Outline

Motivating Example

Representation Theory of Finite Groups

Brauer Tree Algebras

Representation Theory of Special Linear Groups
Motivating Example

p prime, G cyclic group order p^n, k algebraically closed field, $\text{char}(k) = p$
Motivating Example

p prime, G cyclic group order p^n, k algebraically closed field, $\text{char}(k) = p$

Describe ALL the indecomposable representations
Motivating Example

p prime, G cyclic group order p^n, k algebraically closed field, $\text{char}(k) = p$

Describe ALL the indecomposable representations

Indecomposable representations given by Jordan blocks

\[
\begin{pmatrix}
1 & 1 & 0 & \cdots & 0 & 0 \\
0 & 1 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & \cdots & 1 & 0 \\
0 & 0 & \cdots & 1 & 1 \\
0 & 0 & \cdots & 0 & 1 \\
\end{pmatrix}\
\]

for $1 \leq j \leq p^n$ (see *Local Representation Theory*, J.L. Alperin)
Motivating Example

Indecomposable representations

kG is a Brauer tree algebra for the Brauer tree $\circ \bullet$ with multiplicity $m = p^n - 1$.
Motivating Example

Indecomposable representations

Uniserial kG-modules of length j for $1 \leq j \leq p^n$, with trivial composition factors
Motivating Example

Indecomposable representations

Uniserial kG-modules of length j for $1 \leq j \leq p^n$, with trivial composition factors

kG is a Brauer tree algebra for the Brauer tree

\[\circ \quad \quad \bullet \]

with multiplicity $m = p^n - 1$
Definition

Let G be a finite group and let k be a field. The group ring is defined to be the set

$$kG = \left\{ \sum_{g \in G} a_g g \mid a_g \in k \right\}$$

with multiplication given by group multiplication. This space is a vector space of dimension $|G|$ over k.
Definition

Let G be a finite group and let k be a field. The group ring is defined to be the set

$$kG = \left\{ \sum_{g \in G} a_g g \mid a_g \in k \right\}$$

with multiplication given by group multiplication. This space is a vector space of dimension $|G|$ over k.

Definition

A representation of a finite group G over a field k is a kG-module.
Modular Representation Theory

Representations of a group over a field of prime characteristic
Modular Representation Theory

Representations of a group over a field of prime characteristic
Study of kG-modules
Modular Representation Theory

Representations of a group over a field of prime characteristic
Study of kG-modules

Theorem (Drozd, Crawley-Boevey)

A finite dimensional algebra Λ over an algebraically closed field is one of the following mutually exclusive types:

1. Finite (finitely many indecomposable modules)
2. Tame (infinitely many indecomposable modules, can be parametrized)
3. Wild (A full subcategory of Λ-mod is equivalent to $k\langle x, y \rangle$-mod)

Theorem (Higman)
Let G be a finite group and let k be an algebraically closed field of characteristic p. Then, kG is of finite representation type if and only if G has cyclic Sylow p-subgroups.
Theorem (Drozd, Crawley-Boevey)

A finite dimensional algebra Λ over an algebraically closed field is one of the following mutually exclusive types:

1. Finite (finitely many indecomposable modules)
2. Tame (infinitely many indecomposable modules, can be parametrized)
3. Wild (A full subcategory of Λ-mod is equivalent to $k\langle x, y \rangle$-mod)

Theorem (Higman)

Let G be a finite group and let k be an algebraically closed field of characteristic p. Then, kG is of finite representation type if and only if G has cyclic Sylow p-subgroups.
Blocks and Brauer Trees

$$kG = B_1 \oplus \cdots \oplus B_m$$

Unique decomposition into indecomposable subalgebras
$kG = B_1 \oplus \cdots \oplus B_m$

Unique decomposition into indecomposable subalgebras

Each block B has a defect group $D \leq G$, measures deviation of B from being semisimple as an algebra
$kG = B_1 \oplus \cdots \oplus B_m$

Unique decomposition into indecomposable subalgebras

Each block B has a defect group $D \leq G$, measures deviation of B from being semisimple as an algebra

Theorem (See Chapter V, Alperin)

If B is a block of kG with cyclic defect group, then B is a Brauer tree algebra
Let M be a kG-module.
Module Definitions

Let M be a kG-module.

$$\text{rad}(M) = \bigcap\text{(maximal submodules of } M)$$
Let M be a kG-module.

$$\text{rad}(M) = \bigcap \text{(maximal submodules of } M\text{)}$$

$$\text{soc}(M) = \bigoplus \text{(simple submodules of } M\text{)}$$

$$\text{rad}^i(M) = \text{rad}(\text{rad}^{i-1}(M))$$
Module Definitions

Let M be a kG-module.

$$\text{rad}(M) = \bigcap (\text{maximal submodules of } M)$$

$$\text{soc}(M) = \bigoplus (\text{simple submodules of } M)$$

$$\text{rad}^i(M) = \text{rad}(\text{rad}^{i-1}(M))$$

$$0 = \text{rad}^n(M) \subset \text{rad}^{n-1}(M) \subset \cdots \subset \text{rad}^2(M) \subset \text{rad}(M) \subset M$$
Let M be a kG-module.

\[
\text{rad}(M) = \bigcap \text{(maximal submodules of } M) \n\]

\[
\text{soc}(M) = \bigoplus \text{(simple submodules of } M) \n\]

\[
\text{rad}^i(M) = \text{rad}(\text{rad}^{i-1}(M)) \n\]

\[
0 = \text{rad}^n(M) \subset \text{rad}^{n-1}(M) \subset \cdots \subset \text{rad}^2(M) \subset \text{rad}(M) \subset M \n\]

\[
0 \subset \text{soc}(M) \subset \text{soc}^2(M) \subset \cdots \subset \text{soc}^{m-1}(M) \subset \text{soc}^m(M) = M \n\]
Module Definitions

Definition

A module M is called *uniserial* if it satisfies one of the following equivalent conditions.

- M has a unique composition series.
Module Definitions

Definition

A module M is called *uniserial* if it satisfies one of the following equivalent conditions.

- M has a unique composition series
- The quotients of the radical series of M are simple
- The quotients of the socle series of M are simple
Definition

A module M is called *uniserial* if it satisfies one of the following equivalent conditions.

- M has a unique composition series
- The quotients of the radical series of M are simple
- The quotients of the socle series of M are simple
Simple and Indecomposable Representations

Definition

A representation \(V \) of \(G \) is called \textit{simple} if the only subrepresentations of \(V \) are 0 and \(V \).
Simple and Indecomposable Representations

Definition

A representation V of G is called *simple* if the only subrepresentations of V are 0 and V.

Definition

A representation V is called *indecomposable* if whenever $V = U \oplus W$ is a direct sum decomposition of V, either U or W is zero.
Definition

A representation V of G is called simple if the only subrepresentations of V are 0 and V.

Definition

A representation V is called indecomposable if whenever $V = U \oplus W$ is a direct sum decomposition of V, either U or W is zero.

Note that

simple \implies indecomposable

but
Definition

A representation V of G is called *simple* if the only subrepresentations of V are 0 and V.

Definition

A representation V is called *indecomposable* if whenever $V = U \oplus W$ is a direct sum decomposition of V, either U or W is zero.

Note that

\[\text{simple} \implies \text{indecomposable} \]

but

\[\text{indecomposable} \nLeftrightarrow \text{simple} \]
Theorem (Maschke)

Let G be a finite group and let k be a field of characteristic p. The group algebra kG is semisimple if and only if $p
mid |G|$.
Theorem (Maschke)

Let G be a finite group and let k be a field of characteristic p. The group algebra kG is semisimple if and only if $p
mid |G|$.

So,....
Representation Theory of Finite Groups

Theorem (Maschke)

Let \(G \) be a finite group and let \(k \) be a field of characteristic \(p \). The group algebra \(kG \) is semisimple if and only if \(p \nmid |G| \).

So,....

- If \(p \nmid |G| \) (or \(\text{char}(k) = 0 \)), study the simple representations
Theorem (Maschke)

Let G be a finite group and let k be a field of characteristic p. The group algebra kG is semisimple if and only if $p
mid |G|$.

So,....

- If $p
mid |G|$ (or $\text{char}(k) = 0$), study the simple representations
- If $p
mid |G|$, study the indecomposable representations
Brauer Trees

Definition

A *Brauer tree* is a finite unoriented connected graph $T = (T_0, T_1)$ with no loops or cycles satisfying the additional properties:

1. There is an exceptional vertex with a multiplicity $m \geq 1$
2. For each vertex v, there is a cyclic ordering of edges incident with v
Brauer Trees

Definition

A *Brauer tree* is a finite unoriented connected graph $T = (T_0, T_1)$ with no loops or cycles satisfying the additional properties:

1. There is an exceptional vertex with a multiplicity $m \geq 1$
2. For each vertex v, there is a cyclic ordering of edges incident with v

Notation and conventions:

- T_0 is the vertex set
- T_1 is the edge set
- The exceptional vertex will be solid or bold; the other vertices will not be filled in or plain text
- We view the graph in the plane and assume a counterclockwise orientation of the edges
- Notation for a Brauer tree: $T = (T_0, T_1, m)$
Brauer Trees

Definition

A *Brauer tree* is a finite unoriented connected graph $T = (T_0, T_1)$ with no loops or cycles satisfying the additional properties:

1. There is an exceptional vertex with a multiplicity $m \geq 1$
2. For each vertex v, there is a cyclic ordering of edges incident with v

Notation and conventions:

- T_0 is the vertex set
- T_1 is the edge set
A Brauer tree is a finite unoriented connected graph $T = (T_0, T_1)$ with no loops or cycles satisfying the additional properties:

1. There is an exceptional vertex with a multiplicity $m \geq 1$
2. For each vertex v, there is a cyclic ordering of edges incident with v

Notation and conventions:

- T_0 is the vertex set
- T_1 is the edge set
- The exceptional vertex will be solid or bold; the other vertices will not be filled in or plain text
Brauer Trees

Definition

A *Brauer tree* is a finite unoriented connected graph $T = (T_0, T_1)$ with no loops or cycles satisfying the additional properties:

1. There is an exceptional vertex with a multiplicity $m \geq 1$
2. For each vertex v, there is a cyclic ordering of edges incident with v

Notation and conventions:

- T_0 is the vertex set
- T_1 is the edge set
- The exceptional vertex will be solid or bold; the other vertices will not be filled in or plain text
- We view the graph in the plane and assume a counterclockwise orientation of the edges
Brauer Trees

Definition

A *Brauer tree* is a finite unoriented connected graph $T = (T_0, T_1)$ with no loops or cycles satisfying the additional properties:

1. There is an exceptional vertex with a multiplicity $m \geq 1$
2. For each vertex v, there is a cyclic ordering of edges incident with v

Notation and conventions:

- T_0 is the vertex set
- T_1 is the edge set
- The exceptional vertex will be solid or bold; the other vertices will not be filled in or plain text
- We view the graph in the plane and assume a counterclockwise orientation of the edges
- Notation for a Brauer tree: $T = (T_0, T_1, m)$
Example

\[T = (T_0, T_1, m) \]

Vertex 4 is the exceptional vertex and has multiplicity 2.
$T = (T_0, T_1, m)$

$T_0 = \{1, 2, 3, 4, 5\}$
Example

\[T = (T_0, T_1, m) \]

\[T_0 = \{1, 2, 3, 4, 5\} \]
\[T_1 = \{a, b, c, d\} \]
\[m = 2 \]
Example

\[T = (T_0, T_1, m) \]

\[T_0 = \{1, 2, 3, 4, 5\} \]
\[T_1 = \{a, b, c, d\} \]
\[m = 2 \]

Vertex 4 is the exceptional vertex and has multiplicity 2.
Example

\[T = (T_0, T_1, m) \]

Orientation at 2

\[b < a \text{ and } a < b \]
Example

\[T = (T_0, T_1, m) \]

Orientation at 3

\[c < b < d < c \]
Example

\[T = (T_0, T_1, m) \]

Orientation at 4

\[c < c \]
Let $T = (T_0, T_1, m)$ be a Brauer tree.
Let $T = (T_0, T_1, m)$ be a Brauer tree.

Definition

A *quiver* is a finite directed graph $Q = (Q_0, Q_1)$, where loops and multiple edges are allowed.
Let $T = (T_0, T_1, m)$ be a Brauer tree.

Definition

A *quiver* is a finite directed graph $Q = (Q_0, Q_1)$, where loops and multiple edges are allowed.

Build a quiver $Q = (Q_0, Q_1)$ from T.
Let $T = (T_0, T_1, m)$ be a Brauer tree.

Definition

A *quiver* is a finite directed graph $Q = (Q_0, Q_1)$, where loops and multiple edges are allowed.

Build a quiver $Q = (Q_0, Q_1)$ from T.

$Q_0 = T_1$, the vertices of Q are the edges of T.
Let $T = (T_0, T_1, m)$ be a Brauer tree.

Definition

A *quiver* is a finite directed graph $Q = (Q_0, Q_1)$, where loops and multiple edges are allowed.

Build a quiver $Q = (Q_0, Q_1)$ from T.

$Q_0 = T_1$, the vertices of Q are the edges of T.

There is an arrow $a : i \rightarrow j$ if $i < j$ and j is the “next” edge after i. In this case, a is said to be given by the successor relation (i, j).
Example

Recall \(T = (T_0, T_1, m) \)

\[Q = (Q_0, Q_1) \]
Let $v \in T_0$ be a vertex.

- If v is not exceptional and $\#(\text{edges adjacent to } v) \geq 2$, then there is an oriented cycle in Q, unique up to cyclic permutation.

- If v is exceptional and $\#(\text{edges adjacent to } v) \cdot m \geq 2$, then there is an oriented cycle in Q, unique up to cyclic permutation.

- Call this cycle the \textit{special cycle} at v.

- If the cycle starts at $i \in Q_0 = G_1$, call it the \textit{special i-cycle} at v.
Special Cycles

Let \(v \in T_0 \) be a vertex.

- If \(v \) is not exceptional and \(\#(\text{edges adjacent to } v) \geq 2 \), then there is an oriented cycle in \(Q \), unique up to cyclic permutation.

- If \(v \) is exceptional and \(\#(\text{edges adjacent to } v) \cdot m \geq 2 \), then there is an oriented cycle in \(Q \), unique up to cyclic permutation.

Call this cycle the special cycle at \(v \).

If the cycle starts at \(i \in Q_0 = G_1 \), call it the special \(i \)-cycle at \(v \).
Let $v \in T_0$ be a vertex.

- If v is not exceptional and $\#(\text{edges adjacent to } v) \geq 2$, then there is an oriented cycle in Q, unique up to cyclic permutation.

- If v is exceptional and $\#(\text{edges adjacent to } v) \cdot m \geq 2$, then there is an oriented cycle in Q, unique up to cyclic permutation.

- Call this cycle the special cycle at v.
Let $v \in T_0$ be a vertex.

- If v is not exceptional and $\#(\text{edges adjacent to } v) \geq 2$, then there is an oriented cycle in Q, unique up to cyclic permutation.
- If v is exceptional and $\#(\text{edges adjacent to } v) \cdot m \geq 2$, then there is an oriented cycle in Q, unique up to cyclic permutation.
- Call this cycle the **special cycle** at v.
- If the cycle starts at $i \in Q_0 = G_1$, call it the special i-cycle at v.
Example

\[T = (T_0, T_1, m) \]

\[Q = (Q_0, Q_1) \]

Special cycle at 2
Example

\[T = (T_0, T_1, m) \]

\[Q = (Q_0, Q_1) \]

Special cycle at 3
Example

\[T = (T_0, T_1, m) \]

\[Q = (Q_0, Q_1) \]

Special cycle at 4
Let $T = (T_0, T_1, m)$. There are two ways of building an algebra over a field k associated to T.

1. Get the associated quiver Q, define certain relations I, and define $\Gamma_T = kQ/I$ to be the path algebra with relations.

2. Define an algebra Λ_T over k by defining the projective indecomposable Λ-modules via the graph T.

These two methods give the same result. That is, $\Gamma_T \cong \Lambda_T$.
Let $T = (T_0, T_1, m)$. There are two ways of building an algebra over a field k associated to T.

1. Get the associated quiver Q, define certain relations I, and define

$$\Gamma_T = kQ/I$$

to be the path algebra with relations.
Let $T = (T_0, T_1, m)$. There are two ways of building an algebra over a field k associated to T.

1. Get the associated quiver Q, define certain relations I, and define

$$\Gamma_T = kQ/I$$

to be the path algebra with relations.

2. Define an algebra Λ_T over k by defining the projective indecomposable Λ-modules via the graph T.
Let $T = (T_0, T_1, m)$. There are two ways of building an algebra over a field k associated to T.

1. Get the associated quiver Q, define certain relations I, and define

$$\Gamma_T = kQ/I$$

to be the path algebra with relations.

2. Define an algebra Λ_T over k by defining the projective indecomposable Λ-modules via the graph T.

These two methods gives the same result. That is, $\Gamma_T \cong \Lambda_T$.
Γ_T, Path Algebra with Relations

Special a-cycle at 2: $\beta \alpha$
Special b-cycle at 2: $\alpha \beta$
Special c-cycle at 3: $\epsilon \delta \gamma$
Special b-cycle at 3: $\gamma \epsilon \delta$
Special d-cycle at 3: $\delta \gamma \epsilon$
Special c cycle at 4: ι
\[\Gamma_T, \text{ Path Algebra with Relations} \]

Relations
\[\alpha \beta = \gamma \epsilon \delta \]
\[\epsilon \delta \gamma = \iota^2 \]
\[\alpha \beta \alpha = \beta \alpha \beta = \gamma \epsilon \delta \gamma = \delta \gamma \epsilon \delta = \epsilon \delta \gamma \epsilon = \iota^3 = 0 \]
\[\delta \alpha = \beta \gamma = \iota \epsilon = \gamma \iota = 0 \]
kQ/I is a k-vector space with allowable paths given by

- $\alpha, \beta, \gamma, \delta, \epsilon, \iota$
- $\beta\alpha, \alpha\beta, \epsilon\delta, \gamma\epsilon, \delta\gamma, \iota^2$
- $\delta\gamma\epsilon$

Multiply by concatenating paths
$T = (T_0, T_1, m)$

For each edge i, get a module M_i as follows

$$M_a = \begin{pmatrix} a \\ b \\ a \end{pmatrix}, \quad M_b = \begin{pmatrix} a & b & d \\ c \\ b \end{pmatrix}, \quad M_c = \begin{pmatrix} b & c \\ d & c \end{pmatrix}, \quad M_d = \begin{pmatrix} c & d \\ b & d \end{pmatrix}$$

Define Λ_T so that the projective indecomposable Λ-modules are M_a, M_b, M_c, and M_d.
Overview

G finite group

\[kG = B_1 \oplus \cdots \oplus B_m \]

Goal: Understand indecomposable modules for a block B
Overview

G finite group

$kG = B_1 \oplus \cdots \oplus B_m$

Goal: Understand indecomposable modules for a block B
Suppose B has cyclic defect group
Overview

G finite group

$$kG = B_1 \oplus \cdots \oplus B_m$$

Goal: Understand indecomposable modules for a block B

Suppose B has cyclic defect group

\[B \]

\[\downarrow \]

Brauer Tree

\[\downarrow \]

Quiver with Relations
Overview

G finite group

\[kG = B_1 \oplus \cdots \oplus B_m \]

Goal: Understand indecomposable modules for a block B
Suppose B has cyclic defect group

\[B \]

\[\Downarrow \]

Brauer Tree

\[\Downarrow \]

Quiver with Relations

\[\Downarrow \]

Butler and Ringel (1987)

\[\Downarrow \]

String Modules
Let \mathbb{F}_p denote the finite field with p elements.

Define

$$SL_2(\mathbb{F}_p) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{Mat}_{2\times2}(\mathbb{F}_p) \mid a, b, c, d \in \mathbb{F}_p, ad - bc = 1 \right\}.$$

$$|SL_2(\mathbb{F}_p)| = \frac{1}{2} p(p - 1)(p + 1)$$

Goal: Understand the indecomposable representations of $SL_2(\mathbb{F}_p)$ over a field of characteristic p.
$k[SL_2(\mathbb{F}_p)] = B_0 \oplus B_{\text{odd}} \oplus B_{\text{even}}$

There are p simple modules, one for each dimension $1, \ldots, p$

B_0 trivial defect group

B_{odd} cyclic defect group, contains odd dimensional simple modules

B_{even} cyclic defect group, contains even dimensional simple modules
Assuming $p \equiv -1 \mod 4$

B_{odd}

1 \cdots $p-2$ 3 \cdots $(p-1)/2$

Multiplicity 2
Assuming $p \equiv -1 \mod 4$

B_{odd}

\[
\begin{array}{cccccccc}
1 & \bullet & p-2 & \bullet & 3 & \bullet & \ldots & \bullet & (p-1)/2 \\
\end{array}
\]

Multiplicity 2

\[
\begin{array}{cccccccc}
\alpha_1 & \alpha_2 & \alpha_3 & \ldots & \alpha (p-3)/2 & \alpha \\
\beta_1 & \beta_2 & \beta_3 & \beta (p-3)/2 & &
\end{array}
\]
$B_{\text{odd}} \text{ for } p = 7$

Relations

$\alpha_1 \beta_1 \alpha_1, \beta_1 \alpha_1 \beta_1, \alpha_2 \beta_2 \alpha_2, \beta_2 \alpha_2 \beta_2$

α^3

$\alpha_1 \beta_1 - \beta_2 \alpha_2, \alpha_2 \beta_2 - \alpha^2$

$\alpha_2 \alpha_1, \beta_1 \beta_2, \alpha \alpha_2, \beta_2 \alpha$
B_{odd} for $p = 7$

Relations

$\alpha_1 \beta_1 \alpha_1, \beta_1 \alpha_1 \beta_1, \alpha_2 \beta_2 \alpha_2, \beta_2 \alpha_2 \beta_2$

α^3

$\alpha_1 \beta_1, \beta_2 \alpha_2, \alpha_2 \beta_2, \alpha^2$

$\alpha_2 \alpha_1, \beta_1 \beta_2, \alpha \alpha_2, \beta_2 \alpha$
B_{odd} for $p = 7$

Only allowable loops in kQ/I are $\beta_1\alpha_1$ and α

For rest of talk, let $\Lambda = kQ/I$
Strings

\mathcal{Q} quiver, \mathcal{I} admissible ideal
Strings

Q quiver, I admissible ideal

α arrow, define α^{-1} formal inverse, “flipped” arrow
Strings

Q quiver, \(I \) admissible ideal
\(\alpha \) arrow, define \(\alpha^{-1} \) formal inverse, “flipped” arrow

Definition

A *string* of length \(m \) is a finite concatenation of arrows and inverses of arrows

\[c_1 c_2 \cdots c_{m-1} c_m \]

so that

- \(c_{i+1} \neq c_i^{-1} \) for all \(1 \leq i \leq m \)
- No subpath \(c_i c_{i+1} \cdots c_{i+t} \) or its inverse belongs to \(I \)
Strings

Q quiver, I admissible ideal

α arrow, define α^{-1} formal inverse, “flipped” arrow

Definition

A string of length m is a finite concatenation of arrows and inverses of arrows

$c_1 c_2 \cdots c_{m-1} c_m$

so that

- $c_{i+1} \neq c_i^{-1}$ for all $1 \leq i \leq m$
- No subpath $c_i c_{i+1} \cdots c_{i+t}$ or its inverse belongs to I

Visualize

$\alpha_1 \alpha_2 \alpha_3^{-1} \alpha_4 \alpha_5^{-1} \alpha_6^{-1} \alpha_7$

as

\[\bullet \leftarrow \alpha_1 \bullet \leftarrow \alpha_2 \bullet \leftarrow \alpha_3 \rightarrow \bullet \leftarrow \alpha_4 \bullet \rightarrow \bullet \leftarrow \alpha_5 \bullet \rightarrow \bullet \leftarrow \alpha_6 \bullet \rightarrow \bullet \leftarrow \alpha_7 \bullet\]
Strings in Λ

Butler and Ringel, “Auslander-Reiten Sequences with Few Middle Terms and Applications to String Algebras,” Communications in Algebra (1987)
Butler and Ringel, “Auslander-Reiten Sequences with Few Middle Terms and Applications to String Algebras,” Communications in Algebra (1987)

\{\text{Indecomposable } \Lambda\text{-modules}\} \leftrightarrow \{\text{Strings in } \Lambda\}
Butler and Ringel, “Auslander-Reiten Sequences with Few Middle Terms and Applications to String Algebras,” Communications in Algebra (1987)

\[
\{\text{Indecomposable } \Lambda\text{-modules}\} \leftrightarrow \{\text{Strings in } \Lambda\}
\]

\[
1 \xleftarrow{\beta_1} 5 \xrightarrow{\alpha_1} 3 \xleftarrow{\beta_2} \alpha
\]
Strings in Λ

Butler and Ringel, “Auslander-Reiten Sequences with Few Middle Terms and Applications to String Algebras,” Communications in Algebra (1987)

\[
\{\text{Indecomposable } \Lambda\text{-modules}\} \longleftrightarrow \{\text{Strings in } \Lambda\}\]

\[
1 \xleftarrow{\beta_1} 5 \xleftarrow{\beta_2} 3 \xrightarrow{\alpha}
\]

<table>
<thead>
<tr>
<th>Length 0</th>
<th>Length 1</th>
<th>Length 2</th>
<th>Length 3</th>
<th>Length 4 and 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>e₁</td>
<td>α₁</td>
<td>β₁α₁</td>
<td>αβ⁻¹₁₁</td>
<td>α²⁻¹_αβ⁻¹_α₁</td>
</tr>
<tr>
<td></td>
<td>α₂</td>
<td>β⁻¹₂α₁</td>
<td>β₂α⁻¹₂</td>
<td>α²⁻¹αβ⁻¹_α</td>
</tr>
<tr>
<td>e₅</td>
<td>β₁</td>
<td>α₂β⁻¹₁</td>
<td>β₁α⁻¹₂</td>
<td>β₁α⁻¹²αβ⁻¹_α₁</td>
</tr>
<tr>
<td></td>
<td>β₂</td>
<td>αβ⁻¹₂</td>
<td>α⁻¹₂β⁻¹</td>
<td>β₁α⁻¹²αβ⁻¹_α</td>
</tr>
<tr>
<td>e₃</td>
<td>α</td>
<td>α⁻¹₂</td>
<td>β₁α⁻¹₂</td>
<td>β₁α⁻¹²αβ⁻¹_α₁</td>
</tr>
</tbody>
</table>
Auslander-Reiten Theory

Know indecomposable modules

Goal: Understand maps between indecomposable modules

Subgoal: Understand “irreducible” maps between indecomposable modules

Definition

Let $f : A \rightarrow B$ be a module homomorphism. Then, f is irreducible if f is not an isomorphism and if $f = hg$ is a factorization of f, either g is a split monomorphism or h is a split epimorphism.
Auslander-Reiten Theory

The Auslander-Reiten quiver of Λ is a quiver defined by

Vertices: indecomposable Λ-modules

Arrows: irreducible maps between indecomposable modules

Can be built from “almost split exact sequences”
Butler and Ringel (1987) give method for getting almost split exact sequences

Definition

Let C be a string.

1. A string C *starts on a peak* if there does not exist an arrow β so that $C\beta$ is a string.
2. A string C *starts in a deep* if there does not exist an arrow γ so that $C\gamma^{-1}$ is a string.
3. A string C *ends on a peak* if there does not exist an arrow β so that $\beta^{-1}C$ is a string.
4. A string C *ends in a deep* if there does not exist an arrow γ so that γC is a string.

Build almost split exact sequences from strings
Example

String $\alpha \beta_2^{-1}$ does not end on a peak, does not start on a peak

$\beta_1 \alpha_2^{-1} \alpha \beta_2^{-1}$ “maximal” string to the left

$\alpha \beta_2^{-1} \alpha_1$ “maximal” string to the right

$\beta_1 \alpha_2^{-1} \alpha \beta_2^{-1} \alpha_1$ “maximal” string in both directions

Get almost split exact sequence

$$0 \to \alpha \beta_2^{-1} \to \beta_1 \alpha_2^{-1} \alpha \beta_2^{-1} \oplus \alpha \beta_2^{-1} \alpha_1 \to \beta_1 \alpha_2^{-1} \alpha \beta_2^{-1} \alpha_1 \to 0$$
Auslander-Reiten Quiver
Connection to Current Research

X smooth projective curve over algebraically closed field k of characteristic p, G finite group acting on X

For $m > 1$, define $H^0(X, \Omega_X^m)$, space of holomorphic polydifferentials (Representation of G)

Special Case:

- $\ell \neq p$ prime, $X(\ell)$ modular curve of level ℓ
- $X_p(\ell)$ reduction of $X(\ell)$ modulo p
- $G = PSL(2, \mathbb{F}_\ell)$ acts on $X_p(\ell)$
- Understand $H^0(X_p(\ell), \Omega_{X_p(\ell)}^m)$ as a representation of $PSL(2, \mathbb{F}_\ell)$
Blocks of $\text{PSL}(2, \mathbb{F}_\ell)$ over k look like

where the exceptional vertex has multiplicity $\frac{p^n-1}{2}$

Frauke M. Bleher, Ted Chinburg, and Artistides Kontogeorgis. “Galois structure of the holomorphic differentials of curves”. In progress. 2017.