
Relational Constraint Solving in SMT

Baoluo Meng1, Andrew Reynolds1, Cesare Tinelli1, and Clark Barrett2

1 Department of Computer Science, The University of Iowa
2 Department of Computer Science, Stanford University

Abstract. Relational logic is useful for reasoning about computational problems
with relational structures, including high-level system design, architectural con-
figurations of network systems, ontologies, and verification of programs with
linked data structures. We present a modular extension of an earlier calculus
for the theory of finite sets to a theory of finite relations with such operations
as transpose, product, join, and transitive closure. We implement this extension
as a theory solver of the SMT solver CVC4. Combining this new solver with
the finite model finding features of CVC4 enables several compelling use cases.
For instance, native support for relations enables a natural mapping from Alloy,
a declarative modeling language based on first-order relational logic, to SMT
constraints. It also enables a natural encoding of several description logics with
concrete domains, allowing the use of an SMT solver to analyze, for instance,
Web Ontology Language (OWL) models. We provide an initial evaluation of our
solver on a number of Alloy and OWL models which shows promising results.

Keywords: Relational Logic, SMT, Alloy, OWL

1 Introduction

Many computational problems require reasoning about relational structures. Examples
include high-level system design, architectural configuration of network systems, rea-
soning about ontologies, and verification of programs with linked data structures. Re-
lational logic is an appealing choice for reasoning about such problems. In this paper,
we consider a many-sorted relational logic where relations of arity n are defined as sets
of n-tuples with parametrized sorts for tuple elements. We define a version of this logic
as a first-order theory of finite relations where relation terms are built from relation
constants and variables, set operators, and relational operators such as join, transpose,
product, and transitive closure.

In previous work [3], Bansal et al. developed a decision procedure for a theory of
finite sets with cardinality constraints. The theory of finite relations presented here is
an extension of that theory to relational constraints. We present a calculus for the satis-
fiability of quantifier-free formulas in this theory. Our calculus is in general refutation-
sound and model-sound. It is also terminating and refutation-complete for a restricted
class of quantifier-free formulas that has useful applications.

The calculus is explicitly designed to be implementable as a theory solver in SMT
solvers based on the DPLL(T) architecture [14]. We have implemented a modular com-
ponent for it in our SMT solver CVC4 [4], allowing CVC4 to solve constraints on re-
lations over elements from any of the theories it supports. This relational extension of

2

CVC4’s native input language enables natural mappings to SMT formulas from several
modeling languages based on relations. This includes Alloy, a formal language based
on first-order relational logic, as well as ontology languages such as OWL. A significant
potential advantage of these mappings is that they bring to these languages the power
of SMT solvers to reason natively about a variety of interpreted types, something that
is challenging for existing reasoners for these languages.

1.1 Related Work

Alloy is a well-known declarative modeling language based on a relational logic with
transitive closure, set cardinality, and integer arithmetic operators [13]. Alloy speci-
fications, or models, can be analyzed for consistency or other entailment properties
with the Alloy Analyzer, a static analyzer based on encoding models as propositional
logic formulas, and passing them to an off-the-shelf propositional satisfiability (SAT)
solver. This approach limits the analysis to models with explicit and concrete cardi-
nality bounds on the relations involved; hence it is appropriate only for proving the
consistency of a model or for disproving that a given property, encoded as a formula,
holds for a model. Despite these limitations, Alloy and its analyzer have been quite
useful for lightweight modeling and analysis of software systems. An earlier attempt to
solve Alloy constraints without artificial cardinality bounds on relations was made by
Ghazi and Taghdiri [8] using SMT solvers. They developed a translation from a subset
of Alloy’s language to the SMT-LIB language [5] and used the SMT solver Yices [7]
to solve the resulting constraints. That approach can prove some properties of certain
Alloy models, but it still requires explicitly finitizing relations when dealing with tran-
sitive closure, limiting the kind of properties that can be proven in models that con-
tain applications of transitive closure. Later, the same authors introduced more general
methods [9, 10], implemented in the AlloyPE tool, to axiomatize relational operators
as SMT formulas without finitization while covering the entire core language of Alloy.
However, since quantified relational logic is in general undecidable and quantifiers are
heavily used in the translation, the resulting SMT formulas translated from Alloy are
often difficult or even impossible for SMT solvers to solve, especially when transitive
closure is involved.

Description Logics (DLs) [1, 2] are decidable fragments of relational logic explic-
itly developed for efficient knowledge representation and reasoning. They consider on
purpose only unary and binary relations. The main building blocks of DLs are individ-
uals, concepts, roles as well as operations over these, where concepts represent sets of
individuals, roles represent binary relations between individuals, and operations include
membership, subset, relational composition (join) and equality. Restricted use of quan-
tifiers is allowed in DLs to encode more expressive constraints on roles and concepts.
OWL [20], a standardized semantic web ontology language, represents an important ap-
plication of DLs to ontological modeling. It consists of entities similar to those in DLs
except for superficial differences in concrete syntax and for the inclusion of additional
features that make reasoning about OWL models undecidable in general. Many efficient
reasoners have been built for reasoning about OWL ontologies written in restricted frag-
ments of OWL. These include Konclude [16], FaCT++ [18], and Chainsaw [19].

3

1.2 Formal Preliminaries

We define our theory of relations and our calculus in the context of many-sorted first-
order logic with equality. We assume the reader is familiar with the following notions
from that logic: signature, term, literal, formula, free variable, interpretation, and sat-
isfiability of a formula in an interpretation (see, e.g., [6] for more details). Let Σ be a
many-sorted signature. We will use≈ as the (infix) logical symbol for equality—which
has type σ × σ for all sorts σ in Σ and is always interpreted as the identity relation.
We assume all signatures Σ contain the Boolean sort Bool, always interpreted as the
binary set {true, false}, and a Boolean constant symbol true for true . Without loss of
generality, we assume ≈ is the only predicate symbol in Σ, as all other predicates may
be modeled as functions with return sort Bool. We will commonly write, e.g. P (x), as
shorthand for P (x) ≈ true where P (x) has sort Bool. We write s 6≈ t as an abbrevi-
ation of ¬ s ≈ t. If e is a term or a formula, we denote by Vars(e) the set of e’s free
variables, extending the notation to tuples and sets of terms or formulas as expected.
We write ϕ[x] to indicate that all the free variables of a formula ϕ are from tuple x.

If ϕ is a Σ-formula and I a Σ-interpretation, we write I |= ϕ if I satisfies ϕ. If
t is a term, we denote by tI the value of t in I. A theory is a pair T = (Σ, I), where
Σ is a signature and I is a class of Σ-interpretations that is closed under variable reas-
signment (i.e., every Σ-interpretation that differs from one in I only in how it interprets
the variables is also in I). I is also referred to as the models of T . A Σ-formula ϕ is
satisfiable (resp., unsatisfiable) in T if it is satisfied by some (resp., no) interpretation
in I. A set Γ of Σ-formulas entails in T a Σ-formula ϕ, written Γ |=T ϕ, if every
interpretation in I that satisfies all formulas in Γ satisfies ϕ as well. We write |=T ϕ as
an abbreviation for ∅ |=T ϕ. We write Γ |= ϕ to denote that Γ entails ϕ in the class of
all Σ-interpretations. Two Σ-formulas are equisatisfiable in T if for every model A of
T that satisfies one, there is a model of T that satisfies the other and differs from A at
most over the free variables not shared by the two formulas. When convenient, we will
treat a finite set of formulas as the conjunction of its elements and vice versa.

2 A Relational Extension to a Theory of Finite Sets

A many-sorted theory of finite sets with cardinality TS is described in detail in our
previous work [3]. The theory TS includes a set sort constructor Set(α) parametrized
by the sort of the set elements. The theory TS can be combined with any other theory T
Nelson-Oppen-style, by instantiating the parameter α with any sort in T . The signature
of theory TS includes function and predicate symbols for set union (t), intersection (u),
difference (\), the empty set ([]), singleton set construction ([]), set inclusion (v),
and membership (@−), all interpreted as expected. A sound, complete and terminating
tableaux-style calculus for the theory TS is implemented in the CVC4 SMT solver [4].

In this section, we describe an extension TR of this theory which, however, does not
include a set cardinality operator or cardinality constraints.3 The new theory TR extends
TS with a parametric tuple sort Tupn(α1, . . . , αn) for every n > 0 and various rela-
tional operators defined over sets of tuples, that is, over values whose sort is an instance

3 A further extension of the theory to cardinality constraints is planned for future work.

4

Set symbols:

[] : Set(α) t,u, \ : Set(α)× Set(α)→ Set(α) @− : α× Set(α)→ Bool

[] : α→ Set(α) v : Set(α)× Set(α)→ Bool

Relation symbols:

〈 , . . . , 〉 : α1 × · · · × αn → Tupn(α1, . . . , αn)

∗ : Relm(α)× Reln(β)→ Relm+n(α,β)

on : Relp+1(α, γ)× Relq+1(γ,β)→ Relp+q(α,β) with p+ q > 0
−1 : Relm(α1, . . . , αm)→ Relm(αm, . . . , α1)

+ : Rel2(α, α)→ Rel2(α, α)

where m,n > 0, α = (α1, . . . , αm), β = (β1, . . . , βn), and Reln(γ) = Set(Tupn(γ)).

Fig. 1: Signature ΣR of our relational theory TR.

of Set(Tupn(α1, . . . , αn)). We call any sort σ of the form Set(Tupn(σ1, . . . , σn)) a
relational sort (of arity n) and abbreviate it as Reln(σ1, . . . , σn).

The full signature ΣR of TR is defined in Figure 1. Note that the function symbols
∗, on, and −1 are not only parametric but also overloaded, as they apply to relational
sorts Relk(σ) of different arities k. The models of TR are the expansions of the models
of TS that interpret 〈 , . . . , 〉 as the n-tuple constructor, ∗ as relational product, on as
relational join, −1 as the transpose operator, and + as the transitive closure operator.
A relation term is a ΣR-term of some relational sort. A tuple term is a ΣR-term of
some tuple sort. A TR-constraint is a (dis)equality of the form (¬)s ≈ t, where s and
t are ΣR-terms. We write s 6@− t and [t1, . . . , tn] with n > 1 as an abbreviation of
¬(s @− t ≈ true) and [t1] t · · · t [tn], respectively.

3 A Calculus for the Relational Extension

In this section, we describe a tableaux-style calculus for determining the satisfiability
of finite sets of TR-constraints. The calculus consists of a set of derivation rules similar
to those in the calculus from [3] that deal with set constraints as well as new rules to
process TR-constraints. For simplicity, we will implicitly assume that the sort of any set
or relation term is flat (i.e., set or relation elements are not themselves sets or relations)
and allow only variables as terms of element sorts. Nested sets and relations and more
complex element terms can be processed in a standard way by using a Nelson-Oppen-
style approach which we will not discuss here.

The derivation rules modify a state data structure, where a state is either the dis-
tinguished state unsat or a set S of TR-constraints. The rules are provided in Figure 2
and 3 in guarded assignment form. In such form, the premises of a rule refer to the
current state S and the conclusion describes how S is changed by the rule’s application.
Rules with two or more conclusions, separated by the symbol ‖, are non-deterministic
branching rules. In the rules, we write S, c as an abbreviation of S ∪{c}, and denote by
T (S) the set of all terms and subterms occurring in S. We define the following closure

5

INTER UP
x @− s ∈ S∗ x @− t ∈ S∗ s u t ∈ T (S)

S := S, x @− s u t

INTER DOWN
x @− s u t ∈ S∗

S := S, x @− s, x @− t

UNION UP
x @− u ∈ S∗ u ∈ {s, t} s t t ∈ T (S)

S := S, x @− s t t

UNION DOWN
x @− s t t ∈ S∗

S := S, x @− s ‖ S := S, x @− t

DIFF UP
x @− s ∈ S∗ s \ t ∈ T (S)

S := S, x @− t ‖ S := S, x @− s \ t

DIFF DOWN
x @− s \ t ∈ S∗

S := S, x @− s, x 6@− t

SINGLE UP
[x] ∈ T (S)

S := S, x @− [x]

SINGLE DOWN
x @− [y] ∈ S∗

S := S, x ≈ y

EMPTY UNSAT
x @− [] ∈ S∗

unsat

SET DISEQ
s 6≈ t ∈ S∗

S := S, z @− s, z 6@− t ‖ S := S, z 6@− s, z @− t

EQ UNSAT
(t 6≈ t) ∈ S∗

unsat

Fig. 2: Basic rules for set intersection, union, difference, singleton, disequality and con-
tradiction. In SET DISEQ, z is a fresh variable.

operator for S where |=tup denotes entailment in the ΣR-theory of tuples:4

S∗ = {s ≈ t | s, t ∈ T (S), S |=tup s ≈ t} ∪
{s 6≈ t | s, t ∈ T (S), S |=tup s ≈ s′ ∧ t ≈ t′ for some s′ 6≈ t′ ∈ S} ∪
{s @− t | s, t ∈ T (S), S |=tup s ≈ s′ ∧ t ≈ t′ for some s′ @− t′ ∈ S}

The set S∗ is computable by extending congruence closure procedures with a rule for
deducing consequences of tuple equalities of the form 〈s1, . . . , sn〉 ≈ 〈t1, . . . , tn〉.

A derivation rule applies to a state S if all the conditions in the rule’s premises
hold for S and the rule application is not redundant. An application of a rule to a
state S with a conclusion S ∪ {ϕ1[x1, z], . . . , ϕn[xn, z]}, where z are the fresh vari-
ables introduced by the rule’s application (if any), is redundant if S already contains
ϕ1[x1, t], . . . , ϕn[xn, t] for some terms t.

For simplicity and without loss of generality, we consider only initial states S0 that
contain no variables of tuple sorts Tupn(σ1, . . . , σn), since such variables can be re-
placed by a tuple 〈x1, . . . , xn〉 where each xi is a variable of sort σi. We also assume
that S0 contains no atoms of the form s v t, since they can be replaced by s ≈ s u t,
or disequalities 〈s1, . . . , sn〉 6≈ 〈t1, . . . , tn〉 between tuple terms, since those can be
treated by guessing a disequality si 6≈ ti between two of their respective components.
All derivation rules preserve these restrictions.

Figure 2 presents the basic rules for the core set constraints in our theory. For each
set operator, Figure 2 contains a downward rule and an upward rule. Given a mem-

4 Note that this theory has all the function symbols of ΣR, not just the tuple constructors
〈 , . . . , 〉. The extra symbols are treated as uninterpreted.

6

TRANSP UP
〈x1, . . . , xn〉 @− R ∈ S∗ R−1 ∈ T (S)

S := S, 〈xn, . . . , x1〉 @− R−1

TRANSP DOWN
〈x1, . . . , xn〉 @− R−1 ∈ S∗

S := S, 〈xn, . . . , x1〉 @− R

PROD UP
〈x1, . . . , xm〉 @− R1 ∈ S∗ 〈y1, . . . , yn〉 @− R2 ∈ S∗ R1 ∗R2 ∈ T (S)

S := S, 〈x1, . . . , xm, y1, . . . , yn〉 @− R1 ∗R2

PROD DOWN
〈x1, . . . , xm, y1, . . . , yn〉 @− R1 ∗R2 ∈ S∗ ar(R1) = m

S := S, 〈x1, . . . , xm〉 @− R1, 〈y1, . . . , yn〉 @− R2

JOIN UP
〈x1, . . . , xm, z〉 @− R1, 〈z, y1, . . . , yn〉 @− R2 ∈ S∗ m+ n > 0 R1 on R2 ∈ T (S)

S := S, 〈x1, . . . , xm, y1, . . . , yn〉 @− R1 on R2

JOIN DOWN
〈x1, . . . , xm, y1, . . . , yn〉 @− R1 on R2 ∈ S∗ ar(R1) = m+ 1

S := S, 〈x1, . . . , xm, z〉 @− R1, 〈z, y1, . . . , yn〉 @− R2

TCLOS UP I
〈x1, x2〉 @− R ∈ S∗ R+ ∈ T (S)

S := S, 〈x1, x2〉 @− R+

TCLOS UP II
〈x1, x2〉 @− R+, 〈x2, x3〉 @− R+ ∈ S∗

S := S, 〈x1, x3〉 @− R+

TCLOS DOWN
〈x1, x2〉 @− R+ ∈ S∗

S := S, 〈x1, x2〉 @− R ‖ S := S, 〈x1, z〉 @− R, 〈z, x2〉 @− R
‖ S := S, 〈x1, z1〉 @− R, 〈z1, z2〉 @− R+, 〈z2, x2〉 @− R, z1 6≈ z2

Fig. 3: Basic relational derivation rules. Letters z, z1, z2 denote fresh variables.

bership constraint x @− s, the downward rules infer either additional membership con-
straints over the immediate subterms of s, or an equality in the case where s is {y}. For
example, rule INTER DOWN, infers the constraints x @− s and x @− t if S∗ contains the
constraint x @− s u t. The upward rules handle the case where some set s occurs in S,
and infer membership constraints of the form x @− s based on other constraints from
S. Rule SET DISEQ introduces a witness for a disequality between two sets s and t by
using a fresh variable z to assert that there is an element that is in s but not t, or in t but
not in s. There are two rules for deriving unsat from trivially unsatisfiable constraints
in S: membership constraints of the form x @− ∅ (EMPTY UNSAT) and disequalities of
the form t 6≈ t (EQ UNSAT).

We supplement the set-specific rules with an additional set of rules for TR-constr-
aints, given in Figure 3. From the membership of a tuple in the transpose of a relation
R, rule TRANSP DOWN concludes that the reverse of the tuple is in R. Conversely, rule
TRANSP UP ensures that the reverse of a tuple is in the transpose of a relation R if the
tuple is in R and R−1 occurs in S. From the constraint that a tuple t belongs to the
join of two relations R1 and R2 with arities m and n respectively, rule JOIN DOWN
infers that R1 contains a tuple t1 whose last element (named using a fresh Skolem

7

variable z) is the first element of a tuple t2 in R2, where t is the join of t1 and t2.
The JOIN UP rule computes the join of pairs of tuples explicitly asserted to belong to
a relation R1 and a relation R2, respectively, provided that R1 on R2 is a term in S.
The PROD DOWN and PROD UP rules are defined similarly for the product of relations.
The rules TCLOS UP I and TCLOS UP II compute members of the transitive closure
of R based on the (currently asserted) members of R. When it can be inferreed that a
tuple 〈x1, x2〉 belongs to the transitive closure of a binary relation R, TCLOS DOWN
can produce three alternative conclusions. In reachability terms, the first conclusion
considers the case that x2 is directly reachable from x1 in the graph induced by R, the
second that x2 is reachable from x1 in two steps, and the third that it is reachable in more
steps. Note that the third case may lead to additional applications of TCLOS DOWN,
possibly indefinitely, if the other constraints in S (implicitly) entail that 〈x1, x2〉 does
not in fact belong to R.

Example 1. Let S = {〈x, y〉 @− R−1, R ≈ S, 〈y, x〉 6@− S}. By rule TRANSP DOWN,
we can derive a constraint 〈y, x〉 @− R, leading to a new S: {〈x, y〉 @− R−1, R ≈
S, 〈y, x〉 6@− S, 〈y, x〉 @− R}. Then, 〈y, x〉 @− R is both equal and disequal to true in S∗.
Thus, we can derive unsat by EQ UNSAT, and conclude that S is TR-unsatisfiable. ut

Example 2. Let S be {〈x〉 @− R, 〈y〉 @− R, R ∗ R ≈ S u T, 〈y, x〉 6@− T}. By rule
PROD UP, we derive constraints 〈x, y〉 @− R ∗ R, 〈y, x〉 @− R ∗ R, 〈x, x〉 @− R ∗ R and
〈y, y〉 @− R∗R. By set reasoning rule INTER DOWN, we derive another four constraints
〈x, y〉 @− S, 〈y, x〉 @− S, 〈x, y〉 @− T , and 〈y, x〉 @− T , leading to a contradiction with
〈y, x〉 6@− T . Thus, we can derive unsat by rule EQ UNSAT. ut

Example 3. Let S be {〈x, y〉 @− R, 〈y, z〉 @− R, 〈x, z〉 6@− R+}. By rule TCLOS UP I, we
derive two new constraints 〈x, y〉 @− R+ and 〈y, z〉 @− R+. Then, we can derive another
constraint 〈x, z〉 @− R+, by rule TCLOS UP II, in contradiction with 〈x, z〉 6@− R+.
Thus, we can derive unsat by rule EQ UNSAT. ut

Example 4. Let S be {〈x, y〉 @− R+, 〈x, y〉 6@− R}. By rule TCLOS DOWN, we construct
a derivation tree with three child branches, which add to S the sets {〈x, y〉 @− R},
{〈x, z〉 @− R, 〈z, y〉 @− R}, and {〈x, z1〉 @− R, 〈z1, z2〉 @− R+, 〈z2, y〉 @− R, z1 6≈ z2}
respectively, where z1 and z2 are fresh variables. By rule EQ UNSAT, we can derive
unsat in the first branch. Since no rules apply to the second branch, we can conclude,
as we will see, that S is TR-satisfiable. ut

4 Calculus Correctness

In this section, we formalize the correctness properties satisfied by our calculus. These
include refutation and model soundness in general and termination over a fragment of
our language of constraints.5 The rules of the calculus define a notion of derivation
trees. These are possibly infinite trees whose nodes are states where the children of
each non-leaf node are the result of applying one of the derivation rules of the calculus

5 All proofs of the propositions below can be found in a longer version of this paper available at
http://cvc4.cs.stanford.edu/papers/CADE2017-relations/.

http://cvc4.cs.stanford.edu/papers/CADE2017-relations/

8

(element) e := x
(unary relation) u := x | [] | u1 t u2 | u1 u u2 | [〈e〉] | b on u
(binary relation) b := x | [] | b1 t b2 | b1 u b2 | [〈e1, e2〉] | b−1

(constraint) ϕ := e1 ≈ e2 | 〈e〉 @− u | 〈e1, e2〉 @− b | ¬ϕ1

Fig. 4: A restricted fragment of TR-constraints. Letter x denotes variables.

to that node. A finite branch of a derivation tree is closed if it ends with unsat; it is
saturated if no rules apply to its leaf. A derivation tree is closed if all of its branches
are closed.

Proposition 1 (Refutation Soundness). If there is a closed derivation tree with root
node S, then S is TR-unsatisfiable.

Proposition 2 (Model Soundness). Let S be the leaf of a saturated branch in a deriva-
tion tree. There is a model I of TR that satisfies S and is such that (i) for all S ∈
Vars(S) of set sort, SI =

{
xI
∣∣ x @− S ∈ S∗

}
, and (ii) for all other x, y ∈ Vars(S),

xI = yI if and only if x ≈ y ∈ S∗.

Our calculus is terminating for a sublanguage of constraints involving only unary
and binary relations and excluding transitive closure, product, or equality between re-
lations. While this sublanguage, defined in Figure 4, is quite restricted, it is useful in
reductions of description logics to relational logic, which we discuss in Section 5.2.

Proposition 3 (Termination). If S is a finite set of constraints generated by the gram-
mar in Figure 4, then all derivation trees with root node S are finite.

Proof. Assume that S is a finite set containing only constraints ϕ from the grammar in
Figure 4. First, we construct the following mapping from relation terms to tuple terms.
LetDu (resp.Db) be a mapping from unary (resp. binary) relation terms to sets of unary
(resp. binary) tuple terms defined as the least solution to the following set of constraints,
where the e’s, the u’s and the b’s are implicitly universally quantified metavariables
ranging over terms respectively of element, unary relation and binary relation sort:

〈e〉 ∈ Du(u) if 〈e〉 @− u ∈ S
〈e〉 ∈ Du(u1) if 〈e〉 ∈ Du(u2) and u1 ∈ T (u2)

〈ze,b,u〉 ∈ Du(u) if 〈e〉 ∈ Du(b on u)
〈e1, e2〉 ∈ Db(b) if 〈e1, e2〉 @− b ∈ S
〈e1, e2〉 ∈ Db(b1) if 〈ei, ej〉 ∈ Db(b2) for {i, j} = {1, 2} and b1 ∈ T (b2)
〈e, ze,b,u〉 ∈ Db(b) if 〈e〉 ∈ Du(b on u)

where ze,b,u denotes a unique fresh variable for each value of e, b, and u. We require
only one such variable for each triple (e, b, u) since our redundancy criteria for rule
applications ensures that JOIN DOWN cannot be applied more than once for the same
premise 〈e〉 ∈ Du(b on u). Intuitively, Du maps each relation term u in S to an overap-
proximation of the set of unary tuples 〈e〉 for which our calculus can infer the constraint
〈e〉 @− u using downward rules only, and similarly for the binary case Db. The domain

9

of Du and that of Db contain only relation terms occurring in S, and thus are finite.
All sets in the ranges of Du and Db are also finite. To show this, we argue that only
a finite number of fresh variables ze,b,u are introduced by this construction. We de-
fine a measure depth on element terms such that depth(e) = 0 for all e ∈ T (S), and
depth(ze,b,u) = 1 + depth(e). For all variables ze,b,u in the range of Du and Db, we
have that b on u ∈ T (S), and if e is a variable of the form ze′,b′,u′ , then b on u is either
a subterm of b′ or u′. Thus, the depth of all element terms in the range of Du and Db

is finite. Since there are finitely many element terms in T (S), and finitely many terms
of the form b on u in T (S), there are finitely many variables of the form ze,b,u and thus
finitely many element terms occur in tuple terms in the range of Du and Db. Therefore,
there are finitely many tuple terms in sets in the ranges of Du and Db.

Now, let Uu (resp. Ub) be a mapping from unary (resp. binary) relation terms to sets
of unary (resp. binary) tuple terms, constructed to be the least solution to the following
set of constraints (where again the e’s, the u’s and the b’s are implicitly universally
quantified metavariables as above):

〈e〉 ∈ Uu(u) if 〈e〉 ∈ Du(u)
〈e〉 ∈ Uu(u1) if 〈e〉 ∈ Uu(u2), u2 ∈ T (u1) and u1 ∈ T (S)
〈e〉 ∈ Uu(u) if u = [e] and u ∈ T (S)
〈e1〉 ∈ Uu(u1) if u1 = b1 on u2 and 〈e1, e2〉 ∈ Ub(b1)
〈e1, e2〉 ∈ Ub(b) if 〈e1, e2〉 ∈ Db(b)
〈e1, e2〉 ∈ Ub(b1) if 〈ei, ej〉 ∈ Ub(b2) for {i, j} = {1, 2}, b2 ∈ T (b1), b1 ∈ T (S)
〈e1, e2〉 ∈ Ub(b) if b = [〈e1, e2〉] and b ∈ T (S)

Similar to the previous construction, Uu maps each relation term u in S to an over-
approximation of the set of unary tuples 〈e〉 for which our calculus can infer the con-
straint 〈e〉 @− u using both downward and upward rules, and similarly for the binary
case Ub. By construction, since the domains of Du and Db are subsets of T (S), the do-
mains of Uu and Ub are also subsets of T (S), and thus are finite, hence their respective
ranges Ru and Rb are finite too. Each set in Ru or Rb is finite as well, since the tuples
in these ranges are built from element terms e that occur in the range of Du and Db or
in singleton sets of the form [〈e〉], [〈e, e′〉] or [〈e′, e〉] in T (S).

Now let Ŝ be the following set of constraints:

Ŝ = {(¬)〈e〉 @− u | 〈e〉 ∈ Uu(u), u ∈ T (S)} ∪
{(¬)〈e1, e2〉 @− b | 〈e1, e2〉 ∈ Ub(b), b ∈ T (S)} ∪
{(¬)e1 ≈ e2 | e1, e2 ∈ T (Ru ∪Rb)} ∪
{〈e1〉 ≈ 〈e2〉 | e1, e2 ∈ T (Ru ∪Rb)} ∪
{〈e1, e2〉 ≈ 〈e3, e4〉 | e1, e2, e3, e4 ∈ T (Ru ∪Rb)}

From the arguments above we can conclude that Ŝ is finite. By construction, S ⊆ Ŝ.
One can show by structural induction on derivation trees that all descendants of S in
a derivation tree are also subsets of Ŝ. Since the size of a state strictly grows with
each rule application not deriving unsat, we can conclude that no derivation tree can be
grown indefinitely. Hence all derivation trees with root S are finite. ut

10

By Proposition 1, 2, and 3, we have that any rule application strategy for the calculus
is a decision procedure for finite sets of constraints in the language generated by the
grammar from Figure 4.

5 Applications of TR

Our main motivation for adding native support for relations in an SMT solver is that
it enables more natural mappings from other logical formalisms ultimately based on
relations. This opens the possibility of leveraging the power and flexibility of SMT to
reason about problems expressed in those formalisms. We discuss here two potential ap-
plications: reasoning about Alloy specifications and reasoning about OWL ontologies.
It should be clear to the knowledgeable reader though that the set of potential appli-
cations is much larger, encompassing description logics in general as well as various
modal logics—via an encoding of their accessibility relation.

5.1 Alloy specifications

Alloy is a formal specification language based on relational logic which is widely used
for modeling structurally-rich problems [12]. Alloy specifications, called models in the
Alloy literature, are built from relations and relational algebra operations in addition to
the usual logical connectives and quantifiers. One can also specify expected properties
of a specification as formulas, called assertions in Alloy, that should be entailed by the
specification.

The analysis of Alloy specifications can be performed automatically by a tool called
the Alloy Analyzer which uses as its reasoning engine Kodkod, a SAT-based finite
model finder [17]. This requires the user to impose a (concrete, artificial) finite up-
per bound on the size of the domains of each relation, limiting the analyzer’s ability
to determine that a specification is consistent or has a given property. In the first case,
the user has to manually increase the bounds until the Alloy Analyzer is able to find
a satisfying interpretation for the specification; in the second case, until it can find a
counter-example for the property. As a consequence, the analyzer cannot be used to
prove that (i) a specification is inconsistent or (ii) it does have a certain property.

In contrast, thanks to its new theory solver for relational constraints based on the
calculus described earlier, CVC4 is now able in many cases to do (i) and (ii) auto-
matically, with no artificial upper bounds on domain sizes. Also, because of its own
finite model finding capabilities [15], it can find minimal satisfying interpretations for
consistent specifications or minimal counter-examples for properties without the need
of user-provided artificial upper bounds on domain sizes. Finally, since its relational
theory solver is fully integrated with its theory solvers for other theories (such as lin-
ear arithmetic, strings, arrays, and so on), CVC4 can natively support mixed constraints
using relations over its various built-in types, something that is possible in the Alloy
Analyzer only in rather limited form.6 To evaluate CVC4’s capabilities in solving Al-
loy problems, we have defined a translation from Alloy specifications to semantically

6 The Alloy Analyzer currently has built-in support for bounded integers. Any other data types
need to be axiomatized in the specification.

11

equivalent SMT formulas that leverages our theory of relations. The translation focuses
on Alloy’s kernel language since non-kernel features can be rewritten to the kernel lan-
guage by the Alloy Analyzer itself. We sketch our translation below.7

In Alloy, a signature is a set of uninterpreted atomic elements, called atoms. Sig-
natures are defined with a syntax that is reminiscent of classes in object-oriented lan-
guages. A relation (of arity n) is a set of n-tuples of atoms and is declared as a field of
some signature S, which acts as the domain of the elements in the first component. Mul-
tiplicity constraints on signatures and fields can be added with keywords such as some,
no, lone, and one, which specify that a signature is non-empty, empty, has cardinality
at most one, and is a singleton, respectively. Other keywords specify that a relation is
one-to-one, one-to-many, and so on. One or more signatures can be declared to be sub-
sets of another signature with extends or in. With extends, all specified signatures
are additionally assumed to be mutually disjoint.

In the translation, we introduce an uninterpreted sort Atom for Alloy atoms. An
Alloy signature sig S is translated as a constant8 S of sort Rel1(Atom), that is, a set
of unary tuples. A field f:S1 -> · · · -> Sn of a signature S is translated as a constant
f of sort Reln+1(Atom, . . . ,Atom) together with the additional constraint f v S ∗ S1 ∗
· · · ∗ Sn to ensure that the components of f’s tuples are from the intended signatures.
The signature hierarchy is encoded using subset constraints. For example, the Alloy
constraint sig S1, . . ., Sn extends S is translated as the set of constraints {S1 v
S, . . . ,Sn v S} ∪ {Si u Sj ≈ [] | 1 ≤ i < j ≤ n}. If S above is also declared to be
abstract (a notion similar to abstract classes in object-oriented languages), the additional
constraint S1 t · · · t Sn ≈ S is added to enforce that. Similarly, signature declarations
of the form sig S1, · · · , Sn in S, are translated just as {S1 v S, . . . ,Sn v S}.
Multiplicity constraints are translated as quantified formulas.

Since our theory supports all constructs and operators in Alloy’s kernel language,
Alloy expressions and formulas, which can include quantifiers ranging over atoms, can
be more or less directly translated to their counterparts in CVC4’s language. It is worth
mentioning that our translation supports Alloy’s set comprehension construct, by in-
troducing a fresh relational constant for the set and adding definitional axioms for it.
In addition, we partially support Alloy cardinality constraints of the form #(r)op n
where r is a relation term, op ∈ {<, >, =}, n ∈ N, and # is the cardinality operator,
by encoding them as subset constraints. For example, the Alloy constraint #(S) < 3
on a signature S is translated to S v [〈k1〉, 〈k2〉] where S is the corresponding unary
relation and k1 and k2 are two fresh constants of sort Atom.

5.2 OWL DL Ontologies

OWL is an ontology language whose current version, OWL 2, was adopted as a standard
Semantic Web language by the W3 consortium. It includes a sublanguage, called OWL
DL, that corresponds to the expressive, yet decidable, description logic SHOIN (D) [2].

7 The translation is sound only if all Alloy signatures are assumed to be finite. A full account of
the translation and a proof of its soundness are beyond the scope of this paper.

8 Free constants have the same effect as free variables for satisfiability purposes.

12

DL CVC4
individual name: a a : Atom

atomic concept C, role R C : Rel1(Atom), R : Rel2(Atom,Atom)

intersection C u D, union C t D C u D, C t D

inverse role R−, complement ¬C R−1, Univ \ C
top concept >, bottom concept ⊥ Univ, []

existential restriction ∃R.C R on C

universal restriction ∀R.C [x | x @− Univ ∧ [x] on R v C]

at-least restriction ≥nR.C [x | x @− Univ∧∃a1, . . . , an :Atom([x] on R)u
C w [〈a1〉, . . . , 〈an〉] ∧ dist(a1, . . . , an)]

at-most restriction ≤nR.C [x | x @− Univ∧∃a1, . . . , an :Atom([x] on R)u
C) v [〈a1〉, . . . , 〈an〉] ∧ [〈a1〉, . . . , 〈an〉] v C]

local reflexivity ∃R.Self [〈x, y〉 | 〈x, y〉 @− R ∧ x ≈ y]
nominal {a} [〈a〉]
concept, role assertion C(a), R(a, b) a @− C, 〈a, b〉 @− R

individual (dis)equality a ≈ b, a 6≈ b a ≈ b, a 6≈ b

concept, role inclusion C v D, R v S C v D, R v S

concept, role equiv. C ≡ D, R ≡ S C ≈ D, R ≈ S

complex role inclusion R1 ◦ R2 v S R1 on R2 v S

role disjointness Disjoint(R,S) R u S ≈ []

Fig. 5: A mapping from DL language to ΣR-constraints.

We have defined an initial, partial translation from SHOIN (D) to SMT formulas that
again leverages our theory of relations.

A mapping from salient SHOIN (D) constructs to their SMT counterparts is illus-
trated in Figure 5. The figure shows only relations whose elements do not belong to the
so-called concrete domain(s) D of SHOIN (D).9 As with the Alloy translation, we
use the single sort Atom for all elements of non-concrete domains. The set comprehen-
sion notation is used here for brevity: for a set comprehension term of the form [x | ϕ]
where x has n-tuple sort, we introduce a fresh set constant S accompanied by the defin-
ing axiom ∀x :Tupn(Atom) (x @− S ⇔ ϕ). The constant Univ in the figure denotes
the universal unary relation over Atom. Since this constant is currently not built-in as a
symbol of TR, it is accompanied by the defining axiom ∀a :Atom 〈a〉 @− Univ. The ex-
pression dist(a1, . . . , an) states that a1, . . . , an are pairwise different. We observe how
the translation is immediate for most constructs, with the notable exception of universal
and number restrictions, which require the use of complex quantified formulas.

9 Some of those domains in OWL correspond to built-in sorts in CVC4. A full translation from
OWL concrete domains to CVC4 built-in sorts is beyond the scope of this work.

13

6 Evaluation

To evaluate our theory solver for TR in CVC4 we implemented translators from Alloy
and from OWL based on the translations sketched in the previous section. This section
presents an initial evaluation on a selection of Alloy and OWL benchmarks.10

6.1 Experimental Evaluation on Alloy Models

We considered two sets of Alloy benchmarks; the first consists of 40 examples from
the Alloy distribution and from a formal methods course taught by one of the authors;
the second were used in [10] to evaluate AlloyPE. All benchmarks consist of an Alloy
model together with a single property. We evaluated two configurations of CVC4. The
first, denoted CVC4, enables full native support for relational operators via the calculus
from Section 3. The second, denoted CVC4+AX, instead encodes all relational oper-
ators as uninterpreted functions and supplements the translation of benchmarks with
additional axioms that specify their semantics. To compare CVC4 with other tools, we
also evaluated the Alloy Analyzer, version 4.2, downloaded from the Alloy website, and
El Ghazi et al.’s AlloyPE tool (kindly provided to us directly by its authors) using the
SMT solver Z3 version 4.5.1 as a backend. All experiments were performed with a 300
second timeout on a machine with a 2.9 GHz Intel Core i7 CPU with 8 GB of memory.

Figures 6 and 7 show the results from running the Alloy Analyzer, CVC4 and Al-
loyPE on the two sets of Alloy benchmarks. We omit results for 13 of the benchmarks
from the first set that no system solved. The second and third columns show the results
of running the Alloy Analyzer. To evaluate the Alloy Analyzer on these benchmarks, we
considered bounded scopes in an incremental fashion. Using a script, we set an initial
upper bound, or scope, of 1 for the cardinality of all signatures in the problem, and kept
increasing it by 1 if the Alloy Analyzer found the problem unsatisfiable (b-uns) in the
current scope—meaning that it was not able to disprove the property in the problem.
We terminated on time out (to), or when the analyzer was able to disprove the prop-
erty (sat) or ran out of memory for a scope. We report the scope size for benchmarks
where the tool returned an answer. The fourth and fifth columns show the results from
CVC4 when invoked in finite model finding mode on the translated SMT problem. The
last two columns are the results from AlloyPE, where n/a indicates that AlloyPE failed
due either to the presence of unsupported Alloy constructs in the input problem or to
internal errors during solving or translation.

As shown in the table, our approach is overall slower than the Alloy Analyzer for
satisfiable benchmarks. For the unsatisfiable ones, CVC4 returns an answer within a
reasonable time limit for most of the benchmarks and has advantages over the state of
the art. It is important to note, however, that an unsat answer from CVC4 indicates that
the property is valid as opposed to the b-uns answer from the Alloy Analyzer, which
only means the property is valid within the given scope.

Compared to AlloyPE, we successfully solved all of their benchmarks but four, as
indicated in Figure 7. For these benchmarks, AlloyPE benefits from performing a static

10 Detailed results and all benchmarks are available at http://cvc4.cs.stanford.edu/papers/
CADE2017-relations/.

http://cvc4.cs.stanford.edu/papers/CADE2017-relations/
http://cvc4.cs.stanford.edu/papers/CADE2017-relations/

14

Alloy Analyzer CVC4 CVC4+AX AlloyPE
Problem Res. Time/Scope Res. Time Res. Time Res. Time
academia 0 sat 0.60/3 sat 1.55 - to unk 84.76
academia 1 sat 0.53/2 sat 1.93 - to - to
academia 2 sat 0.45/2 sat 0.49 - to unk 0.15
social 1 sat 0.52/3 sat 1.20 - to n/a -
social 5 sat 1.56/2 sat 0.49 - to n/a -
social 6 sat 0.49/2 sat 0.52 - to n/a -
cf 0 sat 0.47/3 sat 0.51 - to n/a -
cf 1 sat 0.49/3 sat 0.78 - to n/a -
javatypes sat 0.50/3 sat 0.42 - to uns 2.35
set sat 0.45/2 sat 0.46 - to unk 0.92
loc int sat 0.57/1 sat 2.82 - to n/a -
genealogy sat 0.64/6 sat 89.20 - to n/a -
number 1 sat 0.81/2 sat 8.65 - to n/a -
railway sat 0.67/4 sat 156.45 - to n/a -
academia 3 b-uns 162.17/63 uns 0.49 uns 1.05 uns 0.28
academia 4 b-uns 246.92/162 uns 0.43 uns 0.54 uns 0.13
family 1 b-uns 146.62/68 uns 0.41 uns 0.44 uns 0.15
family 2 b-uns 279.77/30 uns 1.02 uns 48.78 uns 0.23
social 2 b-uns 256.98/56 uns 0.66 - to n/a -
social 3 b-uns 191.45/57 uns 0.49 uns 35.91 n/a -
social 4 b-uns 171.26/64 uns 0.46 uns 18.13 n/a -
birthday b-uns 156.08/53 uns 0.45 uns 0.61 uns 0.13
library b-uns 259.54/119 uns 0.42 uns 0.40 uns 1.11
lights b-uns 228.89/122 uns 32.69 - to n/a -
INSLabel b-uns 198.53/8 uns 1.46 - to n/a -
farmers 1 sat 1.04/8 - to - to n/a -
views sat 9.91/9 - to - to n/a -

Fig. 6: Evaluation on Alloy benchmarks.

analysis of the problem that involves sophisticated heuristics to discover invariants. For
our own set of benchmarks, in Figure 6, AlloyPE failed on all sat benchmarks and was
unable to solve many unsat ones due to failures during the translation or the solving
phase. We observe that AlloyPE gives an unsound answer for the benchmark javatypes:
it returns unsat, whereas both the Alloy Analyzer and CVC4 return sat.

Our results also indicate that native support for relational reasoning is important for
reasoning efficiently for these benchmark sets. In fact, CVC4+AX is unable to report
sat for any satisfiable benchmark due to its use of axioms for the relation operators,
which quantify over set variables, where CVC4’s finite model finding techniques are not
applicable. More interestingly, CVC4+AX solves significantly fewer unsat benchmarks
when compared to CVC4, indicating that using the calculus in Section 3 is superior to
encoding the semantics of relational operators via an explicit axiomatization.

6.2 Experimental Evaluation on OWL Models

We built a preliminary translator from OWL to SMT, and we did a consistency eval-
uation, which checks whether or not an ontology is contradictory, for a set of OWL
benchmarks in pure description logic from the 4th OWL Reasoner Evaluation compe-
tition.11. Of the original 7,704 benchmarks, we considered only those whose size was
under 1 MB, and further excluded benchmarks that involved some of the more sophis-
ticated features of the OWL language that are currently not supported by our translator.

11 See https://www.w3.org/community/owled/ore-2015-workshop/competition .

https://www.w3.org/community/owled/ore-2015-workshop/competition

15

Alloy Analyzer CVC4 CVC4+AX AlloyPE
Problem Res. Time Res. Time Res. Time Res. Time
mem-wr b-uns 195.98/35 uns 0.43 uns 0.48 uns 0.44
mem-wi b-uns 260.66/29 uns 0.45 uns 0.50 uns 0.42
ab-ai b-uns 185.06/28 uns 0.46 uns 0.79 uns 0.49
ab-dua b-uns 193.33/27 uns 0.49 uns 0.48 uns 0.70
abt-dua b-uns 137.87/14 uns 0.60 uns 0.81 uns 0.70
abt-ly-u b-uns 261.23/9 uns 0.81 uns 28.26 uns 1.4
abt-ly-p b-uns 277.86/8 uns 0.81 uns 1.77 uns 175.19
gp-nsf b-uns 152.55/69 uns 0.41 uns 0.59 uns 0.43
gp-nsg b-uns 166.75/66 uns 0.42 - to uns 0.44
com-1 b-uns 297.18/13 uns 2.95 - to uns 0.59
com-2 b-uns 295.73/13 - to - to uns 0.55
com-3 b-uns 295.33/14 uns 4.29 - to uns 0.64
com-4a b-uns 301.57/13 uns 9.39 - to uns 0.99
com-4b b-uns 299.77/13 uns 0.90 - to uns 0.61
fs-sd b-uns 157.90/70 uns 0.42 - to uns 0.89
fs-nda b-uns 271.38/44 uns 0.55 - to uns 0.83
gc-s1 b-uns 270.07/14 uns 4.92 uns 8.14 uns 14.27
gc-s2 b-uns 288.44/8 - to - to uns 10.66
gc-c b-uns 287.73/8 - to - to uns 42.31
hr-l b-uns 275.80/7 - to - to - to

Fig. 7: Evaluation on AlloyPE benchmarks

We ran the experiments with a 30 second time out, on a machine with a 3.2GHz Intel(R)
Xeon CPU E5-2667 v3 and 20 GB of memory.

Among the selected 3,936 benchmarks, CVC4 found 3,639 consistent, found 7 in-
consistent, and timed out on the remaining 290. By comparison, the state-of-the-art DL
reasoner Konclude [16] gave an answer for all 3,936 benchmarks. However, Konclude
and CVC4 disagreed on 9 benchmarks, all of which CVC4 found consistent. We deter-
mined that Konclude reports inconsistent for those 9 benchmarks possibly because the
benchmarks are not syntactically compliant. For example, some include Boolean literals
without a type declaration. In terms of performance, CVC4 takes on average 1.7 seconds
per benchmark on the 3,646 it solves. This is significantly slower than Konclude, which
takes on average 0.02 seconds per benchmark on the same set. We attribute this to the
fact that CVC4 does not yet support the universal set and set complement natively, and
has no specific quantifier instantiation heuristics for the quantified formulas generated
by the translation of universal and number restrictions. Nevertheless, we find these re-
sults quite encouraging as they show that further investigation into efficient reasoning
for OWL models in SMT solvers is an interesting direction of research.

7 Conclusion and Future Work

We presented a calculus for an extension to the theory of finite sets that includes sup-
port for relations and relational operators. We implemented the calculus as a modular
extension to the set subsolver in our SMT solver CVC4. A preliminary evaluation has
shown that our implementation is competitive with the state of the art when used to
prove properties or verify the consistency of Alloy specifications.

We are investigating more expressive fragments for which our calculus terminates,
including those corresponding to fragments of description logic [11]. In future work,

16

we would like to devise an approach for a theory that includes both relational con-
straints and cardinality constraints that is efficient in practice, together with specialized
techniques geared toward reasoning about formulas resulting from the translation of
description logic problems. In particular, we plan to extend our logic with the set com-
plement operator and a constant for the universal set, and extend our calculus and its
implementation to provide direct support for them.

Acknowledgements This work was partially supported by NSF grant no. 1228765 and
by a gift from GE Global Research. We are grateful to Jasmin Blanchette and the anony-
mous reviewers for their very detailed comments and questions which helped improve
the presentation of the paper.

References

1. F. Baader. The description logic handbook: Theory, implementation and applications. Cam-
bridge university press, 2003.

2. F. Baader, I. Horrocks, and U. Sattler. Description logics. In V. L. Frank van Harmelen
and B. Porter, editors, Handbook of Knowledge Representation, volume 3 of Foundations of
Artificial Intelligence, pages 135 – 179. Elsevier, 2008.

3. K. Bansal, A. Reynolds, C. W. Barrett, and C. Tinelli. A new decision procedure for finite
sets and cardinality constraints in SMT. In Proceedings of IJCAR’16, volume 9706 of LNCS,
pages 82–98. Springer, 2016.

4. C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović, T. King, A. Reynolds,
and C. Tinelli. CVC4. In Proceedings of CAV’11, volume 6806 of LNCS, pages 171–177.
Springer, 2011.

5. C. Barrett, P. Fontaine, and C. Tinelli. The SMT-LIB standard—Version 2.6. In A. Gupta
and D. Kroening, editors, SMT 2010, 2010.

6. C. Barrett, R. Sebastiani, S. Seshia, and C. Tinelli. Satisfiability modulo theories. In A. Biere,
M. J. H. Heule, H. van Maaren, and T. Walsh, editors, Handbook of Satisfiability, volume
185, chapter 26, pages 825–885. IOS Press, February 2009.

7. B. Dutertre and L. D. Moura. The YICES SMT solver. Technical report, SRI International,
2006.

8. A. A. E. Ghazi and M. Taghdiri. Analyzing alloy constraints using an SMT solver: a case
study. In 5th International Workshop on Automated Formal Methods (AFM), 2010.

9. A. A. E. Ghazi and M. Taghdiri. Relational reasoning via SMT solving. In Proceedings of
FM’11, volume 6664 of LNCS, pages 133–148. Springer, 2011.

10. A. A. E. Ghazi, M. Taghdiri, and M. Herda. First-order transitive closure axiomatization via
iterative invariant injections. In Proceedings of NFM’15, volume 9058 of LNCS. Springer,
2015.

11. I. Horrocks and U. Sattler. Decidability of shiq with complex role inclusion axioms. Artificial
Intelligence, 160(1-2):79–104, 2004.

12. D. Jackson. Alloy: a lightweight object modelling notation. ACM Trans. Softw. Eng.
Methodol., 11(2):256–290, 2002.

13. D. Jackson. Software Abstractions - Logic, Language, and Analysis. MIT Press, 2006.
14. R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT Modulo Theories: from

an abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T). Journal of the ACM,
53(6):937–977, Nov. 2006.

15. A. Reynolds, C. Tinelli, A. Goel, and S. Krstic. Finite model finding in SMT. In Proceedings
of CAV’13, volume 8044 of LNCS, pages 640–655. Springer, 2013.

17

16. A. Steigmiller, T. Liebig, and B. Glimm. Konclude: System description. Web Semantics:
Science, Services and Agents on the World Wide Web, 27(1), 2014.

17. E. Torlak and D. Jackson. Kodkod: a relational model finder. In Proceedings of TACAS’07,
volume 4424 of LNCS, pages 632–647. Springer, 2007.

18. D. Tsarkov and I. Horrocks. Fact++ description logic reasoner: system description. In Pro-
ceedings of IJCAR’06, volume 4130 of LNCS. Springer, 2006.

19. D. Tsarkov and I. Palmisano. Chainsaw: a metareasoner for large ontologies. In I. Horrocks,
M. Yatskevich, and E. Jiménez-Ruiz, editors, ORE, 2012.

20. W3C. OWL 2 web ontology language, https://www.w3.org/2007/OWL/wiki/Syntax.

	Relational Constraint Solving in SMT
	Introduction
	Related Work
	Formal Preliminaries

	A Relational Extension to a Theory of Finite Sets
	A Calculus for the Relational Extension
	Calculus Correctness
	Applications of TR
	Alloy specifications
	OWL DL Ontologies

	Evaluation
	Experimental Evaluation on Alloy Models
	Experimental Evaluation on OWL Models

	Conclusion and Future Work

