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Abstract

Markov chain Monte Carlo (MCMC) algorithms have greatly facilitated the popularity of Bayesian

variable selection and model averaging in problems with high-dimensional covariates where enu-

meration of the model space is infeasible. A variety of such algorithms have been proposed in the

literature for sampling models from the posterior distribution in Bayesian variable selection. Ghosh

and Clyde proposed a method to exploit the properties of orthogonal design matrices. Their data

augmentation algorithm scales up the computation tremendously compared to traditional Gibbs

samplers, and leads to the availability of Rao–Blackwellized estimates of quantities of interest

for the original non-orthogonal problem. The algorithm has excellent performance when the cor-

relations among the columns of the design matrix are small, but empirical results suggest that

moderate to strong multicollinearity leads to slow mixing. This motivates the need to develop a

class of novel sandwich algorithms for Bayesian variable selection that improves upon the algo-

rithm of Ghosh and Clyde. It is proved that the Haar algorithm with the largest group that acts on

the space of models is the optimum algorithm, within the parameter expansion data augmentation

(PXDA) class of sandwich algorithms. The result provides theoretical insight but using the largest

group is computationally prohibitive so two new computationally viable sandwich algorithms are

developed, which are inspired by the Haar algorithm, but do not necessarily belong to the class of

PXDA algorithms. It is illustrated via simulation studies and real data analysis that several of the

sandwich algorithms can offer substantial gains in the presence of multicollinearity.
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1. Introduction

Linear regression remains one of the most popular methods for modeling the relationship be-

tween a Gaussian response variable and a set of covariates. In recent years this model has re-

ceived renewed interest for high-dimensional applications where variable selection is commonly

employed to identify important covariates. The implementation of Bayesian variable selection in

linear regression for general design matrices may prove to be challenging, but the posterior compu-

tation can be scaled up tremendously with design matrices having orthogonal columns and certain

prior structures. Clyde et al. [2] orthogonalized the design matrix in linear regression and devel-

oped algorithms that led to better predictive performance, but these cannot be used for variable

selection for the original covariates. Ghosh and Clyde [10] proposed a framework that utilized the

computational advantages of orthogonal designs but also allowed both model averaging and model

selection in terms of the original non-orthogonal covariates. We begin with a brief description

of their algorithm and then propose new methods based on sandwich algorithms that use Markov

chains with faster convergence rates.

Let Wo = [w0, . . . , wp] denote the no × (p + 1) observed design matrix where w0 is a column

of ones corresponding to the intercept, and let Zo = (Z1, . . . , Zno
)T be the vector of observed

response variables. Except for the first column corresponding to the intercept, all other columns of

Wo are standardized to have mean zero and norm no
1/2. Under the variable selection framework,

models can be denoted by γ = (γ1, . . . , γp)
T , where γj is binary with γj = 1 when the covariate

wj is included in the model and γj = 0 when wj is absent from the model. It is assumed that

βj = 0 when γj = 0, where βj is the jth regression coefficient and let pγ =
∑p

j=1 γj . Then the

linear model for the observed data under model γ is given by

Zo | βγ, φ, γ ∼ N(Woγβγ , Ino
/φ), (1)

where Woγ is the no × (pγ + 1) design matrix, βγ is the (pγ + 1) dimensional vector of non-zero
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model specific regression coefficients, and φ is the reciprocal of the error variance. The intercept

is included in all models and independent prior distributions are assigned as follows:

p(β0) ∝ 1,

p(φ) ∝ 1/φ,

βj | φ, γj ∼ N(0, (φλj)
−1γj) for j = 1, . . . , p , and

p(γ) =

p∏

j=1

π
γj
j (1− πj)

1−γj , (2)

where λj and πj are fixed hyperparameters.

For a small number of covariates, p ≤ 25, the posterior probability of any model p(γ | Zo) is

available in closed form (see Ghosh and Clyde [10] equations (16) and (17) for the exact form).

When p is greater than 25, p(γ | Zo) is still available up to a normalizing constant, so a standard

Gibbs sampler may be constructed that converges to the posterior distribution p(γ | Zo). This

Gibbs sampler cycles through the p full conditional distributions p(γj | γ(j), Zo), where γ(j) is γ

with the jth component removed [9]. For a comprehensive review of Bayesian variable selection

see Dellaportas et al. [5], Clyde and George [3] and the references therein.

In the data augmentation approach Wo is augmented by a design matrix Wa of dimension

na × (p + 1), to make the complete design matrix Wc orthogonal. Next Zo is augmented with a

vector of na missing response variables, Za, and the vector of nc = no + na response variables is

Zc = (Zo
T , Za

T )
T

. The complete data model is given as

Zc | βγ , φ, γ,∼ N(Wcγβγ, Inc
/φ). (3)

Ghosh and Clyde [10] used a two block Gibbs sampler with invariant distribution p(φ, Za, γ | Zo).

They sample (φ, Za) ∼ p(φ, Za | γ, Zo) in one block and γ ∼ p(γ | φ, Za, Zo) in the other block.

The first block involves draws from gamma and multivariate normal distributions and the second
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block involves draws from p independent Bernoulli distributions, all of which are straightforward

to sample from. We shall refer to this as the orthogonal data augmentation (ODA) algorithm. More

details on the implementation of the ODA algorithm are given in the online supplement for this

paper.

Quantities of interest under the original posterior distribution with the non-orthogonal design

matrix may be obtained by integrating out the missing data. In practice, this is achieved by aver-

aging over the MCMC iterations. The form of the algorithm naturally leads to the development of

Rao–Blackwellized estimates. For example, the estimates of inclusion probabilities are obtained

as:

p̂(γj = 1 | Zo) = K−1

K∑

k=1

ρj(Zc
(k), φ(k), λj, πj), (4)

where K is the number of iterations after an initial burn-in, and ρj(Zc, φ, λj , πj) is the marginal

posterior inclusion probability given the missing data, which is available in closed form because of

posterior independence. Ghosh and Clyde [10] demonstrated a tremendous computational advan-

tage of their algorithm over the traditional Gibbs sampler.

The ODA algorithm is indeed a data augmentation (DA) algorithm [26], for which we provide

a general definition in Section 2.2. It is well-known that DA algorithms can suffer from slow con-

vergence. In the context of linear regression, such a situation may arise when the design matrix

exhibits multicollinearity. This may hamper the computational advantage of the ODA algorithm.

There is an extensive literature on using the sandwich method [19, 20, 14] to improve the con-

vergence rate of DA algorithms. However, such methods have not been successfully utilized for

Bayesian variable selection. This paper introduces novel sandwich algorithms for Bayesian vari-

able selection that employ sandwich moves on the γ space. In Section 2 we review the theory for

general sandwich algorithms and show that they dominate the DA algorithm according to two dif-

ferent criteria – the operator norm and the efficiency ordering. In Section 3 we propose a variety of

practical sandwich algorithms that improve upon the ODA algorithm. In Sections 4, 5, and 6, we
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use simulation studies and genuine data analyses to illustrate via empirical studies that sandwich

moves can produce substantial gains in the presence of moderate to high multicollinearity. We

conclude with some general recommendations in Section 7.

2. Improving DA algorithms

2.1. Ordering reversible Markov chains

In this paper, we restrict our discussion to Markov chains that are reversible. We first intro-

duce the notation. Suppose an MCMC algorithm updates Xn to Xn+1 using a Markov transition

kernel (Mtk) P on the state space X with invariant distribution πX . Let L2(πX) := {f : X →

R s.t.
∫

X
f 2(x)πX(dx) < ∞}. Consider the Hilbert space L2

0(πX) := {f ∈ L2(πX) s.t.
∫

X
f(x)πX(dx) =

0}, equipped with inner product (f, g) :=
∫

X
f(x)g(x)πX(dx), and hence norm ‖f‖ = (

∫
X
f 2(x)πX(dx))

1

2 .

Then P defines an operator on L2
0(πX) such that Pf(x) =

∫
X
f(x′)P (x, dx′) for any f ∈ L2

0(πX).

This induces the norm of P by ‖P‖ := sup‖f‖=1 ‖Pf‖. Note that P is defined to be an operator

on L2
0(πX), not on L2(πX), because in the latter case the norm of any Mtk P is 1, hence such an

operator norm would not be useful for characterizing the convergence rate of a Markov chain.

In practice, we desire Markov chains with good “mixing” properties. There are two differ-

ent senses of mixing. On one hand, we prefer Markov chains such that the distribution of Xn

approaches the target πX quickly as n increases. Specifically, a Markov chain is said to be ge-

ometrically ergodic, if there exists ρ < 1 such that, for any probability measure ν such that

∫ (
dν
dπX

)2
dπX < ∞ from which the initial state of the Markov chain is drawn, there exists some

Cν < ∞ that

‖νP n(·)− πX(·)‖TV ≤ Cνρ
n for all n ∈ N . (5)

Here, for a signed measure µ, ‖µ(·)‖TV := supA⊂X |µ(A)| stands for its total variation norm, and

P n is the n-step transition kernel. For a reversible Mtk P , Roberts and Rosenthal [24] showed that

the corresponding Markov chain is geometrically ergodic if and only if its operator norm ‖P‖ is
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strictly less than 1, and ‖P‖ serves as the smallest possible ρ that satisfies (5) [25, Prop.2]. On the

other hand, we would like Monte Carlo estimators of the form fn = 1
n

∑n
i=1 f(Xi) to have small,

finite asymptotic variance, denoted by Var(P, f).

The aforementioned mixing properties imply two different ways to order a pair of Mtks, P and

Q, that are both reversible with respect to πX . For an overview, see, for e.g., Mira [21]. First,

provided that P is converging with rate ‖P‖ < 1, we say that P is better than Q in the operator

norm ordering if ‖P‖ ≤ ‖Q‖. Further, if ‖P‖ < 1, then Var(P, f) < ∞ is guaranteed for

any f ∈ L2(πX). We say that P is better than Q in the efficiency ordering if Var(P, f) < ∞

and Var(P, f) ≤ Var(Q, f) for all f ∈ L2(πX). This is denoted by P ≥E Q. In the following

subsection, we focus on Markov chains that correspond to a popular MCMC method called the

DA algorithm, and describe ways to improve upon it subject to the operator norm ordering and the

efficiency ordering.

2.2. DA algorithms and a general way to improve them

To study an intractable distribution πX(x) on X, it is sometimes natural from the context of the

problem to consider a probability distribution in an augmented space X×Y, denoted by πX,Y (x, y).

Then a DA algorithm consists of the following two steps in each iteration:

1. given x, draw y ∼ πY |X(y|x);

2. given y, draw x′ ∼ πX|Y (x
′|y).

Note that the Markov chain {(Xi, Yi); i = 1, 2, . . .} generated by a DA algorithm is not reversible,

but the X-chain {Xi; i = 1, 2, . . .} and the Y -chain {Yi; i = 1, 2, . . .} are reversible Markov

chains with respect to πX and πY respectively. In the context of the ODA algorithm we shall

assign X = (φ, Za), Y = γ, and the exact form of πX|Y (x|y) and πY |X(y|x) that are needed for

sampling are provided in the online supplement. The Rao–Blackwellized estimators of the form

(4) depend on the X-chain only, so it is of practical significance to develop theoretical results for
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this chain, the Mtk of which is

P (x, x′) =

∫

Y

πY |X(y|x)πX|Y (x
′|y)µ(dy) . (6)

Here, µ denotes the base measure on Y, such as the counting measure when Y is discrete. The DA

algorithm is easy to run when πX|Y and πY |X are standard distributions, but like its relative, the

EM algorithm, it sometimes suffers from slow convergence.

Below is a general way to improve DA algorithms. For any transition S(y, y′) on Y that is

reversible with respect to πY , do the following in each iteration:

1. given x, draw y ∼ πY |X(y|x);

2. given y, draw y′ ∼ S(y, y′);

3. given y′, draw x′ ∼ πX|Y (x
′|y′).

The Mtk that corresponds to the above transition from x to x′is given by

PS(x, x
′) =

∫

Y

∫

Y

πY |X(y|x)S(y, y
′)πX|Y (x

′|y′)µ(dy)µ(dy′) . (7)

Using the terminology in Yu and Meng [27] and Khare and Hobert [16], we call the corresponding

algorithm the sandwich algorithm with sandwich move S. It was shown in Hobert and Marchev

[14] that any sandwich algorithm is valid in the sense that the reversibility of S with respect to πY

implies the reversibility of PS with respect to πX .

What are some guidelines to find good sandwich algorithms? In order to compare different

sandwich algorithms, and to understand their relationship to the original DA algorithm, we first

summarize results from Proposition 9 and Theorem 10 of Hobert and Rosenthal [13], and equa-

tion 8 of Hobert and Román [15] as the following.

Proposition 1. Suppose S and S ′ are two Mtks that are reversible with respect to πY . If S ≥E S ′,

then PS ≥E PS′ ≥E P and ‖PS‖ ≤ ‖P‖ and ‖PS′‖ ≤ ‖P‖. Further, if PS is itself a DA algorithm,
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then ‖PS‖ ≤ ‖PS′‖.

The great advantage of the sandwich idea is that, a reducible Mtk S is not useful by itself to in-

vestigate πY (·), but it can boost the performance of the DA algorithm when these two are combined

as in (7) to study πX(·). Further, among those sandwich algorithms with similar computing cost,

Proposition 1 allows us to see which ones are more efficient through an easy-to-do comparison of

the sandwich moves themselves. We will investigate concrete examples of sandwich algorithms in

the Bayesian variable selection context in section 3.

2.3. Improving DA algorithms using Haar algorithms

Perhaps the most well-known subclass of sandwich algorithms in the existing literature is the

class of parameter-expansion data augmentation (PXDA) algorithms introduced by Liu and Wu

[19]. If there exists a group structure G that acts on Y, then any probability distribution r supported

on G would correspond to a PXDA algorithm, and we denote its X-chain operator by P r
G. It turns

out that, with a fixed group G, the entire class of PXDA algorithm {P r
G}r is dominated by an

algorithm called the Haar PXDA, or simply the Haar algorithm, on G. Specifically, let PG denote

the operator of the X-chain of the Haar algorithm, then Hobert and Marchev [14] has shown that

‖P‖ ≥ ‖P r
G‖ ≥ ‖PG‖ and P ≤E P r

G ≤E PG for any r supported on G. Further, the Haar costs

no more than the PXDA per iteration, so we will restrict our attention to Haar algorithms only. A

description of PXDA and its relationship to the Haar algorithm can be found in Section 3 of the

online supplement.

For reasons given in the beginning of Section 3, we are interested in the case where Y and

G are discrete. Let νG denote the left Haar measure on G. Then the Haar algorithm can be

written as a special sandwich algorithm where the middle step transition S(y, y′) in (7) is given

by HG(y, y
′) =

∑
{g:g·y=y′} πY (g · y)νG(g), where · denotes the group action of G on Y . In other

words, the step consists of drawing g ∼ f(g) ∝ πY (g · y)νG(g), and setting y′ = g · y. We call the

transition from y to y′ according to HG a Haar move.
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There are potentially many different choices of G that act on the state space Y. How do the

corresponding Haar algorithms compare with each other? The following proposition states that

“larger” Gs yield Markov chains with better mixing properties. This new result provides some

guidance about the maximum amount of improvement possible with Haar algorithms, based on

which we can search for alternative sandwich algorithms that are more cost efficient. The proof of

the proposition is in the Appendix.

Proposition 2. Suppose G and G′ are two groups that act on Y. If G′ is a subgroup of G, then

the Haar algorithm associated with G is better than that with G′, and both are better than the

original DA algorithm, in the operator norm ordering and the efficiency ordering. In other words,

‖PG‖ ≤ ‖PG′‖ ≤ ‖P‖ and PG ≥E PG′ ≥E P .

2.4. Sandwich improvements to the DA algorithm that are inspired by the Haar algorithm

Proposition 2 shows that the Haar algorithm with the largest group G that acts on Y, is optimum

within the class of PXDA algorithms. However, in practice Haar algorithms that correspond to very

large Gs are expensive to run. One practical solution is to resort to smaller groups, which we will

discuss in detail in Section 3. Another possibility is to design sandwich algorithms, with moves that

approximate the Haar move but are not as costly. Here, we introduce two new kinds of algorithms

inspired by the Haar algorithm: the random Haar algorithm and the Metropolis–Hastings (MH)

approximation to the Haar algorithm.

First, we propose a random Haar algorithm that combines k groups, G1, · · · , Gk, that are sub-

groups of a mother group G. That is, Gi ⊆ G for all i, and each acts on Y and corresponds to a Haar

move HGi
on Y. Then for any vector of non-negative weights (p1, · · · , pk) such that

∑
i pi = 1,

consider the mixing Mtk H∗ =
∑

i piHGi
. This results in the following reversible Markov chain

on X with Mtk P ∗ =
∑

i piPGi
. That is, we randomly pick one of the k candidate groups per their

importance to act on Y. As part 1 of the following proposition suggests, in terms of performance

per iteration, the random Haar algorithm is better than the original DA algorithm, but is inferior
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to the Haar algorithm based on the mother group G. Part 2 of the proposition compares the con-

vergence rate of P ∗ and that of the individual PGi
’s. It turns out that no clear-cut comparisons

like those in part 1 are available, which is understandable because P ∗ is in some sense a weighted

average of the PGi
’s. Nevertheless, we show that, in terms of operator norm, P ∗ is guaranteed a

convergence rate no worse than that of the least favorable PGi
. Proof of the proposition is in the

Appendix.

Proposition 3. Suppose Gi ⊆ G for all i, and let G0 = ∩k
i=1Gi. Then

1. ‖PG‖ ≤ ‖P ∗‖ ≤ ‖PG0
‖ ≤ ‖P‖, and PG ≥E PG0

≥E P ∗ ≥E P , and

2. ‖P ∗‖ ≤ supi ‖PGi
‖ .

In practice, the random Haar algorithm is potentially useful after taking computing cost into

account. The main reason is that it allows the possibility of different groups to act upon Y in

different iterations, while keeping the cost per iteration restricted to that of one group.

The second method that we propose is an MH approximation to the Haar move based on a

group G. Specifically, suppose the current value is y, then instead of sampling y′ from HG(y, ·)

directly, we use a uniform proposal on its support O(y) = {g · y : g ∈ G}, and accept the proposal

with an appropriate MH acceptance probability. We call this a group MH sandwich algorithm

based on G. The closer the target marginal distribution of Y is to being uniform over the support,

O(y), the better the MH approximation is to the ideal Haar move.

3. Improving the ODA algorithm for Bayesian variable selection

3.1. Applicability of sandwich improvements to the ODA algorithm

The Bayesian variable selection model from Section 1 yields the posterior distribution p(φ, Za, γ |

Zo). The ODA algorithm is a DA algorithm that updates two blocks of variables, (φ, Za) and γ

in each iteration. Note that all inference of interest can be derived from the posterior of γ, hence

a direct application of the sandwich technique would require an extra move on the augmented
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component (φ, Za). But this method requires knowledge of the marginal posterior distribution of

(φ, Za) except for a normalizing constant, which involves a summation over 2p terms and is thus

feasible for very small p only. Such a method was implemented by Ghosh and Clyde [10] but it

did not lead to improvement in mixing. To overcome this problem, we propose making sandwich

moves on γ instead of (φ, Za). This strategy is feasible for large p because of the following rea-

sons. First, it is possible to design a reversible sandwich move on γ with respect to its marginal

posterior distribution. In particular, the sandwich move itself is allowed to be generated from a

reducible Markov chain if we desire to focus the computing effort on the most highly correlated

covariates. Secondly, samples from (φ, Za) allow us to obtain Rao–Blackwellized estimators for

posterior quantities of the form E(h(γ) | Zo) due to the simple form of p(γ | φ, Za, Zo).

Using the same notation as in Section 2, let X = (φ, Za), Y = γ, and πX,Y (x, y) = p(φ, Za, γ |

Zo). Also, let P denote the Mtk (of the X-chain) of the ODA algorithm as in (6), and let PS

denote the Mtk of the sandwich algorithm that employs an extra sandwich move S upon the ODA

algorithm as in (7). Here S could correspond to the Haar, random Haar, or any other reversible

Mtk for πY , which will be further discussed in the following subsections. Since we need reliable

estimates based on the MCMC samples, we first make sure that central limit theorems hold for

the estimators. Note that the Y -chain of the ODA algorithm lives on a finite state space, so it is

uniformly ergodic, hence geometrically ergodic. According to Diaconis et al. [6] and Roberts and

Rosenthal [23], for DA algorithms, the X-chain shares the same convergence rate as that of the

Y -chain. Therefore ‖P‖ < 1, and central limit theorems hold for the estimator based on the ODA

algorithm for all functions in L2(πX). Further, by Proposition 1 we know ‖PS‖ ≤ ‖P‖ < 1. Hence

central limit theorems also hold for estimators based on any sandwich algorithm that improve upon

the ODA.

11



3.2. Haar improvement to the ODA algorithm

The state space Y consists of p-dimensional binary vectors. There are at least two natural

ways to move from one binary vector to another using group operations. We first consider a

permutation group based move. In the variable selection context, this type of move is very helpful

in that it could change a large number of the variables selected in a single step, which is otherwise

difficult to achieve. For the set B = {1, · · · , p}, the symmetric group, denoted by SymB , is the

set of all p! permutations equipped with composition as the group operator. We give a few simple

examples to illustrate the symbol usage, and refer the readers to Dummit and Foote [7] or any other

text on abstract algebra for more background knowledge. Suppose g is a permutation of the set

B = {1, · · · , 6} such that g(1) = 3, g(2) = 1, g(3) = 2, g(4) = 5, g(5) = 4 and g(6) = 6. Then

we write g = (132)(45). If we have another permutation g′ = (56), then gg′ = (132)(45)(56) =

(132)(456), where permutations are read from right to left under composition. (The right-to-left

rule is conventional, see, for example, Dummit and Foote [7, sec 1.3].) Finally, if y = (011011),

then the group action is given by g · y = (132)(45) · (011011) = (110101). We simply write g · y

as gy from now on.

A second way to alter a binary vector is through flipping the value of a subset of its compo-

nents. Let FlipB = {0, 1}p denote the group of p-dimension binary vectors that is equipped with

component-wise modulo 2 addition as the group operator. For any g ∈ FlipB , g acts on y also by

component-wise modulo 2 addition. For example, for p = 6, the action of flipping the value of

the first and the third component of y while leaving all others fixed is g = (101000). Finally, if

y = (011011), we have gy = (101000)(011011) = (110011).

To carry out the Haar algorithm based on any discrete group G, note that the left Haar measure

on G is always given by νG(g) = 1
|G|

IG(g), where IG(·) stands for the indicator function on G

and |G| denotes the cardinality of G. Further, let O(y) = {gy : g ∈ G} ⊆ Y denote the orbit

of y. We show in Lemma 1 in the online supplement that, for any y ∈ Y and any y′ ∈ O(y),

the number of group elements g ∈ G that map y to y′ is given by |G|/|O(y)|. Therefore, the
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middle step of the Haar algorithm in this context is equivalent to drawing y′ from HG(y, y
′) ∝

∑
{g:gy=y′} πY (gy)IG(g) = |G|

|O(y)|
πY (y

′)IO(y)(y
′) ∝ πY (y

′)IO(y)(y
′). That is, the sandwich step

amounts to sampling from within the orbit of the current state proportional to the true marginal

πY . Altogether, the transition function of the Haar algorithm is provided by PS(x, x
′) in (7), where

πX|Y (x|y) and πX|Y (x|y) were defined in the ODA algorithm, S(y, y′) = HG(y, y
′), and µ is the

counting measure.

From Proposition 2 in Section 2.3, we know that the above Haar algorithms based on G =

SymB and FlipB both have an iteration-wise advantage over the original DA algorithm. Indeed,

the extra move in the Haar algorithm based on FlipB requires the evaluation of πY at all 2p points

in Y, and results in a perfect sampling scheme that is typically prohibitively expensive. The Haar

algorithm based on SymB involves an extra middle step that requires p!/{|y|!(p−|y|)!} evaluations

of πY , where |y| denotes the number of 1’s in the current state y. The evaluations needed for

the sandwich move may be done in parallel to reduce computing time, provided that the number

of simultaneous evaluations and the number of CPU cores are well coordinated to balance the

overhead cost of communication. Alternative to parallel computing, we propose simple ways to

specify groups of smaller sizes based on properties of the design matrix.

From our experiments, dimensions of Y that correspond to the highly correlated columns of

the design matrix are those that exhibit sticky behavior in the evolution of the Markov chain. They

are the direct reason why the DA algorithm has slow mixing rate. Hence, we could expect the

biggest gain possible by targeting our effort to alter these dimensions in a sandwich step. Let

A denote the collection of indices of all the highly correlated covariates. Then, one could run a

Haar algorithm based on the group SymA, or that based on the group FlipA. In case these Haar

algorithms still require too many evaluations per move, it is usually possible to further group

indices of highly correlated columns into sets A1, · · · , Ak. (They are often, though not necessarily

disjoint.) Then we can form a group G′ that is generated by the symmetric groups on the Ais, i.e.,

G′ =< SymA1
, · · · , SymAk

>, and run the corresponding Haar algorithm. The group G′ is a small
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subgroup of SymA, but contains the most important permutations. Suppose the current value is

y, and let yAi
denote the subvector of y that corresponds to the set Ai. Then the Haar algorithm

based on G′ requires only Πi

{
|Ai|!

/
[|yAi

|!(|Ai| − |yAi
|)!]

}
evaluations, which is usually much

more affordable compared to the p!/{|y|!(p− |y|)!} evaluations needed for the algorithm based on

SymA.

3.3. Haar inspired and other sandwich improvements to the ODA algorithm

Below we expand our tool box and consider variations and approximations of the Haar im-

provement to ODA following the general strategies described in Section 2.4. A first variation is

the random Haar algorithm. We will apply it to the groups (G1, · · · , Gk) = (SymA1
, · · · , SymAk

).

Its vector of weights (p1, · · · , pk) can be either uniform or adjusted to reflect the severity of multi-

collinearity within the Ais.

A second method is to approximate the Haar algorithm based on a group G with the MH

technique. Specifically, given the current value y, one proposes to move to y′, that is a draw from

the uniform distribution over O(y) = {gy : g ∈ G}, and accepts the proposal with an appropriate

MH acceptance probability. Such a move is always affordable regardless of the choice of G, as

each new move will require only two evaluations of πY (·), at y and y′, in order to calculate the MH

acceptance probability.

The MH approximation can be done for any one of the Haar algorithms mentioned earlier,

i.e., those based on G = SymB , SymA, G′, FlipB , or FlipA. Later, in the simulation and the real

data problems, we focus on G = SymA and FlipA. The reason why we do not do the same for

G = SymB or FlipB is that under these groups, the size of O(y) is often huge, and a uniform

proposal over O(y) tends to get very low acceptance rate. Further, we have not implemented an

MH approximation for the G = G′ case because we are able to afford the exact Haar algorithm

based on this group.

Lastly, we consider a random swap move on Y, restricted to the set A. Specifically, this is an
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MH move that proposes to swap a randomly chosen pair of 0 and 1 in A of the current y. In other

words, one proposes to randomly exchange a covariate in A included in the current model with

another one in A that is excluded from the current model, and accept the move with an appropriate

probability to maintain the correct invariant distribution πY . Note that such a proposal only allows

transpositions in A, hence it is more restrictive compared to the MH approximation to the Haar

move on A. These exchange based moves are popular in a Bayesian variable selection model that

uses the original, non-orthogonal design matrix. Our purpose for adding it is to investigate its

performance in conjunction with ODA. In a few very simple cases, it is possible to do theoretical

comparisons of the proposed methods. These are presented in an online supplement.

4. Simulations

4.1. High multicollinearity

Our first simulation design is inspired by the multicollinearity example in Section 5.2.2 of

George and McCulloch [9]. Here the three pairs of covariates (1, 2), (3, 4) and (5, 6) have corre-

lations higher than 0.995. Moreover almost all the 15 covariates are moderately correlated with

each other with correlations around 0.8 in the original example. We preserve this structure for the

first 15 covariates and add 85 more noise variables generated as independent N(0, 1) variables to

convert it to a higher dimensional example with p = 100. We consider the sample size no = 180

and generate the response variable exactly as in George and McCulloch [9]. The details are given

in the supplement. Following the practice of Ghosh and Clyde [10], we set the hyperparameters of

the prior in (2) as λj = 1 and πj =
1
2

for j = 1, · · · , p, in all examples.

Based on the correlations in the observed design matrix Wo, we decide to perform the sandwich

moves on the three pairs of severely correlated variables. We do not consider the traditional Gibbs

sampler because it was outperformed by the ODA algorithm by a large margin [10]. Instead,

we implement a Metropolis–Hastings algorithm with add/delete steps and random swap proposals

which was shown to be more competitive with the ODA algorithm by Ghosh and Clyde [10].
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Let A = {1, 2, · · · , 6}, A1 = {1, 2}, A2 = {3, 4}, A3 = {5, 6}. We list below the algorithms

used in the simulation study:

1. ODA algorithm of Ghosh and Clyde [10],

2. Haar algorithm based on the permutation group < SymA1
, SymA2

, SymA3
>,

3. random Haar algorithm which chooses from one of the permutation groups SymAi
with

probability pi = 1/3, for i = 1, 2, 3,

4. group MH sandwich algorithm on the permutation group SymA,

5. group MH sandwich algorithm on the additive (modulo 2) group FlipA,

6. random swap sandwich algorithm restricted to A = {1, 2, · · · , 6},

7. Metropolis–Hastings algorithm with add/delete and random swap proposals [4].

To summarize, in the above list the first one is the ODA algorithm that we are trying to im-

prove. Algorithm 2 is the Haar algorithm restricted to a manageable subgroup, which involves

a maximum of 8 marginal likelihood evaluations per iteration, in the sandwich step. Algorithms

3-5 are sandwich algorithms that are inspired by Haar moves on algebraic groups, that involve at

most two marginal likelihood calculations. Algorithm 6 belongs to the general class of sandwich

algorithms, and has similar computing cost as 3-5. All algorithms 2-6 involve these sandwich

steps in addition to the sampling steps of ODA. Finally, Algorithm 7 is a traditional Metropolis–

Hastings algorithm that does not fall under the class of DA or sandwich algorithms, and involves

one marginal likelihood evaluation per iteration.

We initialize all algorithms at the full model, γ = (γ1, · · · , γp) = (1, · · · , 1), and run them for

one million iterations each to estimate the marginal inclusion probabilities, p(γj = 1 | Zo). Figure

1 shows pairwise comparisons of these estimated inclusion probabilities for all the algorithms.

The diagonal panels of Figure 1 show the estimated inclusion probabilities for each algorithm,

plotted in the same order, j = 1, . . . , 100. The plots show very close agreement in the estimates

produced by the algorithms, which suggests that the number of iterations was large enough for
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the chains to converge to their invariant distributions. For further validation of these results, we

run all the algorithms again with a different initial value, specifically the vector γ that corresponds

to the null model. The resulting estimates are almost indistinguishable from the ones reported

here. To compare the performance of the algorithms, we estimate their corresponding asymptotic

variances for estimating p(γj = 1 | Zo), using the mcmcse [8] package in R. For the ODA and

the sandwich algorithms Rao–Blackwellized estimates are used as in equation (4), whereas for

the Metropolis–Hastings algorithm the usual Monte Carlo estimates are used because no Rao–

Blackwellized estimates are available.

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 γ9 γ10

Haar (permutation group) 3.28 14.80 8.61 7.57 17.66 2.41 0.99 0.98 0.99 0.99

random Haar (permutation group) 2.74 6.90 4.55 4.67 7.24 2.24 0.97 0.95 0.94 0.94

permutation group MH sandwich 4.98 8.01 6.32 6.29 8.54 4.23 0.97 0.97 0.92 0.94

additive group MH sandwich 4.85 7.14 5.56 5.51 7.37 4.81 0.98 0.97 0.90 0.95

random swap sandwich 4.38 7.27 5.94 6.24 6.69 3.93 0.97 0.97 0.98 0.97

Metropolis–Hastings 0.17 0.19 0.20 0.19 0.22 0.17 0.24 0.24 0.23 0.24

Table 1: Estimates of relative efficiency of different algorithms with respect to the ODA algorithm in estimating

p(γj = 1 | Zo) for j = 1, . . . , 10, for the highly correlated simulated data.

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 γ9 γ10

Haar (permutation group) 1.61 7.25 4.22 3.71 8.66 1.18 0.49 0.48 0.49 0.49

random Haar (permutation group) 1.84 4.63 3.05 3.13 4.86 1.50 0.65 0.64 0.63 0.63

permutation group MH sandwich 3.66 5.89 4.65 4.62 6.28 3.11 0.71 0.71 0.68 0.69

additive group MH sandwich 3.49 5.14 4.00 3.96 5.30 3.46 0.71 0.70 0.65 0.68

random swap sandwich 3.06 5.08 4.15 4.36 4.68 2.75 0.68 0.68 0.69 0.68

Metropolis–Hastings 0.61 0.68 0.71 0.68 0.79 0.61 0.86 0.86 0.82 0.86

Table 2: Running time adjusted estimates of relative efficiency of of different algorithms with respect to the ODA

algorithm in estimating p(γj = 1 | Zo) for j = 1, . . . , 10, for the highly correlated simulated data.

Table 1 shows the estimated relative efficiency of different algorithms with respect to the ODA

algorithm. This is calculated as the ratio of the asymptotic variance of ODA with respect to that

of the other algorithms; values larger than 1 indicate that the other algorithms lead to a reduction

in variance. The first 10 components are displayed due to limitations of space. The sandwich

algorithms result in reduction in variance up to 18 times for Haar, and 8.5 times for the other
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sandwich algorithms. The last row indicates that the Metropolis–Hastings algorithm is less efficient

than ODA. Our empirical results suggest that the components of γ that are not directly affected by

the sandwich step show a similar asymptotic variance under both ODA and sandwich algorithms.

This is also the case for the components that are not displayed.

The results in Table 1 do not take into account running times of different algorithms. Because

the running times for algorithms 2-7 are approximately 2.04, 1.49, 1.36, 1.39, 1.43, and 0.28 times

that of ODA in this example, we divide the estimated efficiency in rows 1-6 of Table 1 by these

time adjustment factors and report the new values in Table 2. Table 2 shows that the sandwich

algorithms are substantially more efficient for the sandwiched components even after adjusting

for time. For other components ODA is most efficient when time is incorporated. Among the

sandwich algorithms, the Haar algorithm shows some of the largest gains, even after incorporating

time. The group MH approximations to Haar yield the best general performance, especially the

one based on the permutation group.

4.2. Moderate multicollinearity

We now use a simulation design with no = 100, p = 50, and negligible pairwise correlations

among most covariates and moderate correlations among just three pairs. The first two covari-

ates are generated from a bivariate normal distribution with means 0, standard deviations 1, and

correlation coefficient 0.8. Covariates 3 and 4 are generated in the same way, and covariates 5

and 6 are designed to have a somewhat smaller correlation 0.5. This leads to sample correlation

coefficients 0.839, 0.796, and 0.4965 among the three pairs (1, 2), (3, 4), and (5, 6) respectively.

The remaining 44 covariates are generated from independent standard normal distributions, so the

sample correlation coefficients for all pairs except the first three are smaller than 0.314 in absolute

value. The response variable is generated from a multivariate normal distribution with mean Woβ

and variance Ino
/φ, where

β = (1.5, 0.5, 0.5,−0.5,−0.5, 0.4, 0.4,−0.4,−0.4,−0.4,−0.4,−0.4,−0.4, 0, . . . , 0)′, and φ =
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1/2.52, resulting in 12 signals (excluding the intercept) and 38 noise variables. The sign and mag-

nitude of the regression coefficients for positively correlated covariates were chosen to be the same.

This reflects the belief that these covariates have similar effect on the response variable. We use

the same group structures for performing the sandwich moves as in the previous simulation study

in Section 4.1. Each algorithm was run for one million iterations, with initial value specified to

be the full model. Plots similar to those in Figure 1 (not displayed here due to space limitation)

show very good agreement among estimates provided by all the methods. Further, reruns of the

algorithms based on different initial values lead to very similar results. Hence we believe that all

the algorithms have stabilized after one million iterations, and summarize our results in Tables 3

and 4.

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 γ9 γ10

Haar (permutation group) 10.89 9.17 8.52 10.80 4.63 4.43 1.12 1.36 1.09 1.22

random Haar (permutation group) 3.24 3.22 3.25 3.50 2.24 2.05 1.03 1.24 1.04 1.15

permutation group MH sandwich 3.10 3.03 3.02 3.57 2.05 2.02 1.10 1.28 1.15 1.04

additive group MH sandwich 2.71 2.54 2.69 2.99 1.95 2.04 1.11 1.18 1.08 1.10

random swap sandwich 2.86 2.74 2.81 2.89 2.20 2.07 1.06 1.28 1.07 1.09

Metropolis–Hastings 0.12 0.10 0.08 0.11 0.07 0.08 0.07 0.07 0.06 0.03

Table 3: Estimates of relative efficiency of different algorithms with respect to the ODA algorithm in estimating

p(γj = 1 | Zo) for j = 1, . . . , 10, for the moderately correlated simulated data.

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 γ9 γ10

Haar (permutation group) 3.60 3.04 2.82 3.58 1.53 1.47 0.37 0.45 0.36 0.40

random Haar (permutation group) 1.90 1.89 1.90 2.04 1.31 1.20 0.60 0.72 0.61 0.67

additive group MH sandwich 1.69 1.59 1.68 1.87 1.22 1.28 0.69 0.74 0.68 0.69

permutation group MH sandwich 1.93 1.88 1.88 2.22 1.27 1.25 0.68 0.79 0.72 0.64

random swap sandwich 1.73 1.66 1.70 1.75 1.33 1.26 0.64 0.78 0.65 0.66

Metropolis–Hastings 0.26 0.23 0.18 0.26 0.17 0.18 0.16 0.16 0.13 0.06

Table 4: Running time adjusted estimates of relative efficiency of of different algorithms with respect to the ODA

algorithm in estimating p(γj = 1 | Zo) for j = 1, . . . , 10, for the moderately correlated simulated data.

Table 3 shows the estimated relative efficiency of different algorithms with respect to the ODA

algorithm. The Haar algorithm is 11 times more efficient than ODA for some sandwiched compo-

nents, while the other algorithms can be up to 3.6 times as efficient as ODA. The last row indicates
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that the Metropolis–Hastings algorithm is less efficient than ODA, about 1/10 as efficient as ODA

for the first 6 components. The components of γ that are not under a direct sandwich move have

similar efficiency as ODA. Table 4 shows the running time adjusted relative efficiencies with re-

spect to ODA. Even after adjusting for running time, the Haar algorithm is 3.6 times more efficient

than ODA for some components and is more efficient than ODA for all sandwiched components.

As earlier, for components which are not under a sandwich move ODA is most efficient when time

is incorporated.

Among the sandwich algorithms the Haar algorithm appears to be the best irrespective of

whether running time is taken into account or not. This example demonstrates that sandwich

algorithms can be useful even when there is moderate linear dependence among only few of the

covariates. The gains in efficiency are smaller compared to the previous high multicollinearity

example. This is not surprising because in a low or moderate multicollinearity problem the perfor-

mance of ODA is already quite good to begin with, so there is less scope of further improvement

using sandwich moves.

One reviewer raised an important question: how to tune the different algorithms? In our algo-

rithms the main tuning parameter that needs to be specified is the collection of inclusion indicators,

i.e. the subset of {γ1, · · · , γp}, on which the sandwich moves are to be performed. For the group

based algorithms an associated group structure needs to be selected as well. On one hand, when

designing Haar algorithms, our theoretical results show that larger groups are better. Empirical

results suggest that small correlations among the covariates (less than 0.5) do not adversely affect

the performance of the original ODA algorithm substantially, so one possibility is to perform sand-

wich moves on inclusion indicators for all covariates that have correlations bigger than some large

threshold with one or more covariates. The choice of this threshold is problem specific because

a small threshold may lead to a large group for the sandwich step, associated with an increase in

computational cost. Our default choices have been choosing a threshold such that the group size is

not too large, say no larger than 16. This guarantees that the computational cost per iteration would
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not be any larger than 16 times that of ODA. In fact, the cost may be much smaller for permutation

groups, because many different permutation operations on the vector of binary variables γ, result

in the same proposed model γ′, and marginal likelihoods need to be evaluated for distinct proposed

models only. There are no such savings in computational cost for additive groups, hence we gener-

ally prefer using permutation groups over additive groups when building Haar algorithms. On the

other hand, when designing Metropolis-Hastings based sandwich algorithms, the computational

cost does not increase with larger group sizes, as we always need only two marginal likelihood

evaluations at each iteration. However, in this case, it depends on the nature of the posterior distri-

bution whether selecting larger groups for the sandwich step will lead to larger gains. In general,

too large a group may lower the acceptance rate and reduce the amount of improvement in mixing.

Finally, we recommend a few short pilot runs for each algorithm with varying thresholds following

the principles listed above, in order to get a preliminary idea of a reasonable threshold that will

balance the group size and the gain per iteration.

5. Protein Data

We consider the protein activity data previously analyzed by Clyde et al. [4] as a difficult

model selection problem for high correlations among some of the covariates. Here the sample

size, no = 96 and there are p = 88 covariates in the full model with all main effects, two-way

interaction terms, and quadratic terms for continuous covariates.

We perform sandwich moves on the four pairs of covariates with pairwise correlations greater

than 0.995 in absolute value. These are A1 = {1, 18}, A2 = {3, 20}, A3 = {4, 15}, A4 = {13, 17}.

Also, let A = {1, 18, 3, 20, 4, 15, 13, 17}. We run all seven algorithms for one million iterations as

in the simulation study and report the results in Tables 5 and 6.

The additive group MH sandwich algorithm emerges as a clear winner after adjusting for run-

ning time. The permutation group MH sandwich appears to be a close runner up. These algorithms

lead to relative efficiency values that are 2-4 times that of ODA, for all components of γ that are
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γ1 γ18 γ3 γ20 γ4 γ15 γ13 γ17
Haar (permutation group) 1.50 1.43 2.45 2.29 1.03 1.02 1.33 1.49

random Haar (permutation group) 1.25 1.30 2.04 1.72 1.03 0.99 1.11 1.25

permutation group MH sandwich 2.43 2.42 3.93 3.35 2.66 2.68 2.50 2.64

additive group MH sandwich 2.77 2.87 3.88 3.42 3.51 3.49 2.63 2.89

random swap sandwich 2.15 2.25 3.27 2.92 2.34 2.27 2.05 2.23

Metropolis–Hastings 0.09 0.09 0.12 0.14 0.08 0.08 0.08 0.10

Table 5: Estimates of relative efficiency of different algorithms with respect to the ODA algorithm in estimating

p(γj = 1 | Zo), for the components of γ on which sandwich moves were employed, for the protein data.

γ1 γ18 γ3 γ20 γ4 γ15 γ13 γ17
Haar (permutation group) 0.98 0.93 1.59 1.49 0.67 0.66 0.87 0.97

random Haar (permutation group) 0.91 0.95 1.49 1.26 0.75 0.72 0.81 0.91

permutation group MH sandwich 1.73 1.73 2.81 2.39 1.90 1.91 1.79 1.89

additive group MH sandwich 2.01 2.08 2.81 2.48 2.54 2.53 1.91 2.10

random swap sandwich 1.49 1.56 2.27 2.02 1.62 1.57 1.42 1.55

Metropolis–Hastings 0.31 0.29 0.42 0.47 0.26 0.26 0.28 0.35

Table 6: Running time adjusted estimates of relative efficiency of different algorithms with respect to the ODA algo-

rithm in estimating p(γj = 1 | Zo), for the components of γ on which sandwich moves were employed, for the protein

data.

under a sandwich move. Even after taking into account time, Table 6 shows that these algorithms

can double or triple the efficiency for many components with respect to ODA. For components of

γ that are not under a direct sandwich move, the asymptotic variances are similar for ODA and the

sandwich algorithms, and so usually the ODA algorithm is the most efficient after adjusting for

time. The Metropolis–Hastings algorithm has larger asymptotic variance than all other algorithms

as earlier.

6. Biscuit Dough Data

We consider the biscuit dough dataset, which was previously analyzed by Brown et al. [1]

and more recently by [11]. The dataset was obtained from a near-infrared (NIR) spectroscopy

experiment used to analyze the composition of biscuit dough pieces, and it is available as part of

the R package ppls [17]. For each biscuit, the NIR reflectance spectrum is a continuous curve

measured at several uniformly spaced wavelengths. The dataset contains measurements at 700
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wavelengths which are considered as the covariates. Following the idea of other authors [11]

we first thinned the reflectance spectra to 100 evenly placed wavelengths between 1202nm to

2398nm to reduce the model space to a more computationally manageable size of 2p = 2100. The

measurements from consecutive wavelengths are very highly correlated so the thinning does not

result in much loss of information. The response variable is taken to be the percentage of water in

each dough. We combined the training and test samples available in the R package resulting in a

sample size of no = 70.

This is a more difficult dataset compared to the protein dataset because the number of covari-

ates is larger than the sample size, and there is very high multicollinearity. The lowest pairwise

correlation is around 0.6 and each covariate has 0.995 or higher correlation with at least one other

covariate in the dataset. To focus on the most highly correlated covariates for the sandwich step

we choose the ones which have correlation 0.9999 or higher with one or more covariates. This

leads to choosing the measurements at the 11 wavelengths: 22, 23, 37, 38, 39, 47, 48, 50, 51, 52, 53.

The pairwise correlations among any two of these 11 covariates is 0.986 or higher so we perform

sandwich moves on all of them together.

Let A = {22, 23, 37, 38, 39, 47, 48, 50, 51, 52, 53}, then the algorithms implemented in this case

are:

1. ODA algorithm of Ghosh and Clyde [10],

2. group MH sandwich algorithm on the permutation group SymA,

3. group MH sandwich algorithm on the additive (modulo 2) group FlipA,

4. random swap sandwich algorithm restricted to A,

5. Metropolis–Hastings algorithm with add/delete and random swap proposals [4].

We do not implement the Haar algorithm because it would be too expensive to run on such a large

group. We run all the above algorithms for one million iterations and report our findings in Tables

7 and 8.

23



γ22 γ23 γ37 γ38 γ39 γ47 γ48 γ50 γ51 γ52 γ53
permutation group MH sandwich 8.0 7.5 8.2 8.1 8.3 7.3 7.3 7.1 7.2 7.3 7.5

additive group MH sandwich 27.4 24.1 26.5 28.6 26.3 23.5 24.5 25.1 22.7 22.9 27.0

random swap sandwich 6.0 5.2 5.5 5.6 5.5 5.0 5.0 5.2 4.8 5.1 5.2

Metropolis–Hastings 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Table 7: Estimates of relative efficiency of different algorithms with respect to the ODA algorithm in estimating

p(γj = 1 | Zo), for the components of γ on which sandwich moves were employed, for the biscuit dough data.

γ22 γ23 γ37 γ38 γ39 γ47 γ48 γ50 γ51 γ52 γ53
permutation group MH sandwich 5.3 5.0 5.5 5.4 5.5 4.9 4.9 4.7 4.8 4.9 5.0

additive group MH sandwich 19.7 17.3 19.1 20.6 18.9 16.9 17.6 18.1 16.3 16.5 19.4

random swap sandwich 4.3 3.7 3.9 3.9 3.9 3.5 3.5 3.7 3.4 3.6 3.7

Metropolis–Hastings 2.0 1.8 1.9 1.7 1.8 1.7 1.7 1.8 1.8 1.8 1.8

Table 8: Running time adjusted estimates of relative efficiency of different algorithms with respect to the ODA algo-

rithm in estimating p(γj = 1 | Zo), for the components of γ on which sandwich moves were employed, for the biscuit

dough data.

For this analysis, the additive group MH sandwich algorithm emerges as a clear winner before

and after adjusting for running time. For same iterations it is at least 22 times as efficient as ODA

in all sandwiched components and up to 29 times as efficient as ODA for some. The time adjusted

efficiencies are at least 16 times that of ODA and as much as 20 for some components. The other

sandwich algorithms all show decent gains after adjusting for time but not as remarkable as this

one. This example illustrates that the performance of ODA may be affected the most when there is

very high multicollinearity and in these situations sandwich moves can bring a huge improvement

over ODA. In this example all algorithms, including the Metropolis–Hastings algorithm, appear

to be better than ODA after taking into account time. For components of γ that are not under a

direct sandwich move, the efficiencies are similar for ODA and the sandwich algorithms, before

adjusting for time. So for these components usually the Metropolis–Hastings algorithm is the most

efficient after adjusting for time, it’s efficiency being about twice as ODA for all components.
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7. Discussion

For Bayesian variable selection problems with moderate to high correlations among some of

the covariates, we find that well designed sandwich algorithms can significantly improve the ODA

algorithm in estimating functions that exhibit large standard errors due to multicollinearity. Empir-

ical results show that the efficiency of estimators of marginal inclusion probabilities of covariates

whose inclusion indicators are under direct sandwich moves can be much higher than that of the

ODA algorithm. However, for other covariates that are not under a direct sandwich move, the

efficiency of the sandwich algorithms is same as that of the ODA algorithm. This suggests that

running the sandwich algorithms for same iterations as ODA will result in better estimates overall.

When time is a crucial factor we recommend running both ODA and the sandwich algorithms in

parallel and using the appropriate estimates based on their estimated relative efficiency.

Our experience suggests that it is easy to code and automate group MH sandwich algorithms

that are inspired by the Haar algorithms, restricted to the set of most highly correlated covariates.

They are also not computationally demanding compared to the ODA algorithm, and have promising

performances in all the examples that we have tried. Besides, the Haar algorithm based on a smaller

permutation subgroup appears to be very competitive for the simulation study, even after adjusting

for time. Furthermore, for Haar algorithms, each step has the potential of being implemented in

parallel. In the Bayesian variable selection framework, parallel computing has been efficiently

used by Hans et al. [12] for rapidly exploring large model spaces. It would be interesting to see

in the future if parallel computing brings the Haar algorithm more advantage compared to MH

approximations.
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Appendix A: Proof of proposition 2

It is implicitly stated in Liu and Wu [19, Section.5] that the Haar algorithm based on a locally

compact group G′ is a special PXDA algorithm on G′ that corresponds to the left Haar measure

r = νG′ . (An alternative proof of the statement in the special case where G′ is a discrete group is

provided in the online supplement of this paper. Our proof only requires elementary knowledge

of discrete groups.) Since νG′ is supported in G′ ⊆ G, it is also a probability distribution on G.

Hence, PG′ can be considered a PXDA algorithm associated with group G. Then PG is better than

PG′ in both orderings according to Hobert and Marchev [14].

Appendix B: Proof of proposition 3

Proposition 3 Part (1). First, we study the efficiency ordering of Markov chains by introducing

the covariance ordering. Let P and Q be two Mtks, both invariant for πX . Write P ≤1 Q if

(h, Ph) ≥ (h,Qh) for all h ∈ L2
0(πX). It was shown in Mira and Geyer [22] that if both P and Q

are reversible for πX , then P ≤1 Q if and only if P ≤E Q.

Now back to the problem at hand. For each i = 1, . . . , k, since G0 ⊆ Gi ⊆ G, then PG0
≤E

PGi
≤E PG from Proposition 2. Recall that a Haar algorithm is always reversible with respect

to its invariant distribution. This implies that PG0
≤1 PGi

≤1 PG, i.e., for any h ∈ L2
0(π),

(h, PGh) ≤ (h, PGi
h) ≤ (h, PG0

h). Note that (h, P ∗h) = (h,
∑

i piPGi
h) =

∑
i pi(h, PGi

h).

Then, for any h ∈ L2
0(π),

(h, PGh) =
∑

i

pi(h, PGh) ≤ (h, P ∗h) ≤
∑

i

pi(h, PG0
h) = (h, PG0

h) . (8)

That is, PG0
≤1 P ∗ ≤1 PG. Since PG0

, P ∗, and PG are all reversible, it follows that PG0
≤E
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P ∗ ≤E PG.

Finally, the above efficiency ordering will imply the operator norm ordering ‖PG‖ ≤ ‖P ∗‖ ≤

‖PG0
‖ if we can show that both PG and P ∗ are positive operators [13, Theorem 10]. Note that PG

is a Haar algorithm, and hence can be represented as a DA algorithm [14, Theorem 4]. Further,

any DA algorithm is positive [18, Lemma 3.2], so PG is positive. Hence by equation (8), for any

h ∈ L2
0(π), (h, P

∗h) ≥ (h, PGh) ≥ 0. So P ∗ is also positive. After all, we have shown that

‖PG‖ ≤ ‖P ∗‖ ≤ ‖PG0
‖.

Proposition 3 Part (2). As shown above, P ∗ and the PGi
’s are all positive operators. And

according to Hobert and Rosenthal [13, Proposition 1(f)], for any positive operator Q, ‖Q‖ =

suph∈L2

0,1(πX)(h,Qh), where L2
0,1(πX) = {h ∈ L2

0(πX) : ‖h‖ = 1} . Now, for all h ∈ L2
0,1(πX),

(h, P ∗h) =
∑

i pi(h, PGi
h) ≤ supi(h, PGi

h) . Hence

‖P ∗‖ = sup
h
(h, P ∗h) ≤ sup

h
sup
i
(h, PGi

h) = sup
i

sup
h
(h, PGi

h) = sup
i

‖PGi
‖ .

So, in terms of operator norm, P ∗ has a convergence rate no worse than that of the least favorable

PGi
.

For completeness, we next discuss the efficiency ordering for P ∗ and the PGi
’s, and claim

that there is no simple way to order them. To see this, consider the special case where P ∗ =

p1PG1
+p2PG2

, where p1 and p2 are positive and add up to 1. Let H = {h : (h, PG1
h) < (h, PG2

h)}

and H ′ = {h : (h, PG1
h) > (h, PG2

h). Then as long as neither G1 nor G2 is a subgroup of the

other group, it is easy to see that both H and H ′ are non-empty. Then

(h, PG1
h) < (h, P ∗h) < (h, PG2

h) for h ∈ H

and

(h, PG2
h) < (h, P ∗h) < (h, PG1

h) for h ∈ H ′.
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That is, P ∗ and the individual operators do not dominate each other in covariance ordering, and

hence are incomparable in efficiency ordering.
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Figure 1: Estimates of marginal posterior inclusion probabilities, p(γj = 1 | Zo), for j = 1, . . . , 100, based on

different algorithms, for the highly correlated simulated data.
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