

⋃
S∈S CS of constant symbols (functions of arity

0), where each CS is a distinguished infinite set of free (i.e.,
uninterpreted) constants of sort S.

DPLL(T) solvers can be formalized abstractly as state
transition systems defined by a set of transition rules. The
states of the transition system are either the distinguished state
fail or triples of the form 〈M,F,C〉, where
• M , the current context, is a sequence of literals and

decision points •,
• F is a set of ground clauses derived from the original

input formula, and
• C is either the empty set or a singleton set containing a

ground clause, the current conflict clause.
Each context M can be factored uniquely into a concatenation
of the form M0 •M1 • · · · •Mn, where the Mi’s contain no
decision points. For every 0 ≤ i ≤ n we call Mi the i’th
decision level of M , and denote with M [i] the subsequence
M0 • · · · •Mi. Each atom of a clause in F ∪ C is pure, in

1Other predicate symbols can be expressed as function symbols with return
sort Bool, interpreted as the Booleans in each theory.

the sense that it has signature Σi for some i ∈ {1, . . . ,m}.
Note that two atoms in the same clause can have different
signatures, and when they do they share at most the constants
in C. Input formulas can always be converted to this form
while preserving satisfiability in T .

The initial state of the transition system is 〈∅, F0, ∅〉, where
F0 is a given set of clauses to be checked for satisfiability
(i.e., the input formula). The expected final states are either
fail, when F0 is unsatisfiable in T , or 〈M,F, ∅〉 where M
is satisfiable in T , F is equisatifiable with F0 in T , and M
propositionally entails F .

The possible behaviors of the system are defined by a
set of non-deterministic transition rules that specify a set of
successor states for any given state. These rules are depicted
in Figure 1 in guarded assignment form [17].2 A rule applies
to a state s if all of its premises hold for s.

In the rules, M, F, and C denote, respectively, the context,
clause set, and conflict component of the current state. The
conclusion describes how each component is changed, if at
all. We write l to denote the complement of literal l and l ≺M

l′ to indicate that l occurs before l′ in M. The function lev
maps each literal of M to the (unique) decision level in which
it occurs. The set LitF (resp., LitM) consists of all literals in
F (resp., in M) and their complements. For i = 1, . . . ,m, the
set LitM|i consists of the Σi-literals of LitM. IntM is the set
of all interface literals of M: the equalities and disequalities
between shared constants, where the set of shared constants
is {c | constant c occurs in LitM|i and LitM|j , for some 1 ≤
i < j ≤ m}. The index i for the rules Propi, Confli, Learni,
and Expli ranges from 1 to m. In those rules, |=i denotes
validity in the theory Ti. Clauses are implicitly processed
modulo associativity, commutativity and idempotency of ∨.

Modeling Solver Behavior. Rules Dec, Prop, Expl, Confl,
Fail, Learn, and Backj model the behavior of the SAT en-
gine, which treats atoms as Boolean variables. In particular,
Confl and Expl model the conflict discovery and analysis
mechanism used by CDCL SAT solvers [18]. The remaining
rules model the interaction between the SAT engine and the
individual theory solvers within the overall SMT solver. The
rules maintain the invariant that every conflict clause and
learned clause is entailed in T by the initial clause set.

Generally speaking, the system uses the SAT engine to
construct the context M as a truth assignment for the clauses
in F, as if those clauses were propositional. However, it
periodically asks the solver of each theory Ti to check if the
set of Σi-constraints in M is unsatisfiable in Ti or entails some
yet-undetermined literal from LitF ∪ IntM. In the first case,
the theory solver returns an explanation of the unsatisfiability
as a conflict clause, which is modeled by rule Confli. The
propagation of entailed theory literals and the extension of
the conflict analysis mechanism to them is modeled by rules
Propi and Expli. We assume (as in [21]) that each Ti-solver
provides an explaini method with the property that if l is a

2To simplify the presentation, we do not consider here rules that model
the forgetting of learned lemmas or restarts of the SMT solver.

Dec
l ∈ LitF ∪ IntM l, l /∈ M

M := M • l
Confl

C = ∅ l1 ∨ · · · ∨ ln ∈ F l1, . . . , ln ∈ M

C := {l1 ∨ · · · ∨ ln}
Fail

C 6= ∅ • /∈ M

fail

Prop
l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ∈ M l, l /∈ M

M := M l
Backj

C = {l1 ∨ · · · ∨ ln ∨ l} lev l1, . . . , lev ln ≤ i < lev l

C := ∅ M := M[i] l

Expl
C = {l ∨D} l1 ∨ · · · ∨ ln ∨ l ∈ F l1, . . . , ln ≺M l

C := {l1 ∨ · · · ∨ ln ∨D}
Learn

C 6= ∅
F := F ∪ C

Expli
C = {l ∨D} |=i l1 ∨ · · · ln ∨ l l1, . . . , ln ≺M l

C := {l1 ∨ · · · ∨ ln ∨D}
Confli

C = ∅ |=i l1 ∨ · · · ∨ ln l1, . . . , ln ∈ M

C := {l1 ∨ · · · ∨ ln}

Propi

l ∈ LitF ∪ IntM

|=i l1 ∨ · · · ∨ ln ∨ l l1, . . . , ln ∈ M l, l /∈ M

M := M l
Learni

l1, . . . , ln ∈ LitM|i ∪ IntM ∪ Li

|=i ∃x (l1[x] ∨ · · · ∨ ln[x])

F := F ∪ {l1[c] ∨ · · · ∨ ln[c]}
Figure 1: State transition rules. In Learni, x is a (possibly empty) tuple of variables; c is a tuple of fresh constants from C of
the same sort as x.

M F C Rule

1 ∨ 2̄, 1̄ ∨ 2̄, 2 ∨ 3, 3̄ ∨ 2 ∅ Dec
• 1 1 ∨ 2̄, 1̄ ∨ 2̄, 2 ∨ 3, 3̄ ∨ 2 ∅ Prop (1 ∨ 2̄)
• 1 2̄ 1 ∨ 2̄, 1̄ ∨ 2̄, 2 ∨ 3, 3̄ ∨ 2 ∅ Prop (2 ∨ 3)
• 1 2̄ 3 1 ∨ 2̄, 1̄ ∨ 2̄, 2 ∨ 3, 3̄ ∨ 2 ∅ Confl (3̄ ∨ 2)
• 1 2̄ 3 1 ∨ 2̄, 1̄ ∨ 2̄, 2 ∨ 3, 3̄ ∨ 2 3̄ ∨ 2 Expl (2 ∨ 3)
• 1 2̄ 3 1 ∨ 2̄, 1̄ ∨ 2̄, 2 ∨ 3, 3̄ ∨ 2 2 Expl (1̄ ∨ 2̄)
• 1 2̄ 3 1 ∨ 2̄, 1̄ ∨ 2̄, 2 ∨ 3, 3̄ ∨ 2 1̄ Learn (1̄)
• 1 2̄ 3 1 ∨ 2̄, 1̄ ∨ 2̄, 2 ∨ 3, 3̄ ∨ 2, 1̄ 1̄ Backj (1̄)

1̄ 1 ∨ 2̄, 1̄ ∨ 2̄, 2 ∨ 3, 3̄ ∨ 2, 1̄ ∅ Prop (1 ∨ 2̄)
1̄ 2̄ 1 ∨ 2̄, 1̄ ∨ 2̄, 2 ∨ 3, 3̄ ∨ 2, 1̄ ∅ Prop (2 ∨ 3)

1̄ 2̄ 3 1 ∨ 2̄, 1̄ ∨ 2̄, 2 ∨ 3, 3̄ ∨ 2, 1̄ ∅ Confl (3̄ ∨ 2)
1̄ 2̄ 3 1 ∨ 2̄, 1̄ ∨ 2̄, 2 ∨ 3, 3̄ ∨ 2, 1̄ 3̄ ∨ 2 Expl (2 ∨ 3)
1̄ 2̄ 3 1 ∨ 2̄, 1̄ ∨ 2̄, 2 ∨ 3, 3̄ ∨ 2, 1̄ 2 Expl (1 ∨ 2̄)
1̄ 2̄ 3 1 ∨ 2̄, 1̄ ∨ 2̄, 2 ∨ 3, 3̄ ∨ 2, 1̄ 1 Expl (1̄)
1̄ 2̄ 3 1 ∨ 2̄, 1̄ ∨ 2̄, 2 ∨ 3, 3̄ ∨ 2, 1̄ ⊥ Fail

fail

Figure 2: An execution using only propositional rules.

literal propagated by the solver, then explaini(l) returns a
subset {l1, l2, . . . , ln} of M , such that |=i l1∨ l2∨· · ·∨ ln∨ l.
The inclusion of the interface literals IntM in rules Dec and
Propi achieves the effect of the Nelson-Oppen combination
method [10], [25]. Rule Learni models theory solvers follow-
ing the splitting-on-demand paradigm [5]. When asked about
the satisfiability of the set of Σi-literals in M, such solvers
may return instead a splitting lemma, a clause encoding a
guess that needs to be made about those literals before the
solver can determine their satisfiability. The set Li in the
rule is a finite set consisting of additional literals, i.e., not
present in the original formula in F, which may be generated
by splitting-on-demand theory solvers.

III. GENERATING PROOFS IN DPLL(T)

One can prove that the transition rules defined in Section II
are refutation sound: if an execution starting with 〈∅, F0, ∅〉
ends with fail, then F0 is unsatisfiable in T . We discuss below
how to generate unsatisfiability proofs from such executions.

Example 1: Figure 2 shows an example of an execution
from an initial state to fail, using only propositional rules.
In the figure, we abstract clause atoms by numbers to stress
that they are treated purely propositionally by these rules. The
Rule column shows the rule used for each transition, together
with the clause the rule was applied to. We observe that Fail
could have been applied right after the second application
of Confl; however, we show instead a longer execution that
regresses (with Expl) the conflict clause 3̄ ∨ 2 to the empty
clause ⊥. As we discuss later, the applications of Expl are
needed for proof generation. Note that the second occurrence
of 3̄∨2 as a conflict could have been avoided by learning the
conflict clause 2 as soon as it was generated. Then, a shorter
execution leading to fail would have been possible.

A. Proof Generation for Propositional Unsatisfiability.

Given a failed execution from an input set F0 that uses only
propositional clauses, as in Example 1, one can construct a
proof that F0 is (propositionally) unsatisfiable. Intuitively, we
can understand a failed execution as trying to construct a
refutation tree: a tree of clauses built from the leaves, which
are either clauses in F0 or learned clauses, down to the root
⊥, where each non-leaf node is a propositional resolvent of
its children. Thus, a failed execution can be translated into a
Boolean resolution proof in a straightforward manner.

Observe, however, that a refutation tree provides only part
of the full proof, since it only shows the unsatisfiability of the
initial clause set plus some set of learned clauses. Thus, to
complete the proof one also needs to prove that each learned
clause is a consequence of the initial clause set. This can be
performed similarly to how conflict analysis is performed in
CDCL solvers [16]: every learned clause is the result of an
application of the Confl rule and possibly a series of Expl
rules. A sequence of resolution applications to the clauses to
which these rules were applied produces the learned clause.

Figure 3 depicts a refutation tree for the execution in
Figure 2. The tree shows the final resolution proof once all

3̄ ∨ 2 2 ∨ 3

2 1 ∨ 2̄

1 1̄

⊥

3̄ ∨ 2 2 ∨ 3
2 1̄ ∨ 2̄

1̄

Figure 3: A refutation tree (on the left) with a sub-proof for
a learned clause (on the right).

the needed clauses have been learned. Its leaves are the input
clauses 3̄ ∨ 2, 3 ∨ 2 and 1 ∨ 2̄, and the learned clause 1̄. The
tree itself is constructed simply by revisiting the applications
of rules Confl and Expl that led to the conflict clause ⊥, since
each application of Expl produces a new conflict clause as the
resolvent of the current conflict clause and an initial or learned
clause. A separate proof is constructed for the learned clause
1̄, from the applications of Confl and Expl that generated it.
In general, this recursive proof-tree generation process always
terminates because each learned clause is derived from initial
clauses and previously learned ones. It can be implemented in
practice by keeping track of the various applications of Expl.

B. Proof Generation for Unsatisfiability Modulo Theories.

Executions ending in fail that involve the use of the non-
propositional transition rules can also be seen as attempts to
construct a refutation tree. This time, however, the leaves of
the tree can include, in addition to initial and propositionally
learned clauses, also theory lemmas—a name we give to
clauses that come from the Confli, Learni, and Expli rules.
Thus, the full proof tree requires combining propositional
resolution proofs, produced by the SAT engine, with theory-
specific proofs for each theory lemma.

To make this possible, we require each Ti-solver to provide
a method provideProofi that takes as input a theory lemma
and returns a proof of that lemma using theory-specific proof
rules.3 Then, a full proof tree can be constructed as before, by
visiting the application of rules that led to the final conflict
clause ⊥. When visiting applications of Expli, the conflict
clause l1∨· · ·∨ ln∨D is obtained by resolving l∨D with the
theory lemma E = l1∨· · · ln∨l. We then call provideProofi
on E to obtain the missing part of the proof. Rule Confli

adds a conflict clause C = l1 ∨ · · · ∨ ln, which may end
up as a leaf in a refutation tree. Thus, C is also a theory
lemma and we call provideProofi on it if we encounter it
during proof construction. Finally, rule Learni adds the clause
D = l1[c] ∨ · · · ∨ ln[c] directly to F, with the consequence
that D can act as an input clause. Thus, if we encounter it
during proof construction, we call provideProofi on D to
obtain its theory-specific proof.

Thanks to the use of pure literals in clauses and the
controlled exchange of information between the various the-
ory solvers through the use of interface literals, Expli and
provideProofi, which are local to the Ti-theory solver for

3 We give a few examples of theory-specific proofs for theory lemmas in
Section V, when we discuss specific theory solvers.

M F C Rule

. . .
1 2 3 • 4̄ • 5 F0 ∅ Prop1 (1̄ ∨ 2̄ ∨ 5̄ ∨ 6)

1 2 3 • 4̄ • 5 6 F0 ∅ Prop2 (3̄ ∨ 6̄ ∨ 7)
1 2 3 • 4̄ • 5 6 7 F0 ∅ Confl1

1 2 3 • 4̄ • 5 6 7 F0 4 ∨ 6̄ ∨ 7̄ Expl2 (3̄ ∨ 6̄ ∨ 7)
1 2 3 • 4̄ • 5 6 7 F0 3̄ ∨ 4 ∨ 6̄ Expl1 (1̄ ∨ 2̄ ∨ 5̄ ∨ 6)
1 2 3 • 4̄ • 5 6 7 F0 C Learn
1 2 3 • 4̄ • 5 6 7 F0, C C Backj

1 2 3 • 4̄ 5̄ F0, C ∅ . . .

C = 1̄ ∨ 2̄ ∨ 3̄ ∨ 4 ∨ 5̄

Figure 4: An execution using theory rules.

4 ∨ 6̄ ∨ 7̄ 3̄ ∨ 6̄ ∨ 7

3̄ ∨ 4 ∨ 6̄ 1̄ ∨ 2̄ ∨ 5̄ ∨ 6

1̄ ∨ 2̄ ∨ 3̄ ∨ 4 ∨ 5̄

T1-proof
T2-proofT1-proof

Figure 5: Using theory-specific proofs in proving a lemma.

each i, are enough to construct complex SMT proofs that
involve several theories.

Example 2: Suppose T is the combination of the theory of
uninterpreted functions (T1 is TUF) and the theory of arrays
with extensionality (T2 is TAX), and consider an initial clause
set F0 containing the atoms:

1 : c3 = f(c1) 3 : c5 = (a[c3] := c1)[c4]
2 : c4 = f(c2) 4 : g(c3, c5) = g(c4, c1)

where a is an array, c1, . . . , c5 are shared constants, and f
and g are uninterpreted functions. The expression a[i] denotes
the result of reading an array a at index i, and a[i] := b
denotes the result of writing value b at index i of a. Suppose
that literals 1, 2, 3 occur as unit clauses in F0 while 4 occurs
in some longer clause. Then, a possible execution from F0

might look like the one in Figure 4 where 5, 6, and 7 are the
following interface literals:

5 : c1 = c2 6 : c3 = c4 7 : c5 = c1 .

If that execution eventually ends in fail and uses the learned
clause C = 1̄ ∨ 2̄ ∨ 3̄ ∨ 4 ∨ 5̄, then a proof certificate for F0

will need a proof of C. The proof tree for C generated from
the given execution is shown in Figure 5, with the proofs of
the various theory lemmas omitted. Note that C, which has
both Σ1- and Σ2-literals, is valid in T . However, it is not a
lemma of either component theory. Proving it valid in T really
requires a collaboration between the two theory solvers.

In practice, concrete implementations of this framework do
not pass to the SAT engine the theory lemmas used in Expli
steps, to avoid polluting the engine with unnecessary clauses.
This means that in the example above, for instance, to obtain a
proof for the learned clause C, we must be able to reconstruct
the theory lemmas used in each Expli step. To do this, we
record for each learned clause a proof sketch: a list of theory
propagations, each performed by a specific theory solver, that
together justify the learned clause. A clause’s proof sketch can

be used later to produce a full proof as needed: each individual
propagation is converted into a theory lemma via a call to the
relevant solver’s explaini method, and then a proof for that
propagation is obtained via a call to provideProofi. These
intermediate proofs are then composed into a proof for the
learned clause, using resolution as in the example above. By
keeping these proof sketches we have enough information to
construct complete proofs later on. This process facilitates
lazy proof generation for learned clauses, as we discuss next.

IV. LAZY PROOF PRODUCTION

In the previous section we saw that in order to produce
proofs in a DPLL(T) setting, each Ti-solver must be able
to justify the theory lemmas it generates. In this section, we
discuss a complementary question: when should it provide
these justifications?

One approach, found in some solvers that support various
forms of proof production [3], [6], is to prove each theory
lemma eagerly, at the time it is generated. This has the
advantage that proof production for each theory step typically
incurs only a small overhead, and often boils down to
recording the internal deductive process that the theory solver
follows when generating the lemma. However, this greedy
approach can be inefficient. During the solution phase, theory
solvers usually produce numerous lemmas that end up not
being used in deriving the empty clause, and so do not make
it into the final refutation tree. Hence, any proofs produced
for such lemmas are a waste of effort. As an alternative, we
advocate a lazy approach where no proofs for theory lemmas
are generated until the final refutation tree has been found.
Then, the provideProofi methods are invoked only for those
theory lemmas that appear as leaves in the tree.

For many of the benchmarks we tried, only a fraction
of the thousands of theory lemmas generated during the
solving phase are used in the final proof, so the savings from
producing proofs for theory lemmas lazily can be significant.
A disadvantage is that theory lemmas occurring in the final
proof end up being processed twice: once when they are
originally generated, and then again when producing the
proof. Typically, this means that in addition to generating the
proof, the theory solver will have to redo the deductive work
that was required to generate each lemma in the first place.

Choosing an appropriate strategy depends on the particular
theory solver in question. For some theory solvers reproving
lemmas is cheap, making the lazy approach more suitable;
for others, an eager approach may yield better results. Our
experiments (in Section VI) indicate that, in the cases of
TUF and TAX, the lazy approach fairs better. We discuss the
particulars of our implementation in Section V.

Lazy Proofs and Rewrite Rules. Modern SMT solvers make
use of a large arsenal of rewrite rules aimed at simplifying
formulas. These rules specify how and when to replace atoms
and terms with simpler but equivalent versions, and applying
them can significantly improve the performance of solvers.
However, the simplification of even a single atom that appears

in a theory lemma can interfere with lazy proof production,
as illustrated by the following example, encountered while at-
tempting to produce proofs for the SMT-LIB benchmarks [4]
in the theory TABV combining arrays and bitvectors.

Example 3: Suppose that the TAX-solver generates the the-
ory lemma L1 : (b+1 = 1)∨((a[b+1] := x)[1] = a[1]), where
a is an array and b is a fixed-width bitvector (for conciseness,
we give here the lemma in non-purified form). Intuitively, this
lemma says that if b+ 1 6= 1, then writing x to a[b+ 1] does
not alter the value of a[1]. L1 is valid in TAX, and so the
TAX-solver should be able to prove it.

In the lazy approach, the TAX-solver is not asked to
provide a proof for L1 right away. Now, suppose that dur-
ing subsequent processing of the theory lemma, a bitvector
rewrite rule is invoked, simplifying the atom b + 1 = 1
to b = 0, and consequently transforming lemma L1 into
L2 : (b = 0) ∨ ((a[b + 1] := x)[1] = a[1]). This lemma
is valid in TABV, but not in TAX. Thus, when the time comes
to produce a proof and the TAX-solver is asked to prove L2,
it will fail to do so.

We can overcome this difficulty as follows. First, we extend
the abstract DPLL(T) framework with the following, general
rule, which allows theory solvers to rewrite literals:

Rewritei

C = {l ∨D}
|=i l1 ∨ · · · ∨ ln ∨ (l = l′) l1, . . . , ln ∈ M

C := {l′ ∨D}

We call the clause l1 ∨ · · · ∨ ln ∨ (l = l′) above a rewrite
lemma. During the solution phase, we keep track of the
application of these rewrite rules to theory atoms. Whenever
a theory atom that participates in a lemma is rewritten, we
record this information in the lemma’s proof sketch. Then, if
and when we need to prove the (rewritten) lemma, we can
separately prove the original lemma and each specific rewrite
lemma used to rewrite it, and then combine their proofs into
a proof for the rewritten lemma. In our example above, when
we need to prove L2, we first have the TAX-solver prove the
original lemma L1, and then separately ask the TBV-solver to
provide a proof for the equivalence (b + 1 = 1) = (b = 0).
These two proofs can then be combined to prove L2, which
is the actual leaf in the refutation tree. Observe that this
technique is applicable even if there is a series of rewrites
involving multiple theory solvers, because, according to the
Rewritei rule, each rewrite lemma used is valid in some
individual theory.

Besides enabling proof production when rewrite rules are
applied, this process also has a beneficial effect on mod-
ularity: it separates proofs for rewrite rules from those of
the theory lemmas, thus simplifying proof production and
improving proof legibility.

V. THEORY-SPECIFIC PROOFS

In the purely propositional case (as in Example 1), a proof
can always be constructed that consists of a sequence of
applications of Boolean resolution, starting from the input

clauses. In the non-propositional case, we saw that each
theory solver must provide proofs for its theory lemmas. This
requires additional instrumentation in the theory solvers as
well as additional deduction rules and axioms beyond Boolean
resolution. In this section, we discuss the construction of
proof-producing theory solvers for three common theories:
uninterpreted functions with equality (TUF), arrays with ex-
tensionality (TAX) and fixed-width bitvectors (TBV). In all
theory solvers, it is more convenient to prove a theory lemma
l1 ∨ · · · ∨ ln by first proving the unsatisfiability of the set
{l1, . . . , ln}; so we focus on the latter kind of proof here.

Uninterpreted Functions. A general scheme for a proof-
producing TUF-solver was proposed by Fontaine et al. [14].
We follow a similar approach, briefly summarized below.
Decision procedures for TUF are normally based on congru-
ence closure: the solver maintains an equality graph which
partitions the terms appearing in the input constraints into
equivalence classes. As the search progresses, equivalence
classes get merged. Unsatisfiability is derived when two terms
a and b from an input constraint a 6= b end up in the same
equivalence class.

To produce a refutation tree, the TUF-solver keeps track of
all previously performed merges of equivalence classes. When
it is asked to prove that a = b is a consequence of some of the
input constraints (contradicting the input constraint a 6= b),
it backtracks through these merges and constructs a chain
a = x1 = · · · = xn = b, where each link is the result of
an input constraint or an application of the congruence rule
(deriving, for instance, f(x) = f(y) from x = y) [14]. This
chain can then be transformed into a proof tree whose leaves
are input assertions and whose internal nodes are generated
by the application of one of the following rules:

Transitivity: from x = y and y = z derive x = z
Congruence: from x = y derive f(x) = f(y)
Symmetry: from x = y derive y = x

Figure 6 depicts a refutation of the negation of the TUF theory
lemma (x 6= y)∨ (z 6= f(y))∨ (f(x) = z) using those rules.

f(x) 6= z

x = y

f(x) = f(y)
Cong.

z = f(y)

f(y) = z
Symm.

f(x) = z
Trans.

⊥
Figure 6: A refutation of {x = y, z = f(y), f(x) 6= z}.

A convenient way to implement eager TUF proof pro-
duction is to instrument the TUF-solver’s explain function
to produce, apart from an explanation clause, also a proof
for that clause. However, TUF is a prime candidate for lazy
proof production: since the decision procedure in this case
is very efficient, reproving previous lemmas is cheap. In the
lazy approach, during proof construction, if we encounter a
TUF theory lemma l1 ∨ . . . ∨ ln, we assert its negation to a
fresh proof-producing instance of the TUF-solver. This solver
then constructs the proof as it derives a contradiction. Our

experimental evaluation (see Section VI) suggests that the
lazy approach is superior to the eager approach for TUF.

Arrays with Extensionality. We now show how we can build
on the procedure for TUF to produce proofs for TAX. An
efficient decision procedure for TAX [12] uses congruence
closure and maintains an equality graph, similarly to the TUF
case; however, it merges equivalence classes also as the result
of array-specific axioms (proof rules with no premises):

1) Read-over-write 1: for any array a, indices i and j and
element x, if i 6= j then (a[i] := x)[j] = a[j].

2) Read-over-write 2: (a[i] := x)[i] = x.
The first axiom guarantees that writing to index i does not
change the value at a different index j, and the second
guarantees that written values persist. A third axiom states
that disequal arrays must differ in at least one cell:

3) Extensionality: for any two arrays a and b, if a 6= b then
there exists a k such that a[k] 6= b[k].

Observe that, unlike in the TUF case, an unsatisfiable set of
constraints here does not have to include one of the form a 6=
b, since disequalities can also be deduced by the extensionality
axiom. A contradiction is reached when two contradictory
literal, a = b and a 6= b, are derived.

Instrumenting a TAX-solver to produce proof trees based on
these axioms again consists of collecting the reasons for the
merges of equivalence classes. In particular, any application
of Read-over-write 1 and Extensionality contains a sub-proof
for the axiom’s guard—respectively, i 6= j and a 6= b.

Figure 7 depicts a refutation of the negation of the TAX
theory lemma (i = j) ∨ ((a[j] := y)[i] 6= x) ∨ (a[i] = x)
using the first read-over-write (RoW) axiom.

i 6= j (a[j] := y)[i] = x

a[i] = x
RoW 1

a[i] 6= x

⊥

Figure 7: Refutation of {i 6= j, (a[j] := y)[i] = x, a[i] 6= x}.

Eager proof production can be achieved as in the TUF
case. For lazy proof production, we can again instantiate a
fresh copy of the solver for every lemma that we need to
prove. However, in this case, reproving lemmas from scratch
does not suffice. The problem is due to the Extensionality
axiom. Consider a case where we need to reprove an instance
(a = b) ∨ (a[k] 6= b[k]) of that axiom, where k is a free
constant witnessing the disequality a 6= b. If we attempt
to lazily prove this lemma by instantiating a fresh TAX-
solver and asserting to it the set {a 6= b, a[k] = b[k]}, it
will be unable to refute it (simply because, by itself, it is
not unsatisfiable). This problem can be overcome by some
simple bookkeeping during the solution phase: whenever the
Extensionality axiom is used, we record that k is a witness for
a 6= b; later, during lazy proof production, we ensure that the
same k is used to witness a 6= b in the fresh solver. Again,
our experiments (see Section VI) suggest that, despite this
extra bookkeeping, the lazy approach is superior to the eager
approach for TAX.

Bitvectors. We discuss proof generation for the theory TBV of
fixed-width bitvectors thoroughly in our previous work [15],
so we provide here only a short recap, for completeness. The-
ory solvers for this theory make extensive use of bit-blasting:
they transform a bitvector formula ϕ into an equisatisfiable
propositional formula ϕBB , in which fresh Boolean variables
represent the values of individual bitvector bits. An internal
SAT solver then checks the satisfiability of ϕBB , and a proof
for its unsatisfiability can be translated into a proof for the
unsatisfiability of the original ϕ.

A small example appears in Figure 8. It depicts a bit-
blasting refutation for the negation of TBV lemma (b1 6=
b2)∨(b2 6= 10)∨(b1 6= 00), where b1 and b2 are bitvectors of
size 2. The three equalities in the lemma are bit-blasted, via
application of the BB rule, to derive equalities over some of
their constituent bits (denoted here by an array-like notation);
these equalities are then used to derive a contradiction.

b1 = b2
b1[1] = b2[1]

BB
b2 = 10

b2[1] = 1
BB

b1[1] = 1
Trans.

b1 = 00

b1[1] = 0
BB

⊥
Figure 8: A refutation of {b1 = b2, b2 = 10, b1 = 00}.

Bitvector lemmas are proved semi-lazily, in the following
sense. During the solution phase, the TBV-solver’s internal
SAT solver is instrumented to eagerly record any conflict
that it discovers. Later, when a lemma needs to be proved
because it appears in the refutation tree, the bit-level conflicts
that prove it have already been recorded and can be used.
While most of the work is thus done eagerly, one part is still
performed lazily: the proof of the bit-blasting process itself,
i.e., the part of the proof connecting ϕ to ϕBB , is reproduced
lazily only for participating lemmas.

Our motivation for eagerly recording the internal SAT
solver’s conflicts is that reproducing a TBV theory lemma with
no information would require re-bit-blasting and re-solving,
a potentially very expensive process.

VI. EVALUATION

For evaluation purposes we implemented our proof gen-
eration approach in CVC4 [2]. Proof generation for TBV
was implemented as part of previous work [15]. For this
evaluation, we extended CVC4 with both eager and lazy proof
generation capabilities for TUF and TAX. We also completed
the instrumentation of the DPLL(T) engine as described in
Section III, enabling it to handle any combination of the
three theories above. Support for proving rewrite rules is still
under development, and so for the purposes of this evaluation
rewrite rules are treated as axioms, i.e. are given without fine-
grained justification. However, the rewrite rules do appear
in separate lemmas outside the main proof as discussed in
Section IV, and their usage in other parts of the proof is
checked for correctness. All changes have been integrated into

the master branch of CVC4, which is available online through
CVC4’s GitHub repository at https://github.com/CVC4.

CVC4 outputs the proofs it generates as terms in the
Logical Framework with Side Conditions (LFSC) [24]. Based
on a simply typed λ-calculus with dependent types, LFSC
reduces proof checking to type checking: proof rules are
encoded as (higher-order) constants, with their premises and
conclusions encoded as types, and a proof is a term whose
constants are proof-rule names. An LFSC checker takes as
input a proof term t and a signature S, a collection of type
and constant declarations that includes the various proof rules,
and checks that t is well-typed with respect to S. We extended
the signature S from Hadarean et al. [15] to support the TUF
and TAX rules mentioned in Section V.

We first compared the lazy and eager proof generation
approaches for TUF and TAX. Figure 9 shows the results
on all QF UF and QF AX benchmarks from the SMT-LIB
library [4]. For QF UF benchmarks, the eager approach was
slower than the lazy one on almost all instances and incurred
an average performance overhead of 30%. For QF AX bench-
marks, the eager approach was 25% slower on average. Both
cases thus indicate a clear advantage for the lazy approach.

Figure 9: Eager vs. Lazy proof production runtimes, in
seconds.

We then ran a more extensive experiment to test our
ability to correctly generate and check proofs (lazily for the
TUF and TAX solvers) for unsatisfiable benchmarks from all
the relevant logics (including theory combinations) in the
SMT-LIB library [4]: QF UF, QF AX, QF BV, QF UFBV,
QF ABV and QF AUFBV. Table I shows the results. The
Default columns describe the performance of CVC4 with
proof production disabled; the Generate and Check Proof and
Generate Proof columns describe performance when produc-
ing a proof with and without checking it, respectively. Also
shown in the table are results on a set of industrial QF ABV
benchmarks encoding symbolic execution problems, which
were provided to us by collaborators from GrammaTech, Inc.
These results appear in the row labeled Symbolic Execution.

CVC4 was able to produce proofs for over 99% of all
instances that it could solve without proof generation. We
were similarly able to check most of the generated proofs
using LFSC’s external proof checker. In the future, we plan to
improve proof checking time by optimizing the LFSC checker
and using more efficient LFSC encodings for our proofs.

https://github.com/CVC4

Benchmark Default Generate Proof Generate and
Category Check Proof

Solved Time Solved Time Solved Time

QF UF 4083 7523 4067 19097 4029 61650
QF AX 277 450 264 3170 260 3193
QF BV 20517 49884 20430 67072 17602 132975
QF UFBV 12 1391 12 2623 4 170
QF ABV 4487 16223 4410 19900 4127 22768
QF AUFBV 31 93 31 245 30 1751

Symbolic 94 1735 89 4364 71 2348
Execution

Table I: Producing and checking proofs. All times are in
seconds. Experiments were run with a 600 second timeout.

VII. RELATED WORK

Various SMT solvers have taken different approaches to
proof production over the years (see Barrett et al. [3] for
a recent survey). To the best of our knowledge, the only
other SMT solver that is both actively maintained and able to
produce independently-checkable proofs is veriT [9], which
supports eager proof-production for TUF and the theory of
linear arithmetic. Our approach for eager proof production in
TUF is similar to that of veriT [14]. However, veriT does not
support lazy proof production or proofs for TAX or TBV.

The Z3 solver produces proof traces, essentially a record
of propositional inferences plus a listing of theory lemmas
used [6]. Extending such a proof trace to a full proof
requires an external tool capable of proving theory lemmas
independently, which can be quite challenging, for instance
for bitvector theory lemmas [8]. Our approach differs from
Z3’s approach in that it produces full, fine-grained proofs that
are checkable by simple checkers.

The LFSC format [24] allows us to use a generic LFSC
checker to check proofs. Other approaches for checking
SMT-generated proofs include using custom checkers [20] or
skeptical interactive theorem provers such as HOL Light [19]
or Isabelle/HOL [14].

VIII. CONCLUSION AND FUTURE WORK

Adding proof production capabilities to complex tools like
SMT solvers can greatly increase our level of confidence
in their results. We presented here a technique that allows
DPLL(T)-style SMT solvers to produce unsatisfiability proofs
for queries involving combinations of theories. Our approach
requires that each theory solver provide proofs for its theory-
specific deductions; and these sub-proofs are then interwoven
into a complete, cohesive proof by the main SAT engine.
Our approach is modular and extensible in the sense that any
new proof-producing solver can be readily integrated with
existing ones. We also explored lazy proof generation and
demonstrated its advantages for TUF and TAX.

For the near future, we plan to improve CVC4’s ability
to prove rewrite steps, as discussed in Section IV. Another
planned enhancement is the addition of proof support for
arithmetic and quantified logics—with the aim of eventually
being able to produce proofs for unsatisfiable formulas in the
full input language supported by CVC4.

REFERENCES

[1] M. Armand, G. Faure, B. Grégoire, C. Keller, L. Théry, and
B. Werner. A Modular Integration of SAT/SMT Solvers to Coq
through Proof Witnesses. In CPP, 2011.

[2] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jo-
vanović, T. King, A. Reynolds, and C. Tinelli. CVC4. In
CAV, 2011.

[3] C. Barrett, L. de Moura, and P. Fontaine. Proofs in Satisfiability
Modulo Theories. All about Proofs, Proofs for All, 2015.

[4] C. Barrett, P. Fontaine, and C. Tinelli. The Satisfiability Mod-
ulo Theories Library (SMT-LIB). http://www.SMT-LIB.org.

[5] C. Barrett, R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Split-
ting On Demand in SAT Modulo Theories. In LPAR, 2006.

[6] N. Bjørner and L. de Moura. Proofs and Refutations, and Z3.
In LPAR, 2008.

[7] J. Blanchette, S. Böhme, and L. Paulson. Extending Sledge-
hammer with SMT Solvers. J. of Automated Reasoning, 2013.

[8] S. Böhme, A. Fox, T. Sewell, and T. Weber. Reconstruction of
Z3’s Bit-Vector Proofs in HOL4 and Isabelle/HOL. In CPP,
2011.

[9] T. Bouton, D. Caminha B. de Oliveira, D. Déharbe, and
P. Fontaine. veriT: an Open, Trustable and Efficient SMT-
Solver. In CADE, 2009.

[10] R. Bruttomesso, A. Cimatti, A. Franzen, A. Griggio, and
R. Sebastiani. Delayed Theory Combination vs. Nelson-Oppen
for Satisfiability Modulo Theories: a Comparative Analysis.
Annals of Mathematics and Artificial Intelligence, 2009.

[11] J. Chen, R. Chugh, and N. Swamy. Type-Preserving Compi-
lation of End-to-End Verification of Security Enforcement. In
PLDI, 2010.

[12] L. de Moura and N. Bjørner. Generalized, Efficient Array
Decision Procedures. In FMCAD, 2009.

[13] B. Ekici, G. Katz, C. Keller, A. Mebsout, A. Reynolds, and
C. Tinelli. Extending SMTCoq, a Certified Checker for SMT.
In HATT, 2016.

[14] P. Fontaine, J. Marion, S. Merz, L. Nieto, and A. Tiu. Expres-
siveness + Automation + Soundness: Towards Combining SMT
Solvers and Interactive Proof Assistants. In TACAS, 2006.

[15] L. Hadarean, C. Barrett, A. Reynolds, C. Tinelli, and M. Deters.
Fine-grained SMT Proofs for the Theory of Fixed-width Bit-
vectors. In LPAR, 2015.

[16] M. Heule and A. Biere. Proofs for Satisfiability Problems. All
about Proofs, Proofs for All, 2015.

[17] S. Krstić and A. Goel. Architecting Solvers for SAT Modulo
Theories: Nelson-Oppen with DPLL. In FROCOS, 2007.

[18] J. Marques-Silva and K. Sakallah. GRASP: A Search Algo-
rithm for Propositional Satisfiability. IEEE Transactions on
Computers, 1999.

[19] S. McLaughlin, C. Barrett, and Y. Ge. Cooperating Theorem
Provers: A Case Study Combining HOL-Light and CVC Lite.
In PDPAR, 2005.

[20] M. Moskal. Rocket-Fast Proof Checking for SMT Solvers. In
TACAS, 2008.

[21] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT
and SAT Modulo Theories: From an abstract Davis-Putnam-
Logemann-Loveland procedure to DPLL(T). J. of the ACM,
2006.

[22] A. Reynolds, C. Tinelli, A. Goel, and S. Krstić. Finite Model
Finding in SMT. In CAV, 2013.

[23] A. Reynolds, C. Tinelli, and L. Hadarean. Certified Interpolant
Generation for EUF. In SMT, 2011.

[24] A. Stump, D. Oe, A. Reynolds, L. Hadarean, and C. Tinelli.
SMT Proof Checking Using a Logical Framework. Formal
Methods in System Design, 2012.

[25] C. Tinelli and M. Harandi. A New Correctness Proof of the
Nelson-Oppen Combination Procedure. In FROCOS, 1996.

http://www.SMT-LIB.org

	Introduction
	DPLL(T)-Based SMT Solvers
	Generating Proofs in DPLL(T)
	Proof Generation for Propositional Unsatisfiability.
	Proof Generation for Unsatisfiability Modulo Theories.

	Lazy Proof Production
	Theory-Specific Proofs
	Evaluation
	Related Work
	Conclusion and Future Work
	References

