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Abstract

Importance sampling is a classical Monte Carlo technique in which a random sample from one probability

density, π1, is used to estimate an expectation with respect to another, π. The importance sampling estimator

is strongly consistent and, as long as two simple moment conditions are satisfied, it obeys a central limit the-

orem (CLT). Moreover, there is a simple consistent estimator for the asymptotic variance in the CLT, which

makes for routine computation of standard errors. Importance sampling can also be used in the Markov chain

Monte Carlo (MCMC) context. Indeed, if the random sample from π1 is replaced by a Harris ergodic Markov

chain with invariant density π1, then the resulting estimator remains strongly consistent. There is a price to

be paid however, as the computation of standard errors becomes more complicated. First, the two simple

moment conditions that guarantee a CLT in the iid case are not enough in the MCMC context. Second, even

when a CLT does hold, the asymptotic variance has a complex form and is difficult to estimate consistently.

In this paper, we explain how to use regenerative simulation to overcome these problems. Actually, we con-

sider a more general set up, where we assume that Markov chain samples from several probability densities,

π1, . . . , πk, are available. We construct multiple-chain importance sampling estimators for which we obtain a

CLT based on regeneration. We show that if the Markov chains converge to their respective target distributions

at a geometric rate, then under moment conditions similar to those required in the iid case, the MCMC-based

importance sampling estimator obeys a CLT. Furthermore, because the CLT is based on a regenerative pro-

cess, there is a simple consistent estimator of the asymptotic variance. We illustrate the method with two

applications in Bayesian sensitivity analysis. The first concerns one-way random effects models under dif-

ferent priors. The second involves Bayesian variable selection in linear regression, and for this application,

importance sampling based on multiple chains enables an empirical Bayes approach to variable selection.

Key words and phrases: Geometric ergodicity, importance sampling, Markov chain Monte Carlo, regen-
erative simulation, standard errors.



1 Introduction

Importance sampling is a classical Monte Carlo technique in which a random sample from one probability

density is used to estimate an expectation with respect to another. Let π and π1 denote two probability

densities on the space X with respect to the measure µ, and assume that the support of π is contained in

that of π1. Suppose that π(x) = ν(x)/m and π1(x) = ν1(x)/m1 where ν and ν1 are completely known

functions of x, and m and m1 are the corresponding normalizing constants. Whereas in some applications

these normalizing constants are known, in Bayesian analysis they are typically analytically intractable

integrals. Suppose that f is a π-integrable function and we want an estimate of the intractable expectation

η := Eπf . Note that even without knowledge of the normalizing constants m and m1, we may express η

as a ratio of expectations with respect to π1 of known functions by writing

η =
∫

X

f(x)ν(x)/m
ν1(x)/m1

π1(x)µ(dx) =
∫

X

f(x)ν(x)/m
ν1(x)/m1

π1(x)µ(dx)
/∫

X

ν(x)/m
ν1(x)/m1

π1(x)µ(dx). (1.1)

The ratio m1/m cancels from the numerator and denominator of the right side of (1.1), and we have

η = Eπ1v/Eπ1u, where u(x) = ν(x)/ν1(x) and v(x) = f(x)u(x) are known. Therefore, if we can

simulate an iid sequence X1, X2, . . . from π1, then the strong law of large numbers (SLLN) implies that

η̃n =
v̄n
ūn

(1.2)

is a strongly consistent estimator of η. Here, for any function h we use h̄n to denote n−1
∑n

i=1 h(Xi).

We will often be interested in estimating Eπf where π ranges over a large collection Π, and we will

want to do this via importance sampling, so that we do not have to obtain a separate sample from each

π ∈ Π. If we select some π1 ∈ Π and carry out the method described above, we will see poor performance

whenever π is not similar to π1, because then ν(Xi)/ν1(Xi) can take on very large values for some Xi’s.

The corresponding terms then dominate the sums in ūn and v̄n, which causes η̃n to be unstable. However,

it is typically the case that no π1 ∈ Π is similar to all π ∈ Π. One way of dealing with this problem

is to replace π1 in (1.1) by a mixture of k densities π1, . . . , πk, in order to “cover more territory.” Let

a = (a1, . . . , ak) be a vector of positive numbers, let |a| =
∑k

l=1 al, and define π̄ = |a|−1∑k
l=1 alπl,

which is a probability density. Unfortunately, doing importance sampling with respect to a mixture of

densities, each known only up to a normalizing constant, is far more complicated than carrying out the

single-density procedure described above (there is no analogue of the simple cancellation of m1/m that

occurred in (1.1)). For l = 1, . . . , k, write πl(x) in the form of νl(x)/ml, let dl = ml/m1 and denote

d = (d2, . . . , dk). In our initial description, we proceed as if d is known; we will study the case where we
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need to estimate d in Section 2. As in (1.1), we have

η =
∫

X
f(x)π(x)µ(dx) =

∫
X
f(x)

π(x)
π̄(x)

π̄(x)µ(dx)
/∫

X

π(x)
π̄(x)

π̄(x)µ(dx)

=

(
k∑
l=1

al

∫
X
f(x)

ν(x)∑k
s=1 asνs(x)/ds

πl(x)µ(dx)

)/(
k∑
l=1

al

∫
X

ν(x)∑k
s=1 asνs(x)/ds

πl(x)µ(dx)

)

=
∑k

l=1 alEπlv(X;a,d)∑k
l=1 alEπlu(X;a,d)

, (1.3)

where

u(x;a,d) =
ν(x)∑k

s=1 asνs(x)/ds
and v(x;a,d) = f(x)u(x;a,d). (1.4)

Let n = (n1, . . . , nk). Suppose that for each l we can simulate an iid sample of size nl, {X
(l)
i , i =

1, . . . , nl}, from πl. Then

v̂n :=
k∑
l=1

al
nl

nl∑
i=1

v(X(l)
i ;a,d) a.s.−→

k∑
l=1

alEπlv(X;a,d) as n1, . . . , nk →∞,

and

ûn :=
k∑
l=1

al
nl

nl∑
i=1

u(X(l)
i ;a,d) a.s.−→

k∑
l=1

alEπlu(X;a,d) as n1, . . . , nk →∞.

Therefore,

η̂n =
v̂n
ûn

=

(
k∑
l=1

al
nl

nl∑
i=1

f(X(l)
i )ν(X(l)

i )∑k
s=1 asνs(X

(s)
i )/ds

)/(
k∑
l=1

al
nl

nl∑
i=1

ν(X(l)
i )∑k

s=1 asνs(X
(s)
i )/ds

)
(1.5)

is a consistent estimator of η by the SLLN, and this fact justifies the standard procedure in which we choose

some values n1, . . . , nk, for each l simulate random samples of size nl from πl, and use the observed value

of η̂n as an estimate of η. Estimators of the form η̃n and η̂n will be called ratio estimators.

Most statisticians would agree that a Monte Carlo estimate without an associated standard error is not

very useful. We call the importance sampling procedure “honest” if the estimate, η̃n or η̂n, is accompanied

by a valid asymptotic standard error. Of course, the computation of a standard error is based upon the

existence of a central limit theorem (CLT). Consider η̃n for example. A simple argument involving the

delta method shows that, ifEπ1 [u2] andEπ1 [v2] are both finite, then as n→∞, n1/2(η̃n−η) d→ N (0, τ2),

where τ2 = Eπ1 [(v − uη)2]/[Eπ1u]2. Moreover, a simple consistent estimator of τ2 is given by

τ̃2
n =

1
n

n∑
i=1

[(
v(Xi)− u(Xi)η̃n

)2]/[ 1
n

n∑
i=1

u(Xi)
]2

.

Hence the standard error of the estimate is the observed value of τ̃n/n1/2.

Hastings (1970) and others have pointed out that importance sampling can also be used in the Markov

chain Monte Carlo (MCMC) context. Consider the version of the importance sampling method that uses
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only one density π1, for example. Suppose now that it is not feasible to make exact draws from π1, but

we have at our disposal an MCMC algorithm for exploring π1. In particular, let the sequence X1, X2, . . .

be, instead of a random sample from π1, a Markov chain with invariant density π1. Assume that the chain

satisfies the basic regularity conditions (irreducibility, aperiodicity and Harris recurrence) that underlie

the ergodic theorem (Meyn and Tweedie, 1993, Chapter 17). Then, if h is a π1-integrable function, the

ergodic theorem implies that h̄n := n−1
∑n

i=1 h(Xi) is strongly consistent for Eπ1h. This shows that the

estimator η̃n = v̄n/ūn remains strongly consistent when the random sample is replaced by a well-behaved

Markov chain. There is no “free lunch,” however, since the computation of standard errors is much more

complicated when η̃n is based on a Markov chain. First, the two simple moment conditions that guarantee

that η̃n obeys a CLT in the iid case are no longer enough. Second, even when a CLT does hold, the

asymptotic variance has a complex form and is difficult to estimate consistently. These problems have

prevented more widespread use of importance sampling in the MCMC context. In this paper, we provide

a simple method for computing a valid asymptotic standard error for Markov chain based importance

sampling estimators of the form η̃n and η̂n.

We begin by considering the simpler problem of computing a standard error for h̄n. There are several

different approaches to this problem based on time series methods, batching, and regeneration (see, e.g.,

Glynn and Iglehart, 1987; Geyer, 1992; Mykland et al., 1995; Jones et al., 2006). From both theoretical

and practical standpoints, the cleanest of these methods is the one based on regenerative simulation. A

regeneration is a (random) time at which a stochastic process probabilistically restarts itself. Consider for

example a Markov chain on the countable state space {0, 1, 2, 3, . . .}, and suppose the chain is started at

the point 0. Then the random times at which the chain returns to the point 0 are regeneration times, because

at those times the distribution of the process going forward is the same as when it was started. Most of

the Markov chains that drive MCMC algorithms have continuous state spaces, and this complicates the

identification of regeneration times. However, Mykland et al. (1995) provided a general technique that is

based on the construction of a minorization condition. The benefit of identifying regeneration times is that

the “tours” made by the chain in between these random times are iid, and this fact pays huge dividends

in the asymptotic analysis of ergodic averages like h̄n. In particular, Hobert et al. (2002) showed that,

if the underlying Markov chain converges to π1 at a geometric rate and there exists an ε > 0 such that

Eπ1 |h|2+ε <∞, then h̄n obeys a CLT whose asymptotic variance is easy to estimate consistently.

Multiple-sample based estimators of the form (1.5) have been discussed by several authors before.

Vardi (1985), Gill et al. (1988), Meng and Wong (1996), Kong et al. (2003), and Tan (2004) deal with

the iid case. Geyer (1994) and Buta and Doss (2011) work in the setting where the samples are Markov

chains. Here, the asymptotic variance is extremely complicated, and these authors largely leave aside the

question of how to produce asymptotically valid standard error estimates. In the present paper, we provide
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an extension of the regenerative methods of Mykland et al. (1995) and Hobert et al. (2002) that can be

applied to the multiple-chain importance sampling estimators η̂n. A special case of our results pertains

to single-chain importance sampling estimators, η̃n, which was also studied in Bhattacharya (2008). One

implication of these results for the analysis of η̃n is that if the Markov chain from π1 is geometrically

ergodic, and there exists an ε > 0 such that Eπ1 |u|2+ε and Eπ1 |v|2+ε are both finite, then η̃n obeys a CLT

whose asymptotic variance is easy to estimate consistently. (Note that the moment conditions are only

slightly stronger than those required in the iid case.) This result is stated in our Corollary 1. It enables the

computation of a valid asymptotic standard error for η̃n, and hence for honest importance sampling in the

MCMC context.

The principal application we have in mind involves analysis of sensitivity to the prior in a Bayesian

framework. In an initial instance of this, suppose that p1 and p are two prior densities and let π1 and

π be the corresponding posteriors. We have π1(x) = `(x)p1(x)/m1 and π(x) = `(x)p(x)/m, where

`(x) is the likelihood function and the m’s are normalizing constants. This is the framework mentioned

earlier in that, except for normalizing constants, π1 and π are known functions and, moreover, the ratio

`(x)p(x)/(`(x)p1(x)) boils down to simply a ratio of priors. If the regularity conditions described earlier

are satisfied, then we can use the MCMC algorithm for π1 to perform honest exploration of π, which

obviates the need to develop and study an MCMC algorithm for π.

The main sensitivity analysis problem we have in mind is considerably more complicated and is de-

scribed as follows. Suppose {ph, h ∈ H} is a parametric family of priors and let πh given by πh(x) =

`(x)ph(x)/mh be the corresponding posteriors. Note that mh is the marginal likelihood of the data under

prior ph. Two problems we wish to consider are: (i) for a given function f , estimate ηh = Eπhf for

all h ∈ H; this is needed for sensitivity analysis. A closely related problem is: (ii) estimate the family

mh, h ∈ H and subsequently hopt = argmaxhmh; this value is by definition the empirical Bayes choice

of the hyperparameter h and is needed to implement empirical Bayes methodology. The single chain im-

portance sampling approach does not work well here because for no single h1 ∈ H it is the case that πh1 is

similar to πh for all h ∈ H, and it is for this reason that multiple-chain importance sampling is necessary.

The multiple-chain regenerative method we develop in this paper enables us to obtain valid standard errors

for our estimates of ηh and mh.

This paper is organized as follows. In Section 2 we show how regenerative methods can be used to

construct CLTs for estimators which are ratios of weighted sums of ergodic averages. The results we

obtain apply to estimators of the form η̃n and η̂n. We also discuss the advantages of using regenerative

simulation, and the practical limitations of the approach. In Section 3 we describe the application of these

results to the single-chain importance sampling estimators η̃n, and we illustrate the use of our methods in

an example involving a Bayesian one-way random effects model. Specifically, we use a well-studied Gibbs
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sampler for the posterior associated with a standard diffuse prior to make inferences about an alternative

posterior based on the so-called reference prior, which is neither conjugate nor conditionally conjugate.

In Section 4 we consider a standard model for variable selection in Bayesian linear regression, in which

the prior is indexed by a hyperparameter whose selection plays a critical role in how variable selection is

carried out. We show how multiple-chain importance sampling, together with our regenerative methods,

can be used to carry out sensitivity analysis and empirical Bayes methodology.

2 A Regeneration-Based Central Limit Theorem for Ratio Estimators

Let H be an index set, for each h ∈ H let πh be a probability density on the measurable space (X,B)

with respect to the measure µ, and let f be a function defined on X. We consider the situation where for

each h the intractable integral ηh = Eπhf can be represented as a ratio of weighted expectations of the

form (1.3). (A sufficient condition for this is that the union of the supports of πh1 , . . . , πhk contains that

of πh.) Our goal is to estimate ηh using MCMC methods and to provide a standard error for our estima-

tor. Let h1, . . . , hk ∈ H, and suppose we are able to generate k Markov chains with invariant densities

πh1 , . . . , πhk (the k chains are generated independently). For l = 1, . . . , k, let Φl = {X(l)
0 , X

(l)
1 , . . .}

denote the lth Markov chain. We consider the estimator of ηh defined by (1.5). Before proceeding we re-

mark on notation. Although we have in mind the situation where h, h1, . . . , hk can all vary overH, where

H is a large set, we will write π, π1, . . . , πk instead of πh, πh1 , . . . , πhk whenever we are not varying

h, h1, . . . , hk, in order to lighten the notation.

For each l, we assume that Φl is Harris ergodic, which means that Φl is ψ-irreducible, aperiodic

and Harris recurrent, where ψ represents the maximal irreducibility measure of the chain (see Meyn and

Tweedie (1993, Chap. 4 & 9) or Roberts and Rosenthal (2004) for definitions). Harris ergodicity, which

is typically easy to check in practice, ensures that the ergodic theorem holds so that ergodic averages are

guaranteed to converge (almost surely) to their population counterparts. However, Harris ergodicity is not

enough to guarantee that ergodic averages obey CLTs, and it is worth noting that seemingly reasonable

MCMC algorithms for which CLTs do not hold are not uncommon (see, e.g., Roberts, 1999). We will

further assume that for each l the chain Φl converges to πl at a geometric rate. In what follows, we use

the regeneration idea to establish a CLT for η̂n. The main benefit of this regeneration-based CLT is that it

enables us to obtain consistent estimates of the asymptotic variance in a straightforward manner.

Our first task is to introduce regenerations into the Markov chains. In most statistical applications of

MCMC, the state space is continuous, so there are no single points to which a chain returns with positive

probability. Mykland et al. (1995) showed that in such cases it may be possible to introduce regenerations

through minorization conditions, which we now describe. Let K(l)
x (A) be the Markov transition function
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for Φl, so that for any A ∈ B we have P
(
X

(l)
n+1 ∈ A |X

(l)
n = x

)
= K

(l)
x (A). Suppose that for each l we

can identify a function sl : X→ [0, 1) with Eπlsl > 0, and a probability measure Ql on (X,B), such that

K(l)
x (A) ≥ sl(x)Ql(A) for all x ∈ X and A ∈ B. (2.1)

This so-called minorization condition allows us to express K(l) as a mixture of two probability measures,

one of which does not depend on the current state. Indeed, define the Markov transition function G(l) by

G(l)
x (A) =

K
(l)
x (A)− sl(x)Ql(A)

1− sl(x)
.

Note that for fixed x ∈ X, G(l)
x is a probability measure. We may therefore write

K(l)
x = sl(x)Ql + (1− sl(x))G(l)

x .

This mixture representation provides an alternative method for simulating the Markov chain. Given the

current state, X(l)
n = x, we can draw X

(l)
n+1 by generating δn ∼ Bernoulli(sl(x)), and then drawing

X
(l)
n+1 ∼ Ql if δn = 1 or X(l)

n+1 ∼ G
(l)
x if δn = 0. Since Ql does not depend on the current state, this

method of simulation results in a regeneration every time δn = 1. In other words, suppose we initiate the

chain with

X
(l)
0 ∼ Ql (2.2)

and we proceed to simulate using the sequential method just described. Every time that δn = 1, X(l)
n+1 is

drawn from Ql and the process probabilistically restarts itself. The regeneration times are τ (l)
0 = 0 and

τ
(l)
t = min{n > τ

(l)
t−1 : δn−1 = 1} for t = 1, 2, . . .. Accordingly, the chain is broken up into “tours”{(

X
τ
(l)
t−1

, . . . , X
τ
(l)
t −1

)
, t = 1, 2, . . .

}
that are independent stochastic replicas of each other. The ability to

re-express each chain in this way drastically simplifies the asymptotic analysis of estimators based on the

chains. When performing regenerative simulation in practice, it is usually problematic, if not impossible,

to draw from G
(l)
x . Fortunately, there is a simple trick that allows us to circumvent this obstacle (Mykland

et al., 1995, following Nummelin 1984, p. 62). It turns out that we can just simulate each Φl in the usual

way, except that, after the (n + 1)th iteration for n = 0, 1, . . ., we generate a Bernoulli random variable,

δn, that indicates whether or not a regeneration occurred. Its conditional success probability is given by

P
(
δn = 1 |X(l)

n = x,X
(l)
n+1 = x̃

)
=
[
d(sl(x)Ql)

dK
(l)
x

]
(x̃), (2.3)

where
[
d(sl(x)Ql)/dK

(l)
x

]
is the Radon-Nikodym derivative of sl(x)Ql with respect to K(l)

x , whose exis-

tence is implied by (2.1).

Below we explain how regenerative simulation of the k Markov chains helps us analyze the asymptotic

behavior of the estimator η̂n defined in (1.5). Note that η̂n involves the vector of ratios d = (d2, . . . , dl) =
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(m2/m1, . . . ,mk/m1). We discuss two situations. In Section 2.1 we consider the case where d is known,

and we do this for two reasons: (i) there are interesting statistical models in which d is known (see

Section 4.1), and (ii) understanding the case of known d is necessary in order to understand the case where

d is unknown and must be estimated. In Section 2.2 we consider the case where d is unknown. Of course,

when k = 1, η̂n reduces to the single-chain importance sampling estimator η̃n, and knowledge of the

normalizing constants is not required. Hence the regeneration-based CLT concerning η̃n is presented as a

special case of the result for the situation where d is known.

2.1 The Case Where d Is Known

Suppose we simulate Rl tours of the lth Markov chain for l = 1, . . . , k; that is, we begin the simulation by

drawing X(l)
0 ∼ Ql(·), and we stop the simulation when we observe the Rth

l success among the Bernoulli

trials. The length of the lth chain is nl = τ
(l)
Rl

. Based on these kMarkov chains, we construct the importance

sampling estimator of η using (1.5). We will write ûn(a,d), v̂n(a,d), and η̂n(a,d) instead of ûn, v̂n, and

η̂n respectively, whenever we need to emphasize the dependence of these estimators on a given vector of

weights a and the vector of known ratios of normalizing constants d. For t = 1, 2, . . . , Rl define

V
(l)
t =

τ
(l)
t −1∑
i=τ

(l)
t−1

v(X(l)
i ;a,d), U

(l)
t =

τ
(l)
t −1∑
i=τ

(l)
t−1

u(X(l)
i ;a,d), and T

(l)
t =

τ
(l)
t −1∑
i=τ

(l)
t−1

1 = τ
(l)
t − τ

(l)
t−1, (2.4)

where v and u are defined in (1.4) and the sums range over the values of i that constitute the tth tour.

The key feature of the above construction is that for each l, (V (l)
t , U

(l)
t , T

(l)
t ) are iid triples. Let T̄ (l) =

R−1
l

∑Rl
t=1 T

(l)
t be the average tour length and, analogously, let V̄ (l) = R−1

l

∑Rl
t=1 V

(l)
t and Ū (l) =

R−1
l

∑Rl
t=1 U

(l)
t . Then the numerator and the denominator of η̂n(a,d) can be written as

v̂n =
k∑
l=1

al
nl

nl−1∑
i=0

v(X(l)
i ;a,d) =

k∑
l=1

al
V̄ (l)

T̄ (l)
and ûn =

k∑
l=1

al
nl

nl−1∑
i=0

u(X(l)
i ;a,d) =

k∑
l=1

al
Ū (l)

T̄ (l)
, (2.5)

respectively. This representation makes it easy to study the asymptotic behavior of v̂n(a,d), ûn(a,d),

and η̂n(a,d) using iid theory. We have V̄ (l) a.s.−→ E
(
V

(l)
1

)
= Eπl(v)/Eπl(sl), where the convergence

statement follows from the SLLN and the equality follows from Kac’s theorem (Meyn and Tweedie, 1993,

Thm 10.2.2). Similarly, Ū (l) a.s.−→ Eπl(u)/Eπl(sl), and T̄ (l) a.s.−→ [Eπl(sl)]
−1. Therefore, from (2.5) we

have

η̂n =
v̂n
ûn

a.s.−→
∑k

l=1 alEπlv∑k
l=1 alEπlu

= η as Rl →∞ for l = 1, . . . , k.
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It is useful to note that the limit of ûn itself is a meaningful quantity in Bayesian model comparison

settings. We have

ûn
a.s.−→

k∑
l=1

alEπlu =
k∑
l=1

alEπlu(X;a,d) =
k∑
l=1

al

∫
X

ν(x)∑k
s=1 asνs(x)/ds

πl(x)µ(dx)

=
∫

X

∑k
l=1 alνl(x)/ml∑k

s=1 asνs(x)/(ms/m1)
ν(x)µ(dx) =

∫
X

mπ(x)
m1

µ(dx) =
m

m1
.

If we are in the Bayesian framework in which π1(x) = `1(x)p1(x)/m1 and π(x) = `(x)p(x)/m, where

the `’s are likelihood functions and them’s are normalizing constants, then the ratiom/m1 is the so-called

Bayes factor between the two models. This quantity is often used to carry out model selection.

We now study the asymptotic distributions of η̂n and ûn. By the same delta method argument that we

used earlier, we see that if

E
[(
V

(l)
1

)2]
<∞, E

[(
U

(l)
1

)2]
<∞ and E

[(
T

(l)
1

)2]
<∞ for l = 1, . . . , k, (2.6)

then

R
1/2
l

(
V̄ (l)

/
T̄ (l) − Eπlv

) d→ N (0, σ2
l ) and R

1/2
l

(
Ū (l)

/
T̄ (l) − Eπlu

) d→ N (0, κ2
l ),

where

σ2
l =

E
[(
V

(l)
1 − T (l)

1 Eπlv
)2](

ET
(l)
1

)2 and κ2
l =

E
[(
U

(l)
1 − T

(l)
1 Eπlu

)2](
ET

(l)
1

)2 .

To obtain CLTs for ûn and η̂n based on the above results, we assume that Rl/R1 → bl ∈ (0,∞) for

l = 2, . . . , k as R1 →∞, i.e., the relative sizes of the Rl’s remain fixed as they grow to infinity. Then the

Cramér-Wold Theorem implies that for each l,

R
1/2
1

V̄ (l)
/
T̄ (l)

Ū (l)
/
T̄ (l)

−
Eπlv
Eπlu

 =
(
R1

Rl

)1/2

R
1/2
l

V̄ (l)
/
T̄ (l)

Ū (l)
/
T̄ (l)

−
Eπlv
Eπlu

 d→ N2(0, b−1
l Σl),

where

Σl =
(
ET

(l)
1

)−2 Var

V (l)
1 − T (l)

1 Eπlv

U
(l)
1 − T

(l)
1 Eπlu

 .

Let

Zn =
(
V̄ (1)

T̄ (1)
,
Ū (1)

T̄ (1)
, . . . ,

V̄ (k)

T̄ (k)
,
Ū (k)

T̄ (k)

)>
and ξ =

(
Eπ1v,Eπ1u, . . . , Eπkv,Eπku

)>
. (2.7)

Since the k chains are independent, we actually have

R
1/2
1 (Zn − ξ)

d→ N2k(0,Σ), (2.8)

where Σ = diag(Σ1, b
−1
2 Σ2, . . . , b

−1
k Σk) is a block diagonal matrix.
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From (2.8), it is straightforward to derive CLTs for both ûn and η̂n. Since ûn is simply a linear

combination of Ū (1)
/
T̄ (1), . . . , Ū (k)

/
T̄ (k) (see (2.5)), we have

R
1/2
1

(
ûn(a,d)−m/m1

)
=

k∑
l=1

al
[
R

1/2
1

(
Ū (l)

/
T̄ (l) − Eπlu

)] d→ N (0, κ2) as R1 →∞,

where

κ2 =
k∑
l=1

a2
l b
−1
l κ2

l . (2.9)

Letting g : R2k → R be defined by

g(x) =
a1x1 + a2x3 + · · ·+ akx2k−1

a1x2 + a2x4 + · · ·+ akx2k
,

we see that η̂n(a,d) = g(Zn) and η = g(ξ), where Zn and ξ are given by (2.7), so by (2.8) and the delta

method we have

R
1/2
1

(
η̂n(a,d)− η

) d→ N (0, τ2) as R1 →∞, (2.10)

where

τ2 = ∆>Σ∆, (2.11)

with

∆ =
(

a1

Eûn
,− a1Ev̂n

[Eûn]2
, . . . ,

ak
Eûn

,−akEv̂n
[Eûn]2

)>
.

The approach to establishing CLTs using regeneration gives rise to the following strongly consistent

estimators of the asymptotic variances. Let

∆̂ =
(
a1

ûn
,− a1v̂n

(ûn)2
, . . . ,

ak
ûn
,− akv̂n

(ûn)2

)>
and Σ̂l =

1

Rl
(
T̄ (l)

)2
S(11)

l S
(12)
l

S
(21)
l S

(22)
l

 ,

where

S
(11)
l =

Rl∑
t=1

[
V

(l)
t −

(
V̄ (l)

/
T̄ (l)

)
T

(l)
t

]2
, S

(22)
l =

Rl∑
t=1

[
U

(l)
t −

(
Ū (l)

/
T̄ (l)

)
T

(l)
t

]2
,

and

S
(12)
l = S

(21)
l =

Rl∑
t=1

[
V

(l)
t −

(
V̄ (l)

/
T̄ (l)

)
T

(l)
t

][
U

(l)
t −

(
Ū (l)

/
T̄ (l)

)
T

(l)
t

]
,

and let Σ̂ = diag(Σ̂1, b
−1
2 Σ̂2, . . . , b

−1
k Σ̂k). Clearly, ∆̂ consistently estimates ∆. And simple calculations

show that each component of the difference between Σ̂l and Σl converges almost surely to 0 as Rl →∞.

Finally, let κ̂2
l denote the last entry of Σ̂l. Then

κ̂2 =
k∑
l=1

a2
l b
−1
l κ̂2

l and τ̂2 = ∆̂>Σ̂∆̂ (2.12)
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are consistent estimators of κ2 and τ2 respectively.

Recall that, in order to arrive at the CLT in (2.10), we require the second-moment conditions in (2.6).

These conditions are actually quite difficult to check directly. This is because V (l)
1 and U (l)

1 are sums

of functions of the states of the Markov chain containing a random number of terms. However, Hobert

et al. (2002) showed that, if the underlying Markov chain is geometrically ergodic and there exists an

ε > 0 such that Eπl |v(X;a,d)|2+ε and Eπl |u(X;a,d)|2+ε are finite, then the second-moment conditions

in (2.6) hold. See Section 5 for some discussion concerning geometric ergodicity.

We summarize the above results in the following theorem.

Theorem 1 Suppose that for each l = 1, . . . , k, the following conditions hold.

1. The Markov chain Φl = {X(l)
0 , X

(l)
1 , . . .} is geometrically ergodic and has πl as its invariant density.

2. The Markov transition function K(l) satisfies the minorization condition (2.1).

3. There exists ε > 0 such that Eπl |v(X;a,d)|2+ε and Eπl |u(X;a,d)|2+ε are finite.

4. Rl/R1 → bl ∈ (0,∞) as R1 →∞.

Then we have the following CLTs:

R
1/2
1

(
ûn(a,d)−m/m1

) d→ N (0, κ2) and R
1/2
1

(
η̂n(a,d)− η

) d→ N (0, τ2) as R1 →∞.

Furthermore, κ̂2 and τ̂2 defined in (2.12) are strongly consistent estimators of κ2 and τ2 respectively.

Now consider the case k = 1, for which a = 1 and the (k−1)-dimensional vector d is irrelevant. Note

that η̂n(a,d) reduces to the single-chain importance sampling estimator η̃n defined in (1.2), and ûn(a,d)

reduces to

ūn =
1
n

n∑
i=1

u(Xi) =
1
n

n∑
i=1

ν(Xi)
ν1(Xi)

.

Hence, even when the ratio of the normalizing constantsm andm1 is unknown, CLTs for ūn and η̃n follow

as special cases of Theorem 1. We summarize the CLT for single-chain importance sampling estimators

in the following Corollary. Part of this result also appeared in Bhattacharya (2008).

Corollary 1 Suppose that Φ = {Xi, i = 0, 1, 2, . . .} is a Markov chain which is geometrically ergodic

and has π1 as its invariant density. Suppose further that Φ has a Markov transition function K(l) satisfy-

ing (2.1). Let η̃n defined by (1.2) be the estimator of the ratio η = Eπv
/
Eπu in (1.1), where n = τR is

the number of iterations required to get R regenerations. If there exists an ε > 0 such that Eπ1 |v|2+ε and

Eπ1 |u|2+ε are finite, then

R1/2(ūn −m/m1) d→ N (0, κ2) and R1/2(η̃n − η) d→ N (0, τ2) as R→∞.

10



Moreover,

κ̂2 =
R−1

∑R
t=1(Ut − ūnTt)2(

R−1
∑R

t=1 Tt
)2 and τ̂2 =

R−1
∑R

t=1(Vt − η̃nUt)2(
R−1

∑R
t=1 Ut

)2
are strongly consistent estimators of κ2 and τ2. Here, Ut is the sum of u(Xi) = ν(Xi)/ν1(Xi) over the

tth tour of the Markov chain and Vt is the sum of v(Xi) = f(Xi)u(Xi) over the tth tour.

Remark 1 Corollary 1 is a direct generalization of the results in Mykland et al. (1995) and Hobert et al.

(2002), whose results may be viewed as pertaining to the special case where u ≡ 1. In that case, Ut =

τt − τt−1 is the length of the tth tour and, of course, the condition Eπ1 |u|2+ε <∞ holds automatically.

A nice feature of Theorem 1 and Corollary 1 is that the conditions for the existence of a CLT are

separated into ones that concern the convergence rate of the regenerative Markov chain and others that

are simple moment conditions with respect to the invariant distribution. Hence, if the chain under con-

sideration is known to be geometrically ergodic, then checking the conditions is quite straightforward. In

contrast, many results for CLTs for regenerative processes have sufficient conditions that are very difficult

to check in practice because they involve expectations of complex functions of the underlying process.

An example of this is Mykland et al.’s (1995) main result (which is similar to our Corollary 1), where

it is assumed that EV 2
1 < ∞. Other examples of this can be found in the operations research literature

where regenerative simulation is used to assess the variability of MCMC estimators in the analysis of

queueing systems (see, e.g., Ripley, 1987; Lavenberg and Slutz, 1975; Glynn and Iglehart, 1987). The

Markov processes that underlie these analyses have countable state spaces, which makes the identification

of regeneration times trivial. However, unlike Theorem 1 and Corollary 1, the conditions for CLTs involve

unwieldy moment conditions with respect to the underlying Markov process. These conditions are quite

difficult to check for all but the simplest queueing systems.

2.2 The Case Where d Is Unknown

Except for Corollary 1, results from the previous section are applicable only if d = (m2/m1, . . . ,mk/m1)

is known. In the usual situation where d is unknown, the multiple-chain importance sampling technique

can still be applied if in the expressions for η̂n(a,d) and ûn(a,d) we replace d by an estimate d̂.

Given the k chains Φ1, . . . ,Φk, it is possible to form an estimate d̂ of d—how to do this is dis-

cussed below—and plug in d̂ in place of d in (1.5). Call the resulting estimate η̂n(a, d̂). It turns

out that the variance of η̂n(a, d̂) is greater than that of η̂n(a,d). Thus, the variance decomposes as

Var
(
η̂n(a, d̂)

)
= Var

(
η̂n(a,d)

)
+Vd, where Vd is the increase in variance resulting from using d̂ instead

of d. For the sensitivity analysis problems we have in mind, we wish to compute Eπhf for a large number

of h’s. Because for each h the computational time needed to form η̂n(a, d̂) is linear in the total sample
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size n1 + · · ·+nk, we are limited in how big the nl’s can be. So if generating the chains is not too compu-

tationally demanding, it makes sense to generate preliminary chains Φprel
1 , . . . ,Φprel

k of very large lengths

N1, . . . , Nk, respectively, and use these to form a very accurate estimate d̂ of d, thus greatly reducing Vd

simultaneously for all h. Once d̂ is formed, Φprel
1 , . . . ,Φprel

k are discarded, and the estimate η̂n(a, d̂) is

based on new and independent chains Φ1, . . . ,Φk. These are shorter, so that the estimate η̂n(a, d̂) can be

computed for many h’s. This two-stage method is proposed in Buta and Doss (2011), who also quantify

its benefits relative to the method in which we use a single stage of sampling to form both d̂ and η̂n(a, d̂).

Because these benefits can be quite significant, the two-stage method is the one that we use in the present

paper.

The problem of estimating dmay be stated as follows. We have densities π1, . . . , πk with respect to the

measure µ, which are known except for normalizing constants, i.e. we have πl = νl/ml, where the νl’s are

known functions and the ml’s are unknown. We have samples X(l)
1 , . . . , X

(l)
Nl

from πl, and the objective is

to estimate all possible ratios mi/mj , i 6= j or, equivalently, the vector d = (m2/m1, . . . ,mk/m1). Let

N = N1 + · · ·+Nk, let Al = Nl/N , define the vector ζ by

ζl = − log(ml) + log(Al), for l = 1, . . . , k,

and form

pl(x, ζ) =
νl(x)eζl∑k
s=1 νs(x)eζs

, for l = 1, . . . , k. (2.13)

Clearly, ζ determines and is determined by the vector (m1, . . . ,mk). Geyer (1994) considered the log

quasi-likelihood function

LN (ζ) =
k∑
l=1

Nl∑
i=1

log
(
pl(X

(l)
i , ζ)

)
, (2.14)

and proposed to estimate ζ by ζ̂ = argmaxLN (ζ). Actually, there is a non-identifiability issue regarding

LN : for any constant a ∈ R, LN (ζ) and LN (ζ + a1k) are the same (here, 1k is the vector of k 1’s). So

we can estimate ζ only up to an additive constant (or equivalently, we can estimate (m1, . . . ,mk) only

up to a multiplicative constant, i.e. we can estimate only d = (m2/m1, . . . ,mk/m1)). Accordingly, with

ζ0 defined by [ζ0]l = ζl −
(∑k

s=1 ζs
)
/k, Geyer (1994) proposed to estimate ζ0 by the maximizer of LN

subject to the linear constraint ζ>1k = 0, and thus obtain an estimate of d. In fact, this estimate of d

was originally proposed by Vardi (1985). Gill et al. (1988) showed that it is consistent and asymptotically

normal, and established its optimality properties, all under the assumption that for each l, X(l)
1 , . . . , X

(l)
Nl

is

an iid sequence. Geyer (1994) extended the consistency and asymptotic normality result to the case where

the sequencesX(l)
1 , . . . , X

(l)
Nl

are Markov chains satisfying certain mixing conditions. The estimate was re-

derived in Meng and Wong (1996), Kong et al. (2003), Tan (2004) from completely different perspectives,

all under the iid assumption.
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The term pl(x, ζ) in (2.13) has the appearance of a likelihood ratio, and in the denominator, the prob-

ability measure νs/ms is given weight proportional to the length of chain Φs. Now Gill et al.’s (1988)

optimality result does not apply to the Markov chain case. Doss and Tan (2014) argue that instead of

taking As = Ns/N , we should take the As’s to reflect the different mixing rates of the chains. They use a

modified version of (2.14) and show that the resulting estimator has much better performance. They obtain

a regeneration-based CLT for d̂when (A1, . . . , Ak) is an arbitrary vector of weights, and give a method for

choosing this vector. Here we state their result, since we use it in the version of Theorem 1 that pertains to

the case where d is unknown, and we first describe the setup. We assume that in Stage 1, for l = 1, . . . , k,

chain l has been run for ρl regenerations. So the length of the lth chain, Nl = T
(l)
1 + · · · + T

(l)
ρl , is ran-

dom. We assume that ρ1, . . . , ρk → ∞ in such a way that ρl/ρ1 → cl ∈ (0,∞), for l = 1, . . . , k. Let

(A1, . . . , Ak) be an arbitrary (non-random) vector of weights. This vector may depend on ρ1, . . . , ρk, but

this dependence is suppressed in the notation. We assume that as ρ1, . . . , ρk →∞, Al → αl, l = 1, . . . , k

for some probability vector α with αl > 0 for all l. In order to state their CLT, we need to define the

quantities that go into the expression for the asymptotic variance. The reader who is not interested in these

details can go directly to the statement of their result given in (2.15).

The asymptotic distribution of the vector ρ1/2
1 (ζ̂ − ζ0) involves the matrices B and Ω defined below.

Let B be the k × k matrix given by

Brr =
k∑
l=1

αlEπl
(
pr(X, ζ0)[1− pr(X, ζ0)]

)
, r = 1, . . . , k,

Brs = −
k∑
l=1

αlEπl
(
pr(X, ζ0)ps(X, ζ0)

)
, r, s = 1, . . . , k, r 6= s.

Recall that we use τ (l)
0 < τ

(l)
1 < · · · < τ

(l)
ρl to denote the regeneration times of the lth chain, and that

T
(l)
t = τ

(l)
t − τ

(l)
t−1 is the length of the tth tour of the lth chain. Let

y
(r,l)
i = pr(X

(l)
i , ζ0)− Eπl

(
pr(X, ζ0)

)
, i = 1, . . . , Nl,

for which Eπly
(r,l)
i = 0, and define

Y
(r,l)
t =

τ
(l)
t −1∑
i=τ

(l)
t−1

y
(r,l)
i , Ȳ (r,l) =

1
ρl

ρl∑
t=1

Y
(r,l)
t , and T̄ (l) =

1
ρl

ρl∑
t=1

T
(l)
t .

Let Ω be the k × k matrix defined by

Ωrs =
k∑
l=1

α2
l

cl

E
(
Y

(r,l)
1 Y

(s,l)
1

)(
ET

(l)
1

)2 , r, s = 1, . . . , k,
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To obtain an estimate Ω̂, we let

Z
(r,l)
t =

τ
(l)
t −1∑
i=τ

(l)
t−1

pr(X
(l)
i , ζ̂) and µ̂(l)

r =
∑Nl

i=1 pr(X
(l)
i , ζ̂)

Nl
,

and define Ω̂ by

Ω̂rs =
k∑
l=1

A2
l

cl

1(
T̄ (l)

)2 1
ρl

ρl∑
t=1

(
Z

(r,l)
t − µ̂(l)

r T
(l)
t

)(
Z

(s,l)
t − µ̂(l)

r T
(l)
t

)
, r, s = 1, . . . , k.

The function g : Rk → Rk−1 that maps ζ into d and the gradient of this function (in terms of d) are

given by

g(ζ) =


eζ1−ζ2A2/A1

eζ1−ζ3A3/A1

...

eζ1−ζkAk/A1

 and D =



d2 d3 . . . dk

−d2 0 . . . 0

0 −d3 . . . 0
...

...
. . .

...

0 0 . . . −dk


.

Note that g(ζ0) = d and g(ζ̂) = d̂.

For a matrix C, C† will denote the Moore-Penrose inverse of C. Doss and Tan (2014) show that if for

the Stage 1 chains Φprel
1 , . . . ,Φprel

k conditions 1 and 2 of Theorem 1 hold, then as ρ1 →∞, d̂ a.s.−→ d and

ρ
1/2
1 (d̂− d) d→ N (0,W ) where W = D>B†ΩB†D. (2.15)

They show that furthermore, with B̂ and D̂ being the obvious empirical estimates ofB andD, respectively,

Ŵ := D̂>B̂†Ω̂B̂†D̂ (2.16)

is a strongly consistent estimate of W .

We now review the big picture (temporarily reverting to the more cumbersome notation): There is a

parametric family {πh, h ∈ H}, where πh = νh/mh, and we wish to estimatemh/mh1 for all h ∈ H. We

select “skeleton points” h1, . . . , hk ∈ H. The Stage 1 chains Φprel
1 , . . . ,Φprel

k are used to form an estimate

d̂ of d = (mh2/mh1 , . . . ,mhk/mh1). Stage 2 chains use d̂ to form an estimate of mh/mh1 (and also of

Eπhf ) for h not in the skeleton set, and the entire process makes it unnecessary to run a separate Markov

chain for each value of h ∈ H.

In the previous section we proposed a regenerative method for analyzing the variances of ûn(a,d) and

η̂n(a,d). When we use d̂ instead of d in (1.5), two problems arise. First, the triples
(
V

(l)
t , U

(l)
t , T

(l)
t

)
are

no longer independent: because we are using the same d̂ throughout, there is dependence across different

t’s and also across different l’s. Second, as mentioned earlier, using d̂ instead of d inflates the variance of

both estimators.
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Choice of the Vector a In the rest of this section we propose a method for dealing with these problems.

Recall the estimate ûn =
∑k

l=1(al/nl)
∑nl

i=1 u(X(l)
i ;a,d) where

u(x;a,d) =
νh(x)∑k

s=1 asνhs(x)/ds
. (2.17)

This is the estimate of the Bayes factor mh/mh1 in the Bayesian framework in which νh(x) = `(x)ph(x),

andmh is the marginal likelihood of the data when the prior is ph. In (2.17) a is a vector with non-negative

entries, and in principle we can choose any a that we want. We now discuss the choice of this vector. In

forming the log quasi-likelihood function (2.14) which is based on sequences of lengths N1, . . . , Nk and

involves (2.13), all authors mentioned above use As = Ns/N, s = 1, . . . , k, i.e. the weight given νhs/dhs

is proportional to the length of the sequence from πhs , as this choice is generally deemed optimal in some

sense (Meng and Wong (1996) establish this optimality in the iid setting for the case k = 2). It should be

noted that the optimality of the choiceAs = Ns/N pertains to the problem of estimating d. In our Stage 2,

the problem is different: our goal is to estimate mh/mh1 for h ∈ H, and the optimal value of a depends

on h, as we now make clear. Intuitively speaking, to minimize the variance of the estimate of mh/mh1

using ûn, we should give more weight to probability measures νhs/mhs which are close to νh/mh. In

the extreme case where for some j, νhj/mhj = νh/mh, if we give weight 1 to νhj/mhj and weight 0 to

νhl/mhl for l 6= j, then ûn reduces to

ûn =
1
nj

nj∑
i=1

νh(X(j)
i )

νhj (X
(j)
i )/dj

,

and this estimate has zero variance, each summand being exactly equal to mh/mh1 . Now let hopt =

argmaxhmh/mh1 , and note that since h1 is fixed, hopt is also equal to argmaxhmh, the empirical Bayes

choice of h.

Consider the problem of estimatingmh/mh1 , h ∈ H. After having identified values of h for whichmh

is very small, thus eliminating these h’s from consideration, we will be especially interested in estimating

mh/mh1 for h near hopt, so that we can accurately identify hopt. To see what choice of a this leads to,

consider the measure λ given by λ(dx) =
(
`(x)/phopt(x)

)
µ(dx), and consider the Hilbert space L2(λ)

of functions which are square-integrable with respect to λ, with inner product 〈f1, f2〉 =
∫
f1f2 dλ. Note

that phopt ∈ L2(λ), with ‖phopt‖2 =
∫
phopt` dµ = mhopt . Also, for any h such that ph ∈ L2(λ), we

have 〈ph, phopt〉 = mh. So the heuristic that we should give more weight to the probability measure

νhj/mhj if phj is close to phopt suggests that we set aj equal to mhj , or equivalently, set (a1, . . . , ak) =

(1, d2, . . . , dk) = (1,d). (For convenience, we set d1 = 1 and d̂1 = 1.) In some experiments we have

done, this choice of a outperforms the more conventional choice aj = nj/n (as in, e.g., Tan (2004)) for

the problem of estimating mh/mh1 for h near hopt. This is the choice of a we make when d is known
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(cf. Section 2.1). When d is unknown, we set a = (d̂1, d̂) = (1, d̂) after noting that there is nothing that

requires a to be a constant. With this choice, the expressions for u and v in (1.4) become

u
(
x; (1, d̂), d̂

)
=

ν(x)∑k
l=1 νl(x)

and v
(
x; (1, d̂), d̂

)
=

f(x)ν(x)∑k
l=1 νl(x)

. (2.18)

These do not involve d̂, and consequently for each l, the triples
(
V

(l)
t , U

(l)
t , T

(l)
t

)
, t = 0, 1, 2, . . . defined

in (2.4) are again iid, and we have independence across l’s. The estimator for η reduces to

η̂ = η̂N,n
(
(1, d̂), d̂

)
=

k∑
l=1

d̂l
nl

nl∑
i=1

f(X(l)
i )ν(X(l)

i )∑k
s=1 νs(X

(l)
i )

/ k∑
l=1

d̂l
nl

nl∑
i=1

ν(X(l)
i )∑k

s=1 νs(X
(l)
i )

(2.19)

=
k∑
l=1

d̂l
nl

Rl∑
t=1

V
(l)
t

/ k∑
l=1

d̂l
nl

Rl∑
t=1

U
(l)
t

=
k∑
l=1

d̂l
V̄ (l)

T̄ (l)

/ k∑
l=1

d̂l
Ū (l)

T̄ (l)
,

where

U
(l)
t =

τ
(l)
t −1∑
i=τ

(l)
t−1

ν(X(l)
i )∑k

s=1 νs(X
(l)
i )

and V
(l)
t =

τ
(l)
t −1∑
i=τ

(l)
t−1

f(X(l)
i )ν(X(l)

i )∑k
s=1 νs(X

(l)
i )

.

Similarly, the estimator for m/m1 reduces to

û = ûN,n
(
(1, d̂), d̂

)
=

k∑
l=1

d̂l
nl

nl∑
i=1

ν(X(l)
i )∑k

s=1 νs(X
(l)
i )

=
k∑
l=1

d̂l
nl

Rl∑
t=1

U
(l)
t =

k∑
l=1

d̂l
Ū (l)

T̄ (l)
. (2.20)

We will often write simply η̂ and û instead of the more involved η̂N,n
(
(1, d̂), d̂

)
and ûN,n

(
(1, d̂), d̂

)
(cf. (2.19) and (2.20)) in order to avoid unnecessarily cumbersome notation, if this will not cause confu-

sion.

Theorem 2 below gives the asymptotic distributions of η̂ and û. To state it, we first need to define the

expressions that go into the asymptotic variance. Let M and H be the vectors of length k − 1 for which

the (j − 1)th coordinates are

Mj−1 = Eπju and Hj−1 =
Eπjv∑k

l=1 dlEπlu
−
(∑k

l=1 dlEπlv
)(
Eπju

)(∑k
l=1 dlEπlu

)2 , j = 2, . . . , k. (2.21)

Recall that N is the total sample size used in Stage 1 sampling and R1 is the number of regenerations for

chain 1 in Stage 2 sampling.

Theorem 2 Suppose that for the Stage 1 chains, conditions 1 and 2 of Theorem 1 hold, and that for the

Stage 2 chains, conditions 1–4 of Theorem 1 hold, where condition 3 refers to the functions u and v given

in (2.18). If ρ1 →∞ and R1 →∞ in such a way that R1/ρ1 → q ∈ [0,∞), then

R
1/2
1

(
û−m/m1

) d→ N
(
0, qM>WM + κ2

)
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and

R
1/2
1

(
η̂ − η

) d→ N
(
0, qH>WH + τ2

)
,

where M , H , W , κ2 and τ2 are given in equations (2.21), (2.15), (2.9), and (2.11), respectively. In (2.9)

and (2.11), a is taken to be a = (1,d). Furthermore, we can form strongly consistent estimates of the

asymptotic variances if we use Ŵ , κ̂2, and τ̂2 defined in (2.16) and (2.12), respectively, and use the

obvious empirical estimates of M and H .

The proof of the theorem is given in the Appendix.

2.3 Advantages and Limitations of the Regeneration-Based Approach

There are several important benefits to using regeneration, the most obvious one being the existence of

the strongly consistent estimators of the asymptotic variances in Theorems 1 and 2. Another advantage is

that because (2.2) in effect states that we start each chain at a regeneration point, we completely bypass all

problems with burn-in.

There are also significant potential computational advantages in using regeneration to estimate standard

errors. Recall that we have in mind a parametric family {πh, h ∈ H}, and we are interested in a sensitivity

analysis problem in which we wish to estimate ηh = Eπhf for all h ∈ H. To keep this discussion as

simple as possible, suppose we are in the case where k = 1, and we are using the estimate (1.2), based on

a Markov chain X1, X2, . . . with stationary distribution πh1 . Here, uh(x) = νh/νh1 , vh(x) = f(x)uh(x),

and η̃h,n = v̄h,n/ūh,n. If wh is equal to either vh or uh, under our regularity conditions, the asymptotic

variance of w̄h,n is

Var
(
wh(X1)

)
+ 2

∑∞
j=1 Cov

(
wh(X1), wh(X1+j)

)
, (2.22)

where the variance and covariances are calculated under the assumption that X1 ∼ πh1 . Now whereas

the calculation of w̄h,n requires O(n) operations, estimates of the asymptotic variance of w̄h,n based on

conventional spectral methods involve estimating the first Mn terms of the series (2.22), where Mn is

of the order of nα, and α > 0 depends on the method used. Since the estimate of each term requires

O(n) operations, for each h, O(n1+α) operations are required, and the additional computational burden

is problematic because we are dealing with a large number of h’s. In contrast, when we use regeneration,

once we have identified the sequence of regeneration times, the estimates (2.12) use only quantities that

have already been computed in the process of forming η̃h,n, so estimation of standard errors comes at a

trivial additional computational cost.

Additionally, the regeneration method gives a potential approach for obtaining very difficult distribu-

tional results. Consider the parameter mh/mh1 and its estimator ûn, which we will denote temporarily by
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B(h) and B̂n(h), respectively, in order to emphasize the dependence of these quantities on h. It is of in-

terest to provide a confidence band (region, if h is multidimensional) for B(h) that is valid simultaneously

for all h ∈ H. A closely related problem is to produce a confidence interval for argmaxh∈HB(h). The

traditional way of forming confidence bands that are valid globally is to proceed as follows:

1 Establish a functional central limit theorem that says that n1/2
(
B̂n(h)−B(h)

)
converges in distribution

to a Gaussian process W (h); h ∈ H.

2 Find the distribution of suph∈H |W (h)|.

If sα is the (1 − α)-quantile of the distribution of this supremum, then the band B̂n(h) ± sα/n1/2 has

asymptotic coverage probability equal to 1− α. The value sα is typically too difficult to compute analyti-

cally, but can be obtained by simulation [see, e.g. Burr and Doss (1993) among many others]. Establishing

functional central limit theorems at this level of generality can be done only using empirical process the-

ory, which requires an iid structure. For this reason we believe that the regeneration method offers the best

hope for establishing such theorems.

We now discuss the scope of the problems to which regenerative simulation can be applied. Mykland

et al. (1995, Section 4.1) showed that for independence Metropolis-Hastings chains, there is always a

scheme for producing regeneration sequences, and Gilks et al. (1998) show that this is also true for random

walk Metropolis-Hastings chains. A general approach for producing a minorization condition is the so-

called “distinguished point technique” of Mykland et al. (1995, Section 4.1); a short description is given

near the end of the Appendix to the present paper, where we implement it for the Markov chain used in the

Bayesian variable selection problem of Section 4.1. The technique requires that we find a point x ∈ X and

a set D ⊂ X; these are in effect tuning parameters, whose choice inevitably requires preliminary trial and

error experimentation. It is widely acknowledged that the distinguished point technique is very difficult to

implement successfully in high dimensions. Gilks et al. (1998, Theorem 4.1) show that in a certain class

of problems, the regeneration rates for random walk Metropolis-Hastings chains go down exponentially

with the dimension. To conclude, there is no all-purpose method for devising minorization conditions that

will give regeneration rates that are large enough to produce useful results, and to a large extent, successful

implementation of regenerative simulation is a matter of art.

3 Single-Chain Importance Sampling in Bayesian Analysis

Importance sampling can be very useful in Bayesian analysis when we wish to see the effect of a change in

the prior distribution or the likelihood function on a posterior expectation. Here we focus on the application

of single-chain importance sampling estimators in such a situation.
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Let x and y denote parameters and observed data, respectively. We think of π and π1 as two different

posterior densities with π(x) = `(x)p(x)/m, and π1(x) = `1(x)p1(x)/m1, where `(x) and `1(x) denote

two different likelihood functions, p(x) and p1(x) denote two different prior densities, and m and m1

are unknown normalizing constants. (When the dependence of the likelihood function on the data needs

to be noted we will write `(x; y) instead of `(x).) We imagine a situation where an MCMC algorithm

for π is yet to be developed, but we have available a Markov chain with invariant distribution π1, say

Φ = {Xi, i = 0, 1, . . .}, which satisfies the assumptions of Corollary 1. Suppose we are interested in

approximating the expectation Eπf =
∫

X f(x)π(x)µ(dx), where f : X → R is a π-integrable function.

According to equation (1.2), the ratio estimator of η based on the Markov chain Φ from π1 is given by

η̃n =
n∑
i=1

f(Xi)`(Xi)p(Xi)
`1(Xi)p1(Xi)

/ n∑
i=1

`(Xi)p(Xi)
`1(Xi)p1(Xi)

.

If the two Bayesian models differ only in the prior, i.e., if ` = `1, then

η̃n =
n∑
i=1

f(Xi)p(Xi)
p1(Xi)

/ n∑
i=1

p(Xi)
p1(Xi)

,

and the cancellation of the potentially very complicated likelihood gives a convenient simplification. Ac-

cording to Corollary 1, if there exists ε > 0 such that

Eπ1 |`p/`1p1|2+ε <∞ and Eπ1 |f`p/`1p1|2+ε <∞, (3.1)

then we can estimate Eπf with η̃n, and a valid asymptotic standard error for this estimate is given by

τ̂ /R1/2.

Remark 2 If there exists an ε > 0 such that Eπ|f |2+ε < ∞, then a sufficient condition for (3.1) is the

existence of a constant M ∈ [1,∞) such that

sup
x

`(x)p(x)
`1(x)p1(x)

< M. (3.2)

This condition basically says that the tails of π1 are heavier than those of π. In fact, (3.2) is exactly what is

required to use π1 as the candidate density in an accept/reject algorithm for π. Of course, this accept/reject

algorithm is not viable if we cannot make exact draws from π1. For a thorough review of accept/reject

methods, see Robert and Casella (2004, Chap. 2).

On the other hand, there are some situations where we may want to change the likelihood function. An

example arises in binary regression, where one can use either the probit or the logistic model. Under the

probit model there exists a very convenient data augmentation algorithm (Albert and Chib, 1993) that gives

rise to a chain for which geometric ergodicity and minorization conditions have been established (Roy and
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Hobert, 2007). But in certain biostatistical applications one strongly prefers the logistic model because

the parameters are then equal to log odds ratios, and these have a nice interpretation when dealing with

case-control studies. Unfortunately, chains that implement logistic regression models are very difficult to

analyze, and to the best of our knowledge there do not exist any results regarding rates of convergence

for chains that implement these models. Informal calculations show that when `1 is the probit likelihood

and p1 is a flat prior (the setup analyzed by Roy and Hobert (2007)), and when ` is the logistic likelihood

and p is a normal prior, then the key condition Eπ1 |`p/`1p1|2+ε < ∞ is satisfied, so that a geometrically

ergodic chain run to implement the probit model can be used to do an honest analysis of the logistic model.

The next section gives a concrete example of the comparison of posteriors corresponding to two different

priors using the importance sampling idea described above.

3.1 Bayesian Analysis of the One-Way Random Effects Model

Consider the classical balanced one-way random effects model given by

Yij = θi + εij i = 1, . . . , q, j = 1, . . . ,m,

where the random effects θ1, . . . , θq are iid N (µ, σ2
θ), the εij’s are iid N (0, σ2

e) and independent of the

θi’s. To avoid trivial special cases, assume that q ≥ 2 and m ≥ 2. A Bayesian version of the model

requires a prior distribution for (µ, σ2
θ , σ

2
e), call it p(µ, σ2

θ , σ
2
e). Actually, since the vector of random

effects, θ = (θ1, . . . , θq), is unobserved, it too is viewed as a parameter with a “built-in” prior density

given by

φ(θ |µ, σ2
θ , σ

2
e) =

q∏
i=1

(2πσ2
θ)
−1/2 exp

{
− 1

2σ2
θ

(θi − µ)2
}
.

Letting y = {yij} denote the vector of observed data, the (q + 3)-dimensional posterior density is charac-

terized by

π(θ, µ, σ2
θ , σ

2
e) ∝ `(θ, µ, σ2

θ , σ
2
e ; y)

[
φ(θ |µ, σ2

θ , σ
2
e) p(µ, σ

2
θ , σ

2
e)
]
, (3.3)

where

`(θ, µ, σ2
θ , σ

2
e ; y) =

q∏
i=1

m∏
j=1

(2πσ2
e)
−1/2 exp

{
− 1

2σ2
e

(yij − θi)2
}
.

We consider two (improper) priors for (µ, σ2
θ , σ

2
e). The first is the widely-used “standard diffuse prior”

given by

ps(µ, σ2
θ , σ

2
e) ∝

(
σ2
e(σ

2
θ)

1/2
)−1

.

Serious Bayesians disagree about the suitability of this prior. Indeed, Gelman (2006) endorses it, but

Bernardo (1996) states that “. . . the use of ‘standard’ improper power priors on the variances is a well doc-

umented case of careless prior specification . . . .” Bernardo goes on to recommend the so-called reference
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prior of Berger and Bernardo (1992), which is the second prior that we consider. This prior takes the form

pr(µ, σ2
θ , σ

2
e) ∝ (σ2

θ)
−Cm/2(σ2

e)
−1
[
m− 1 +

(
σ2
e/(σ

2
e +mσ2

θ)
)2]1/2

,

where Cm = 1 −
√
m− 1

/
(
√
m +

√
m− 1 )3. Let πr(θ, µ, σ2

θ , σ
2
e) denote the posterior density under

pr. A necessary and sufficient condition for propriety of the posterior under either ps or pr is q ≥ 3

(see Proposition 1 below). In the remainder of this subsection, we explain how to use a well studied

Gibbs sampler for πs(θ, µ, σ2
θ , σ

2
e) to approximate intractable posterior expectations under πr(θ, µ, σ2

θ , σ
2
e),

which is the more complex of the two posterior densities.

The standard diffuse prior, ps(µ, σ2
θ , σ

2
e), is a conditionally conjugate prior; that is, for each param-

eter, the prior and the full conditional density have the same form. For example, the prior on σ2
θ has

an inverse-gamma form, and the corresponding full conditional density, πs(σ2
θ |σ2

e , µ, θ), is an inverse-

gamma density. In fact, straightforward manipulation of (3.3) shows that πs(µ, θ |σ2
θ , σ

2
e) is a multivariate

normal density, and that πs(σ2
θ , σ

2
e |µ, θ) factors into a product of two inverse-gamma densities. Thus, it

is easy to simulate a block Gibbs sampler for the posterior πs that alternates between drawing (σ2
θ , σ

2
e)

and (µ, θ), conditioning on the most recent value of the other. The precise forms of πs(µ, θ |σ2
θ , σ

2
e) and

πs(σ2
θ , σ

2
e |µ, θ) are provided by Tan and Hobert (2009), who proved that the Markov chain underlying the

block Gibbs algorithm is geometrically ergodic. These authors also developed a minorization condition of

the form (2.1). In other words, Tan and Hobert (2009) showed that the block Gibbs sampler for πs satisfies

the conditions of Corollary 1.

Now consider what the development and analysis of an MCMC algorithm for πr would entail. Since

the reference prior, pr(µ, σ2
θ , σ

2
e), is not conditionally conjugate, the Gibbs sampler for πr would not be

as straightforward to simulate as that for πs. In particular, the full conditional densities for the variance

components have non-standard forms, so sampling from these densities would require some type of rejec-

tion sampling. Another possibility would be to replace the Gibbs updates of the variance components with

Metropolis-Hastings moves. No matter how we choose to deal with the variance components, one thing is

clear: the MCMC algorithm for πr will be more difficult to implement and more challenging to analyze

than would be the block Gibbs sampler for πs.

For researchers who simply want reliable estimators of posterior expectations with respect to πr, and

are not interested in conquering the theoretical difficulties associated with the reference prior, this is an

ideal situation in which to apply the importance sampling methods described in the previous section.

In particular, the block Gibbs sampler for πs can be used to construct estimators (and valid asymptotic

standard errors) for intractable posterior expectations of the form Eπrf(µ, σ2
θ , σ

2
e), as long as the moment

conditions in (3.1) are satisfied. The following result is useful for checking the moment conditions and

will be applied in the next subsection.
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Proposition 1 A necessary and sufficient condition for propriety of the posterior under either ps or pr is

q ≥ 3. Moreover, if q ≥ 3 and s, t ∈ R, then Eπs
[
(σ2
θ)
s(σ2

e)
t
]
< ∞ if and only if the following two

conditions are satisfied:

1. −1/2 < s < q/2− 1,

2. s+ t < mq/2− 1.

The proof of the proposition is in the Appendix.

3.2 A Numerical Example: Styrene Exposure Data

Here we use the Bayesian model from the previous subsection to analyze a real data set from Lyles et al.

(1997). Thirteen workers were randomly selected from a group within a boat manufacturing plant and

each worker’s styrene exposure was measured on three separate occasions. The data set was previously

analyzed in Tan and Hobert (2009), which reproduces the data and also gives some summary statistics.

The two posterior distributions for (θ, µ, σ2
θ , σ

2
e) under consideration are πs, which is based on the standard

diffuse prior, and πr, which is based on the reference prior. Both posteriors are proper since q = 13. We

will focus on the posterior expectations of three functions: f1(µ, σ2
θ , σ

2
e) = σ2

θ , f2(µ, σ2
θ , σ

2
e) = σ2

e , and

f3(µ, σ2
θ , σ

2
e) = σ2

θ/(σ
2
θ + σ2

e). Note that f3 is the correlation between observations on the same worker.

Tan and Hobert (2009) used their minorization condition to simulate R = 40,000 regenerations of

the block Gibbs sampler for πs. This simulation was used to produce estimates and standard errors for

Eπsfi(µ, σ2
θ , σ

2
e), i = 1, 2, 3, and their results are summarized in Table 1. Figure 1 gives trace plots that

justify the choice R = 40,000. Now consider re-using Tan and Hobert’s (2009) block Gibbs output to

produce estimates and standard errors for Eπrfi(µ, σ2
θ , σ

2
e), i = 1, 2, 3. According to Corollary 1, our

importance sampling results are applicable if we can find ε > 0 such that Eπs |fi pr/ps|2+ε < ∞ for

i = 0, 1, 2, 3, where f0 ≡ 1. First, note that |fipr/ps| = fi pr/ps, since all the terms are positive. Now

pr(µ, σ2
θ , σ

2
e)

ps(µ, σ2
θ , σ

2
e)

=
(σ2
θ)
−C3/2(σ2

e)
−1
[
2 +

(
σ2
e/(σ

2
e + 3σ2

θ)
)2]1/2

(σ2
θ)
−1/2(σ2

e)−1

= (σ2
θ)

(1−C3)/2

[
2 +

(
σ2
e

σ2
e + 3σ2

θ

)2
]1/2

≤
√

3(σ2
θ)

(1−C3)/2,

where C3
.= 0.96. This inequality together with Proposition 1 shows that Eπs |fi pr/ps|3 < ∞ for i =

0, 1, 2, 3. Hence, our importance sampling technique is applicable, and the results are given in Table 1.

Again, Figure 1 justifies the use of R = 40,000. From Table 1 we see that the estimates under the two

priors are very close, so the issues regarding choice of the prior raised by Bernardo (1996) are not a concern

for this data set.
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Prior Estimate γ̂2
√
γ̂2/R Estimate ±2

√
γ̂2/R

σ2
θ Diffuse 0.19023 0.03523 0.00094 (0.18835, 0.19210)

Reference 0.18625 0.03411 0.00092 (0.18440, 0.18813)

σ2
e Diffuse 0.61849 0.00966 0.00049 (0.61751, 0.61947)

Reference 0.62134 0.00937 0.00048 (0.62037, 0.62230)

σ2
θ/(σ

2
θ + σ2

e) Diffuse 0.21304 0.03687 0.00096 (0.21112, 0.21496)

Reference 0.20881 0.03571 0.00094 (0.20692, 0.21070)

Table 1: In the styrene exposure data analysis, there are three quantities of interest, σ2
θ , σ2

e , and σ2
θ/(σ

2
θ +

σ2
e), and two different priors. For each combination of these, the table provides estimates of the posterior

expectation and the corresponding asymptotic variance, as well as the standard error and a 95% asymptotic

CI. Results are based on R = 40,000 regenerations.

4 Multiple-Chain Importance Sampling in Bayesian Posterior Analysis

Here we consider a standard Bayesian setup in which we have a parametric family of prior densities

{ph, h ∈ H} on the parameter θ, we observe a data vector y, whose distribution is given by the likelihood

function `(θ; y), and we have posterior densities given by πh(θ) = `(θ; y)ph(θ)/mh. We are interested in

estimating certain features of πh for all h ∈ H. As mentioned earlier, the single-chain importance sampling

method does not work well here, and we use multiple-chain importance sampling instead. This section

illustrates our methodology on a model for variable selection in Bayesian linear regression. Section 4.1

presents the model, reviews an MCMC algorithm for making inference using the model and describes its

regenerative features. Section 4.2 gives an illustration on a data set.

In Section 1 we stated that our goals are to estimate ηh = Eπhf and mh for all h ∈ H, and be-

fore proceeding we discuss the problem of estimating mh and the objective in doing so. The quantity

mh := mh(y) =
∫
`(θ; y)ph(θ) dθ is the marginal likelihood of the data y when the prior is ph, and may

be viewed as a measure of compatibility of the prior with the data y: priors for which mh is very small are

deemed implausible, and hopt = argmaxhmh is the empirical Bayes choice of h. It turns out that estimat-

ing mh itself is computationally very difficult—for example the harmonic mean estimator (Newton and

Raftery, 1994) almost always has infinite variance—but for fixed h1 ∈ H, estimating the ratio mh/mh1 is

computationally far easier, and statistically equivalent: the information regarding h in the function mh is

the same as the information regarding h in the functionmh/mh1 (these two functions have the same shape,

and in particular, argmaxhmh = argmaxh(mh/mh1)). For this reason, we consider only estimation of

mh/mh1 .
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Figure 1: Top plot shows evolution of the estimator of Eπsσ
2
θ and the corresponding 95% asymptotic CI as

the number of regenerations grows. Solid line represents the estimator and dashed lines denote the upper

and lower endpoints of the CI. Middle plot does the same forEπrσ
2
θ . Bottom plot displays evolution of the

estimate of the asymptotic variance, τ̂2, of the estimators of Eπsσ
2
θ (solid line) and Eπrσ

2
θ (dashed line).

4.1 Illustration on a Model for Variable Selection in Bayesian Linear Regression

The most commonly used setup for variable selection in Bayesian linear regression is described as follows.

We have a response vector Y = (Y1, . . . , Ym)> and a set of potential predictors X1, . . . , Xq, each a vector

of length m. Every subset of predictors is identified with a binary vector γ = (γ1, . . . , γq)> ∈ {0, 1}q,

where γj = 1 if Xj is included in the model and γj = 0 otherwise. For every γ, we have a model given by

Y = 1mβ0 +Xγβγ + ε,

where 1m is the vector of m 1’s, Xγ is the design matrix whose columns consist of the predictor vectors

corresponding to γ, βγ is the vector of coefficients for that subset, and ε ∼ Nm(0, σ2I). For this setup, the

unknown parameter is θ = (γ, σ, β0, βγ), which includes the indicator of the subset of variables that go

into the regression model. The prior on θ is a hierarchy in which we first select the variables that go into
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the regression model, then a “non-informative prior” is given to (σ2, β0), and given γ and σ, we choose

βγ from some proper distribution. The specific instance of this model that we will consider is indexed by

two hyperparameters, w ∈ (0, 1) and g > 0, and is given in detail as follows:

given γ, σ, β0, βγ , Y ∼ Nm(1mβ0 +Xγβγ , σ
2I), (4.1a)

given γ, σ, βγ ∼ Nqγ
(
0, gσ2(X>γ Xγ)−1

)
, (4.1b)

(σ2, β0) ∼ p(β0, σ
2) ∝ 1/σ2, (4.1c)

γ ∼ p(γ) = wqγ (1− w)q−qγ . (4.1d)

The prior on γ given by (4.1d) is the so-called independence Bernoulli prior, in which every variable goes

into the model with probability w, independently of all the other variables. In (4.1b), qγ =
∑q

j=1 γj is

the number of predictors that go in the regression, and the prior on βγ is Zellner’s g-prior (Zellner, 1986).

Because (σ2, β0) is given an improper prior (line (4.1c)), the prior on θ is improper; however, it turns out

that the posterior distribution of θ is proper. Models of the type (4.1) were introduced by Mitchell and

Beauchamp (1988) and have been studied in dozens of papers; see Liang et al. (2008) for a review and

recent developments.

The hyperparameter h = (w, g) plays a critical role: if w is small and g is large, the prior ph concen-

trates its mass on models with few variables and large coefficients, while if w is large and g is small, ph

concentrates its mass on models with many variables and small coefficients. (To appreciate the importance

of the role played by h, note that George and Foster (2000) have shown that for the slightly different ver-

sion of (4.1) in which σ2 is assumed known, h can be chosen so that the highest posterior probability model

is exactly the best model under the AIC/Cp, BIC, or RIC criteria.) Therefore, h plays a central role, and it

is important to choose it properly. It is in order to do this that we need to estimate mh, h ∈ H, or rather,

as discussed earlier estimate cmh, h ∈ H, where c is a constant. For our first goal, namely to estimate the

family of posterior expectations Eπhf, h ∈ H, an example of a function of interest is f(θ) = I(γ1 = 1),

in which case Eπhf is the posterior probability that variable 1 is included in the model.

The marginal likelihood of the data, mh, is in general the sum of 2q integrals (George and Fos-

ter, 2000), and is computable when q is relatively small (q less than 20 or 25). The constant d =

(mh2/mh1 , . . . ,mhk/mh1) is then available, and this case provides an example of a situation where the

methods of Section 2.1 apply.

A Regenerative Markov Chain for Estimating the Posterior Distribution MCMC methodology for

estimating posterior distributions for model (4.1) fall into two categories. Smith and Kohn (1996) de-

veloped a Markov chain algorithm which runs only on γ, the other variables being integrated out. Their
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chain is a simple Gibbs sampler which runs on the vector (γ1, . . . , γq)>, updating one component at a

time. Many variants of their scheme have been proposed; see Clyde and George (2004) for a review. It is

also possible to devise a Markov chain that runs over θ = (γ, σ, β0, βγ). The algorithm in Buta and Doss

(2011) is of this sort. Accordingly, there are two ways of considering model (4.1).

1. We can take γ as the sole parameter. In this case, (4.1d) is the prior, and the likelihood, given by (4.1a)–

(4.1c), is now an integral. Fortunately, this integral is available in closed form. We have

`h(γ; y) = cm
∥∥y − (1/m)1m1>my

∥∥−(m−1) (1 + g)(m−qγ−1)/2
[
1 + g(1−R2

γ)
]−(m−1)/2

, (4.2)

where R2
γ is the usual coefficient of determination of model γ, and cm is a constant that depends

only on m. Note that the likelihood now depends on the hyperparameter h = (w, g) (through its

second component) and our notation `h(γ; y) emphasizes this fact. Markov chains of the kind that were

developed by Smith and Kohn (1996) are compatible with this point of view.

2. We can take the parameter to be θ = (γ, σ, β0, βγ). In this case, (4.1b)–(4.1d) specify the prior on θ,

and the likelihood is (4.1a). The Markov chain on θ developed by Buta and Doss (2011) is compatible

with this view.

We now summarize. Suppose we are considering two hyperparameters h1 = (w1, g1) and h2 =

(w2, g2), we have available a (single) Markov chain with invariant density πh1 , and we wish to estimate

Eπh2
f for some function f . As explained in the beginning of Section 3, we need to take averages which

involve ratios of the sort
`h2(ϑ)ph2(ϑ)
`h1(ϑ)ph1(ϑ)

, (4.3)

where ϑ is the parameter (either γ or θ).

In the first view of model (4.1), we generate a chain on only γ, and this chain can be a simple Gibbs

sampler. Also, the ratio of the prior densities is trivial: from (4.1d) we have

ph2(γ)/ph1(γ) = (w2/w1)qγ
(
(1− w2)/(1− w1)

)q−qγ . (4.4)

But the price to pay is that we need to calculate `h2(γ)/`h1(γ) which, in view of (4.2), involves the

coefficient of determination R2
γ . Calculation of R2

γ requires O(q2γ) operations.

In the second way of viewing model (4.1), the likelihood does not involve the hyperparameter, and

therefore cancels in (4.3). On the other hand, the price to be paid is that (i) we need to generate a chain

that runs on (γ, σ, β0, βγ), and (ii) the prior distributions are not absolutely continuous with respect to the

product of counting measure on {0, 1}q and Lebesgue measure on (0,∞) × R+ × Rq+1 (the dimension

of βγ is not fixed). The “ratio of densities” ph2(θ)/ph1(θ) then needs to be taken as a Radon-Nikodym
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derivative, and while a formula exists (Doss, 2007, eq. (7)), it is not nearly as simple as (4.4). Although it

is possible to proceed with either view, in the present paper we take the first view.

Let πh(γ) denote the posterior distribution of γ in model (4.1). All existing MCMC algorithms that

run on γ (be they Gibbs samplers or Metropolis-Hastings algorithms) require, in one way or another, the

calculation of πh(γ̃)/πh(γ) for γ̃, γ ∈ {0, 1}q. This ratio is available from the relation

πh(γ) ∝ (1 + g)(m−qγ−1)/2
[
1 + g(1−R2

γ)
]−(m−1)/2

wqγ (1− w)q−qγ , (4.5)

which follows directly from (4.2). Here, we use the simple Gibbs sampler devised by Smith and Kohn

(1996): the explicit nature of the Markov transition density for this chain makes it easy to develop the

needed minorization condition, and this is done in the Appendix.

4.2 Analysis of the Ozone Data

Here we illustrate our methods on the ozone data set originally presented in Breiman and Friedman (1985).

The data were re-analyzed by many authors and were recently analyzed in a Bayesian framework by

Casella and Moreno (2006) and Liang et al. (2008). This data set seems ideal because it has been studied

in several papers already, so we can compare our results with previous analyses. The dataset consists

of daily measurements of the maximum ozone concentration near Los Angeles and eight meteorological

variables for 330 days. Following Casella and Moreno (2006) and Liang et al. (2008), we consider the

eight meteorological variables, plus two-way interactions and squares, leading to 44 possible predictors.

This results in 244 ≈ 1.7 × 1013 potential regression models. A description of the variables is given in

Appendix D of Liang et al. (2008).

We have two goals. First, we wish to make a plot of the Bayes factor surface mh/mh1 as h varies, and

also provide pointwise error margins. The literature has several (conflicting) suggestions for the value of

g to use, and these are reviewed in Liang et al. (2008). The Bayes factor plot will enable us to rule out

the h’s which are obviously inappropriate (and in particular to rule out certain values of g), and will also

provide us with an estimate of hopt.

Liang et al. (2008) give the models (i.e. list of variables to include) for ten variable selection algorithms,

including several Bayesian ones (all of which use w = .5). Interestingly, certain variables, notably hum

and the interaction hum×ibt, are included by several of the algorithms but not by others. Consider the

quantities Eπ(.5,g)
I(γhum = 1) and Eπ(.5,g)

I(γhum×ibt = 1), which are the posterior probabilities that these

two variables are included. Our second objective is to plot estimates of these as functions of g, and also to

provide pointwise confidence bands.

The left panel of Figure 2 gives a plot of the estimates of the Bayes factors mh/mh1 . To form the plot
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we took as skeleton set the grid consisting of the 16 values

(w, g) ∈ {.05, .15, .25, .35} × {75, 125, 225, 375}.

In Stage 1 we ran 16 chains, corresponding to the same skeleton values, for 500 regenerations each (a

regeneration required about 60 iterations on average). We used these to obtain d̂ via the method described

in Section 2.2. In Stage 2, we ran the same 16 regenerative chains, and used these, together with d̂, to form

the estimates ûn for the 1311 values of h which result when w ranges from .01 to .45 in increments of .02

and g ranges from 20 to 300 in increments of 5. (We carried out a small pilot experiment to identify the set

of h’s having relatively high marginal likelihoods, and from this experiment we determined the skeleton

grid and the range of h’s for which the plot is made. Also, we selected h1 = (.15, 125) because this was a

point of fairly high marginal likelihood.) Each chain was run for 200 regenerations. (Our theory does not

require that we use the same number of regenerations for all the chains, and chains that mix more slowly

could be run for a greater number of regenerations; however, we did not see a need to do this in the present

example.) From the left panel of Figure 2 we see that the value of h at which the maximum is attained is

h = (.15, 150). The right panel gives a plot of the estimated standard errors for the estimates in the left

panel. These are obtained using the estimate of variance given in Theorem 2. From the right panel we see

that the estimated standard error is less than .039 over the entire range of the plot.
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Figure 2: Model assessment for the ozone data. Left panel gives plot of the Bayes factor estimate as a

function of hyperparameter values (w, g) when the baseline hyperparameter value is given by w = .15

and g = 125. Right panel gives the corresponding standard error estimates.

Figure 3 gives, for each of the variables hum and hum×ibt, the estimate of the posterior inclusion

probability as a function of g, together with 95% confidence bands (the bands are formed using the estimate

given in Theorem 2). From the figure, we see clearly that for any g that is deemed a reasonable choice
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by Figure 2, the variable hum should be included in the model, while there is considerable uncertainty

regarding whether or not to include hum×ibt.
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Figure 3: Uncertainty in variable inclusion for the ozone data. Left panel gives a plot of the Monte Carlo

estimate of the posterior inclusion probability for the variable hum, as a function of g, together with 95%

confidence bands, valid pointwise. Right panel is for the variable hum×ibt.

Figure 4 shows the evolution of the estimate of variance of the Bayes factor estimate for three values

of h, as the number of tours increases (the ratio of number of Stage 1 tours to number of Stage 2 tours is

kept fixed at 2.5). The plots suggest that the asymptotic variance estimates have stabilized when we use

200 tours for each chain in stage 2, and justifies our choice of Rj = 200 for j = 1, . . . , 16.
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Figure 4: Plot of evolution of estimate of asymptotic variance of the Bayes factor estimate as the number

of tours increases.
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5 Discussion

The only hypothesis in Theorems 1 and 2 that may be difficult to check is the geometric ergodicity of

the Markov chains. We note, however, that geometric ergodicity is a standard assumption that underlies

almost every method for calculating standard errors of MCMC-based estimators (see, e.g., Roberts and

Rosenthal, 1998; Jones and Hobert, 2001; Flegal et al., 2008). Currently, the main technique available for

proving that a Markov chain is geometrically ergodic is the construction of a geometric drift condition as

described in Chapter 15 of Meyn and Tweedie (1993). Successful applications of this technique include

Roberts and Tweedie’s (1996) analysis of Metropolis-Hastings algorithms, Roberts and Rosenthal’s (1999)

examination of slice samplers, and the studies of Jones and Hobert (2004) and Roy and Hobert (2007), who

looked at Gibbs samplers. Despite these successes, it is generally understood that establishing geometric

ergodicity of Monte Carlo Markov chains via drift conditions is quite challenging. Indeed, Fill et al.

(2000) describe it as “difficult theoretical analysis,” while Diaconis et al. (2008) lament that the required

drift functions are hard to identify and refer to the method as “a matter of art.”

In this paper we have shown that if Φ1, . . . ,Φk are k geometrically ergodic Markov chains with invari-

ant densities πh1 , . . . , πhk , respectively, and if the density πh is similar to at least one of πh1 , . . . , πhk , then

the scope of the k MCMC algorithms can be extended to the honest exploration of πh. The methodology

can be used in two ways. On occasion, πh has a structure that is fundamentally different from that of

πh1 , . . . , πhk , and our approach enables us to circumvent the construction and analysis of a new MCMC

algorithm; this is the case for the application in Section 3.1, in which k = 1. In other situations, all the πh’s

come from the same parametric family, and the issue is not the need to develop new MCMC algorithms,

but rather how to handle many πh’s simultaneously; this is the case for the application in Section 4.1.

Appendix

Proof of Theorem 2 We first prove the statement regarding η̂. Note that

R
1/2
1

[
η̂
(
(1, d̂), d̂

)
− η
]

= R
1/2
1

[
η̂
(
(1, d̂), d̂

)
− η̂
(
(1,d),d

)]
+R

1/2
1

[
η̂
(
(1,d),d

)
− η
]
. (A.1)

The second term on the right side of (A.1) involves randomness coming only from Stage 2 sampling, and

its distribution is given by Theorem 1: it is asymptotically normal with mean 0 and an easy-to-estimate

variance τ2. The first term involves randomness from both Stage 1 and Stage 2 sampling. However,

we will show that for this term, the randomness from Stage 2 is asymptotically negligible, so that only

Stage 1 sampling contributes to its asymptotic distribution. This will enable us to obtain its asymptotic

distribution, and the asymptotic normality of the left side of (A.1) will follow immediately, since the two

stages of sampling are independent.
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Now consider the first term on the right side of (A.1). Recall that if a = (1,d), then

v(x) := v(x;a,d) =
f(x)ν(x)∑k
l=1 νl(x)

and u(x) := u(x;a,d) =
ν(x)∑k
l=1 νl(x)

.

With (2.19) and (2.20) in mind, define the function

A(z) = η̂
(
(1, z), z

)
=

k∑
l=1

zl
nl

nl∑
i=1

v(X(l)
i )
/ k∑

l=1

zl
nl

nl∑
i=1

u(X(l)
i )

for z = (z2, . . . , zk)>, with zl > 0 for l = 2, . . . , k, and z1 = 1. Note that setting z = d gives

A(d) = η̂((1,d),d), and setting z = d̂ gives A(d̂) = η̂((1, d̂), d̂). By a Taylor series expansion of A

about d we get

R
1/2
1

[
η̂
(
(1, d̂), d̂

)
− η̂
(
(1,d),d

)]
= R

1/2
1 ∇A(d)>(d̂− d) +

R
1/2
1

2
(d̂− d)>∇2A(d∗)(d̂− d)

= R
1/2
1 ∇A(d)>(d̂− d) +

R
1/2
1

2ρ1

(
ρ
1/2
1 (d̂− d)

)>∇2A(d∗)
(
ρ
1/2
1 (d̂− d)

)
,

where d∗ is between d and d̂. As R1 → ∞, nl → ∞ for each l. We first show that the gradient

∇A(d) converges almost surely to a finite constant vector by proving that each one of its components,

[A(d)]j−1, j = 2, . . . , k, converges almost surely as R1 → ∞. As nl → ∞ for l = 1, . . . , k, for

j = 2, . . . , k, we have

[∇A(d)]j−1 =
(1/nj)

∑nj
i=1 v(X(j)

i )∑k
l=1(dl/nl)

∑nl
i=1 u(X(l)

i )
−
(∑k

l=1(dl/nl)
∑nl

i=1 v(X(l)
i )
)(

(1/nj)
∑nj

i=1 u(X(j)
i )
)(∑k

l=1(dl/nl)
∑nl

i=1 u(X(l)
i )
)2

a.s.−→
Eπjv∑k

l=1 dlEπlu
−
(∑k

l=1 dlEπlv
)(
Eπju

)(∑k
l=1 dlEπlu

)2 . (A.2)

The expression in (A.2) corresponds toHj−1, which was defined in (2.21), and it is finite by Assumption 3

of Theorem 1. Next, we show that the random Hessian matrix ∇2A(d∗) is bounded in probability, i.e.,

each element of this matrix is Op(1). As nl →∞ for l = 1, . . . , k, for any j, t ∈ {2, . . . , k}, we have

[∇2F (d∗)]t−1,j−1 = −

(
1
nj

∑nj
i=1 v(X(j)

i )
)(

1
nt

∑nt
i=1 u(X(t)

i )
)

(∑k
l=1

d∗l
nl

∑nl
i=1 u(X(l)

i )
)2

−
(

1
nj

nj∑
i=1

u(X(j)
i )
)[ 1

nt

∑nt
i=1 v(X(t)

i )(∑k
l=1

d∗l
nl

∑nl
i=1 u(X(l)

i )
)2 − 2

(∑k
l=1

d∗l
nl

∑nl
i=1 v(X(l)

i )
)(

1
nt

∑nt
i=1 u(X(t)

i )
)(∑k

l=1
d∗l
nl

∑nl
i=1 u(X(l)

i )
)3

]

a.s.−→ −
(Eπjv)(Eπtu)(∑k

l=1 dlEπlu
)2 − (Eπju)

[
Eπtv(∑k

l=1 dlEπlu
)2 − 2

(∑k
l=1 dlEπlv

)
(Eπtu)(∑k

l=1 dlEπlu
)3

]
,

where the limits are also finite.
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Now, we can rewrite (A.1) as

R
1/2
1

[
η̂
(
(1, d̂), d̂

)
− η
]

= (R1/ρ1)1/2∇A(d)>ρ1/2
1 (d̂− d) +R

1/2
1

[
η̂
(
(1,d),d

)
− η
]

+
1

2ρ1/2
1

(R1/ρ1)1/2
[
ρ
1/2
1 (d̂− d)

]>∇2A(d∗)
[
ρ
1/2
1 (d̂− d)

]
= q1/2[∇A(d)]>ρ1/2

1 (d̂− d) +R
1/2
1

[
η̂
(
(1,d),d

)
− η
]

+ op(1).

Since the two sampling stages are assumed to be independent, we conclude that

R
1/2
1

[
η̂
(
(1, d̂), d̂

)
− η
] d→ N

(
0, q[∇A(d)]>W [∇A(d)] + τ2

)
.

The proof of the CLT for û is similar but easier. As in (A.1), we have

R
1/2
1

[
û
(
(1, d̂), d̂

)
−m/m1

]
= R

1/2
1

[
û
(
(1, d̂), d̂

)
− û
(
(1,d),d

)]
+R1/2

1

[
û
(
(1,d),d

)
−m/m1

]
. (A.3)

The asymptotic distribution of the second term in (A.3) is given in Theorem 1. The first term is linear in

d̂− d:

û
(
(1, d̂), d̂

)
− û
(
(1,d),d

)
=

k∑
j=2

(
1
nj

nj∑
i=1

u(X(j)
i )
)

(d̂j − dj). (A.4)

For j = 2, . . . , k, the coefficient of (d̂j − dj) in (A.4) converges almost surely to Eπju, which is the term

Mj−1 defined in (2.21). Finally, from the independence of the two terms in (A.3) we conclude that

R
1/2
1

[
û
(
(1, d̂), d̂

)
−m/m1

] d→ N
(
0, qM>WM + κ2

)
. �

Proof of Proposition 1 Consider a family of priors for (µ, σ2
θ , σ

2
e) given by

ra,b(µ, σ2
θ , σ

2
e) ∝ (σ2

θ)
−(a+1)(σ2

e)
−(b+1),

where a and b are known hyperparameters. Hobert and Casella (1996) showed that the posterior density

under ra,b is proper if and only if

1− q
2

< a < 0 and a+ b >
1−mq

2
. (A.5)

In other words, the integral

ma,b(y) :=
∫ ∞

0

∫ ∞
0

∫
R

∫
Rq

(σ2
θ)
−(a+1)(σ2

e)
−(b+1) φ(θ |µ, σ2

θ , σ
2
e)`(θ, µ, σ

2
θ , σ

2
e ; y) dθ dµ dσ2

θ dσ
2
e

is finite if and only if (A.5) is satisfied. The standard diffuse prior corresponds to ra,b with a = −1/2 and

b = 0, and in this special case, (A.5) is satisfied if and only if q ≥ 3. Now consider the reference prior,

and note that [
m− 1 +

(
σ2
e/(σ

2
e +mσ2

θ)
)2]1/2 ∈ [√m− 1,

√
m
]
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for all (σ2
e , σ

2
θ) ∈ (0,∞) × (0,∞). Consequently, as far as propriety of the posterior is concerned, the

reference prior behaves like ra,b with a = −1 +Cm/2 and b = 0. Combining Hobert and Casella’s (1996)

propriety result with the fact that Cm ∈ (0.92, 1) for all m ≥ 2 shows that the reference prior yields a

proper posterior if and only if q ≥ 3.

Now assume that q ≥ 3, so that πr is well defined. Noting that

Eπr
[
(σ2
θ)
s(σ2

e)
t
]

=
1

m−1/2,0(y)

∫ ∞
0

∫ ∞
0

∫
R

∫
Rq

(σ2
θ)
s−1/2(σ2

e)
t−1 φ(θ |µ, σ2

θ , σ
2
e) `(θ, µ, σ

2
θ , σ

2
e ; y) dθ dµ dσ2

θ dσ
2
e ,

the result follows directly from another application of Hobert and Casella’s (1996) propriety result.

Minorization Condition for the Gibbs Sampler of Smith and Kohn (1996) The transition density of

the Gibbs sampler of Smith and Kohn (1996) is given by

k(γ̃ | γ) = πh(γ̃1 | γ2, . . . , γq)πh(γ̃2 | γ̃1, γ3 . . . , γq) . . . πh(γ̃q | γ̃1, . . . , γ̃q−1), γ, γ̃ ∈ {0, 1}q,

where πh is given by (4.5). It is easy to see that the underlying Markov chain is irreducible and aperiodic.

And because the state space is finite, the chain is actually uniformly ergodic. We now give a minorization

condition that can be used as the basis for regeneration in the Gibbs sampler. The method we use involves

the “distinguished point” technique discussed in Mykland et al. (1995). Let γ∗ denote a fixed model,

which we will refer to as a distinguished point, and let D ⊂ {0, 1}q be a set of models. (Both γ∗ and D

are arbitrary, but below we give guidelines for making a practical choice.) We have

k(γ̃ | γ) =
k(γ̃ | γ)
k(γ̃ | γ∗)

k(γ̃ | γ∗)

≥
[

min
γ′∈D

k(γ′ | γ)
k(γ′ | γ∗)

]
k(γ̃ | γ∗)ID(γ̃)

=
{
c min
γ′∈D

k(γ′ | γ)
k(γ′ | γ∗)

}{
1
c
k(γ̃ | γ∗)ID(γ̃)

}
=: s(γ)q(γ̃),

where c =
∑

γ′∈D k(γ′ | γ∗) is a normalizing constant. Note that the value of c is not required to carry out

regenerative simulation because the regeneration probability (2.3) involves the product of s and q in which

c cancels out.

The choice of γ∗ and D affects the regeneration rate. Referring to equation (2.3), ideally we would

like the regeneration probability to be as big as possible. Notice that regeneration can occur only if γ̃ ∈ D.

This suggests making D large. However, increasing the size of D makes s(γ) smaller. We have found that

a reasonable tradeoff consists of taking D to be the smallest set of models that encompasses 10% of the
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posterior probability. Also, the obvious choice for γ∗ is the highest probability model. The distinguished

point γ∗ and the set D are selected from the output of a pilot (relatively short) chain.
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