
Sneak-Peek: High Speed Covert Channels in Data
Center Networks

Rashid Tahir †, Muhammad Taha Khan ‡, Xun Gong †, Adnan Ahmed ‡, Amiremad Ghassami †, Hasanat Kazmi ‡,
Matthew Caesar †, Fareed Zaffar ‡, and Negar Kiyavash †

†University of Illinois at Urbana-Champaign
‡Lahore University of Management Sciences

Abstract—With the advent of big data, modern businesses face
an increasing need to store and process large volumes of sensitive
customer information on the cloud. In these environments,
resources are shared across a multitude of mutually untrusting
tenants increasing propensity for data leakage. This problem
stands to grow further in severity with increasing use of clouds in
all aspects of our daily lives and the recent spate of high-profile
data exfiltration attacks are evidence.

To highlight this serious issue, we present a novel and high-
speed network-based covert channel that is robust and circum-
vents a broad set of security mechanisms currently deployed
by cloud vendors. We successfully test our channel on numerous
network environments, including commercial clouds such as EC2
and Azure. Using an information theoretic model of the channel,
we derive an upper bound on the maximum information rate
and propose an optimal coding scheme. Our adaptive decoding
algorithm caters to the cross traffic in the channel and maintains
high bit rates and extremely low error rates. Finally, we discuss
several effective avenues for mitigation of the aforementioned
channel and provide insights into how data exfiltration can be
prevented in such shared environments.

I. INTRODUCTION

Third party clouds are becoming increasingly popular for
outsourcing computation and data storage. A broad spectrum
of corporations, such as Experian [1], BioMedix [2], US
Department of Defense [3] and the CIA [4], now store and
process huge amounts sensitive data on commercial clouds.
Given the sensitivity of the user data involved, it is imperative
for cloud providers to ensure that data remains private and
isolated. Unfortunately, the very nature of the cloud is multi-
tenant, and hence this data protection becomes a serious
challenge. Sharing the same infrastructure between multiple
tenants is crucial for achieving economies of scale via cost
savings arising from shared management, statistical multiplex-
ing and efficient utilization of a limited set of resources [5].
This necessity of sharing infrastructure leads to the danger
of information leakage between tenants, which can be highly
detrimental to national security [6] and can result in major
costs for businesses [7].

To complicate the situatoin further, massive cyberespionage-
based malware ecosystems such as GhostNet[8],
ShadowNet[9] and Axiom[10], have emerged. These
global crime rings systematically compromise machines in
governments and organizations, with the single and solitary
objective of leaking out confidential data (often hosted on data
centers), either openly or in most cases via stealthy covert

channels to avoid detection and traceback. The discovery of
critical vulnerabilities, such as Heartbleed and ShellShock,
on a regular basis has further exacerbated the situation
by providing attackers a broad spectrum of “entry points”
into target machines. The only remaining challenge for
data thieves is to somehow exfiltrate the data by bypassing
network-based monitors, which is why covert channels have
reemerged as a major cause for concern especially in the
cloud arena.

In light of these challenges, cloud operators often parti-
tion resources using virtualization technologies, such as hy-
pervisors, VPNs, Network Virtualization Platforms [11] etc.
However, researchers recently demonstrated [5], [12], [13] that
despite being logically isolated at the host level, VMs sharing
the same machine can still leak sensitive information via covert
and side channels. Many mitigation schemes have since been
proposed that can provide significant protection against these
attacks either at the host level [14], [15], [16], [17], [18] or via
network-based appliances that deploy a clever combination of
network monitoring, access control, firewalls etc. to prevent
leakage even if the machine is completely compromised.

In this paper, we demonstrate how to leak out data even
with all the aforementioned host and network-based security
mechanisms deployed. Our covert channel achieves very high
bit rates in the presence of real-life cross traffic whilst re-
maining undetectable. We test its practicality on commercial
clouds such as EC2 and Azure and demonstrate orders of
magnitude greater bit rates than any previous work in the
data center networks domain. Furthermore, to build a more
complete understanding of the problem, we construct a formal
analytical model of the channel, and present an information-
theoretic upper bound on the bit rate of the channel along with
an optimal scheme, which nearly achieves the upper bound.
Our “smart” decoding algorithm maintains high bit rates by
adapting to the features of the cross traffic. We also analyze
the difficulty of detecting our covert channel and introduce
Forward Error Correction (FEC) using Low-Density Parity-
Check (LDPC) codes [19]. To mitigate our covert channel, we
present an approach, which leverages live migration techniques
to dynamically reposition flows and VMs reducing the leakage
rates substantially.

The rest of the paper is organized as follows: We begin
with Section II covering the related works, followed by a
discussion of the channel construction in Section III. The

L
S1 S2Infected Machine T1

U2

T2

U1

.6 7 8 9543 n. . . .1 2 .9 . . .876 . n4 531 2

Receiver observes delays

Bursty Traffic (Signaling 0 or 1)

Sender sends without delays

Covert Channel

Fig. 1: The insider (Infected Machine T
1

) encodes the covert
messages in the form of bursts. This in turn induces delays
into the outsider flow observable by the receiver (U

2

).

mathematical model of our channel, analysis on bounds, and
the encoding/decoding schemes are presented in Section IV.
Section V describes our experimental evaluation followed by a
discussion of our mitigation mechanisms in Section VI. Finally
we conclude in Section VII.

II. RELATED WORK

A large body of literature deals with the study of Inter-
Packet Delay-based (IPD) covert channels over traditional
protocols such as IP/TCP or HTTP with a comprehensive
survey available here [20]. However, there has been very
little work to date that studies covert channels specifically in
the context of modern, cross-machine data center networks
operating under Software Defined and traditional networks. It
is not clear how well traditional IPD channels will work in the
cloud domain given the fact that cloud vendors employ strict
isolation mechanisms and the infrastructure is significantly
more complex (e.g., load balancers, anti-DDoS network boxes)
with different sharing semantics. Additionally, the distinctive
nature of network traffic in clouds, high processing speeds of
the network infrastructure and the use of SDNs leaves many
unanswered questions, which have not yet been explored.
Sadeghi et al. [21] present the design of an IPSec-based VPN,
which attempts to thwart covert channels arising from sharing
of resources across LANs. However, their end-host based
approach does not mitigate our attack, as it does not prevent
delay variations from being transmitted across flows, which
is exploited by our attack. Bates et al. [22] recently proposed
a network-flow watermarking scheme that borders our work.
However, this work focuses on determining co-residency as
opposed to covert channels. The threat model we consider
is also harder in the sense that cross-tenant communication
between trusted and untrusted tenants is strictly forbidden
meaning that cross-Virtual Network routing is disallowed. Fur-
thermore, we develop a formal analytical model of our channel
to study its characteristics and come up with information
theoretic bounds on the leakage rate, which is not considered
in these prior works. Additionally our work also encompasses
various network environments such as SDNs, which, to the
best of our knowledge, have never been explored in any work
previously. Some researchers have also proposed timing-based

covert channels that attempt to mimic legitimate traffic patterns
[23] to blend in with the non-malicious traffic. Others have
focused more on provable undetectability of covert channels
in independent and identically distributed (i.i.d) traffic [24],
[25] – these works are geared primarily towards reducing
detectability of covert channels, which are orthogonal but
could be applied to our channel.

Recently, researchers also demonstrated host-based covert
and side channels on commercial clouds [13], [5], [12], [18].
These channels were based on low level hardware, such as
the processor cache and the system bus, in order to thwart
any software-based isolation mechanisms deployed by the
cloud vendor. Many mechanisms have since been proposed
to detect and thwart these channels, such as modified cache
architectures and dedicated servers [14], [15], [16], [26],
[18], however none of these schemes can thwart our channel
because of the novelty of our work and the use of a medium,
which is highly multiplexed across a multitude of tenants.

III. CHANNEL CONSTRUCTION

Our scheme requires the existence of a party “inside” the
trusted domain to leak out information to recipients outside.
We use the term insider to refer to such a party, which could
be for example a malware (which has infiltrated a trusted
machine) or a disgruntled employee that wishes to leak out
information. We refer to any other entity colluding with the
insider (but not part of the trusted network) as an outsider.
Construction for Unidirectional Channel: Our channel is a
timing-based, cross-Virtual Network (cross-VN) covert chan-
nel that relies on the underlying shared network resources
in the data center to transfer data between logically isolated
virtual networks. We consider the scenario where a switch
or a shared network resource is handling traffic from two
different flows belonging to two different logical networks
with software isolation guarantees in place. We characterize
these virtual networks in a manner such that nodes from a
particular virtual network can only route to nodes within that
network (as would be realized with, for example, VLAN-based
isolation). In other words inter-VN routing is prohibited. For
simplicity both networks have two nodes each as shown in
Figure 1. Nodes T

1

(insider) and T
2

are part of a trusted
network, whereas Nodes U

1

and U
2

(both outsiders) are part
of an untrusted network. The two networks are co-located in
that they share the same network infrastructure, i.e., switch
S

1

and S
2

connected by a link L. Additionally, consider two
flows in the network such that flow F

1

is a flow from T
1

to
T

2

and flow F
2

is a flow from node U
1

to U
2

. We call F
1

the
insider flow and F

2

the outsider flow. For simplicity, switch
S

1

can be modeled as an infinite buffer server that is serving
jobs from two separate clients. In such a scenario, T

1

will use
the insider flow to induce delays in to the outsider flow since
both flows are sharing the underlying network. Node U

2

can
extract the covert message by measuring the amount of latency
experienced by its packets belonging to the outsider flow. This
key insight, displayed in Figure 1 can be used by colluding
nodes, on two different virtual networks to pass information

2

between the two logically separated entities. For instance, the
insider can increase or decrease its traffic through the shared
link in order to signal a ‘1’ or a ‘0’ bit. As a result, even
when nodes are not allowed to route to each other directly,
an outsider, would still be able to infer the traffic pattern of
the insider resulting in information leakage from the trusted
to the untrusted domain. The bidirectional channels can be
established by extending the same scheme.

IV. MODEL AND ANALYSIS

Our timing covert channel can be modeled as a first-in-first-
out (FIFO) queue shared by two packet processes initiated
by users T

1

and U
1

respectively (Figure 2). Consider time
is discretized into slots, and each packet requires one slot to
service. At each time slot, both T

1

and U
1

can send at most
one packet, which enters the queue at the beginning of the
time slot. Though T

1

and U
1

are not allowed to communicate
directly, because their packets share the same queue, T

1

can
encode messages in the arrival times of its packets, which are
passed onto U

2

(a partner of U
1

) via queuing delays. Ideally, if
U

1

sends a packet every time slot, the capacity of this covert
channel can reach 1 bit per time slot; at each time slot T

1

simply idles to send a bit ‘0’ or sends a packet to signal a
bit ‘1’. However, this is not feasible in practice because the
packets would be dropped due to the instability of the queue.
Hence, we analyze the capacity and coding scheme in the
timing covert channel under the restriction that the total packet
arrival rate does not exceed the service rate; i.e., the queue is
stable.

Scheduler

!

�

(S
1

)

T
1

U
1

U
2

Fig. 2: Timing covert channel in a shared queue. T
1

and U
1

both send packets to a scheduler, and communicate through
a covert channel created in the shared queue; T

1

encodes a
message on packet arrival times, and U

2

(a partner of U
1

)
decodes this information from queuing delays of her packets.

A. An Upper-bound on Channel Capacity
Assume T

1

wants to send one of M different messages
during N time slots. It randomly picks a message m 2
{1, · · · , M} (each message is chosen with probability 1

M), and
encodes it into a length N binary sequence, {�

1

, · · · , �N}. At
slot i, T

1

sends a packet if �i = 1, and stays idle otherwise.
To receive this message, U

1

sends n packets to the scheduler
during the N time slots, among which n0 packets leave the
queue by time N . Denote U

1

’s arrival times by {A
1

, · · · , An},
and the departure times up to time N by {D

1

, · · · , Dn0}.
Naturally, Dn0 N and n0 n. U

1

and U
2

estimate T
1

’s
transmitted message as m̃ 2 {1, · · · , M} from the queuing

delays calculated from {A
1

, · · · , An0} and {D
1

, · · · , Dn0}.
During this encoding/decoding process, the information rate
from T

1

to U
2

is characterized by logM
N , assuming that the

decoded message matches with the sent message, i.e., the error
probability Pe = P (m 6= m̃) is zero.

From Fano’s inequality [27, Theorem 2.11.1], the informa-
tion rate and error probability are related as follows:

log M

N
 1

1 � Pe

I (m; m̃)

T
, (1)

where I (m; m̃) is the mutual information. Mutual informa-
tion characterizes the reduction in uncertainty of the original
message m after observing the decoded message m̃. This is
clear from the definition of mutual information: I (m; m̃) =

H (m)�H (m|m̃), where H (·) denotes the entropy function.
Note in this encoding/decoding process, data is actually

processed across the following Markov chain:

m ! �
1

, · · · , �N ! A
1

, · · · , An0 , D
1

, · · · , Dn0 ! m̃, (2)

where X ! Y means that random variable Y is a function of
random variable X . Applying data processing inequality [27,
Theorem 2.8.1], which states the information contained in a
random variable can not increase after processing, we have

I (m; m̃) I (�
1

, · · · , �N ; A
1

, · · · , An0 , D
1

, · · · , Dn0
) . (3)

Due to the deterministic unit time FIFO service order, U
1

and U
2

know the length of shared queue at time Ak from the
queuing delay Dk �Ak. Therefore, they can learn the number
of jobs T

1

has sent between each pair of U
1

’s consecutive
jobs, Ak and Ak+1

. This means,

I (�
1

, · · · , �N ; A
1

, · · · , An0 , D
1

, · · · , Dn0
)

n0X

i=1

H (Xi) ,

(4)
where Xi =

PAi+1

j=Ai+1

�j . Define h (µ, l) to be the maximum
entropy of a random variable X , which takes values in
{0, 1, · · · , l} and has mean lµ. It can be shown that h (µ, l)
is a concave function of both µ and l. Thus, from Jensen’s
inequality [28, (9.1.3.1)], we have

Pn0

i=1

H (Xi)

n0 h

✓
�,

1

!

◆
, (5)

where the average packet arrival rate of T
1

, � =

E
[

PN
i=1 �i]
N ,

and the rate of U
1

, ! =

n
E[An]

, where E [·] denotes the
expectation value of a random variable.

Combining (1), (3), (4) and (5), we derive an upper-bound
on the information rate of covert messages from T

1

to U
2

:

log M

N
 ! log M

n0 sup

�+!1

!h

✓
�,

1

!

◆
. (6)

Solving the above maximum numerically, we get the max
information rate, namely the capacity of the covert channel,
as 0.8377 bit per time slot, from which we can estimate the
bandwidth of our covert channel; e.g., if the link bandwidth
is 1 Gbps and packet size is 64 KB, an upper-bound on the
bandwidth is about 1.72 Kbps.

3

Time
An Empty

Queue

U
1

T
1

U
2

Packets receives

Packets sends (blue) Packets sends (red)

(a) An empty queue case

Time
Queued

with 2 packets

U
2

Packets receives

U
1

T
1

Packets sends (blue) Packets sends (red)

(b) A non-empty queue case

Fig. 3: Effect of queue on the covert channel. When U
1

and T
1

both send a packet in one time slot, we assume U
1

’s packets
get serviced first. (a) Given an empty queue in the start, the packet sent by T

1

(the red block on the top) will not affect the
timing pattern of packets received by U

2

; hence the message sent by T
1

cannot be decoded. (b) If the queue is not empty in
the start (e.g., with 2 packets buffered), U

2

can detect the packet sent by T
1

from an extra slot of delay (the grey block at the
bottom), and thus decode the sent message.

B. An Achievable Coding Scheme

In this section, we present a coding scheme for communica-
tion over the covert channel. As mentioned above, to achieve
the highest information rate, U

1

must send a packet in every
time slot, but this will result in instability of the queue and
hence is not feasible. Therefore, we divide every N time
slots to 2 phases. Phase 1 has K slots, and Phase 2 has the
remaining N � K slots.

Phase 1: At each time slot, U
1

sends a packet, and T
1

either
sends a packet or idles with equal probability.

Phase 2: This phase is designed to keep the queue stable.
U

1

sends a packet every s time slots, where s � 2. In every s
time slots, T

1

takes one of three possible actions with equal
probability. He either idles, sends a packet at the first slot, or
sends packets in all s slots.

The information rate of this scheme is K
N ⇥1+

N�K
N ⇥ log 3

s
bit per time slot, and the total arrival rate to the queue is
K
N ⇥ 3

2

+

N�K
N ⇥ s+4

3s . Maximizing the information rate subject
to not exceeding arrival rate 1 (keeps queue stable), we have
s = 2 and K = 0 (Phase 1 is eliminated). The resulting
information rate is 0.793 bit per time slot (which is very close
to the upper bound), and the coding scheme is as follows:
U

1

sends a packet every 2 time slots. In every 2 time slots,
T

1

takes one of three possible actions with equal probability;
idling, sending 1 packet, or sending 2 packets.

In order for U
2

to decode T
1

’s message, it should be
able to distinguish between T

1

’s three actions. This requires
the queue to be non-empty, as illustrated by the example in
Figure 3. Ensuring that the queue is non-empty requires more
coordination in terms of sending packets between T

1

and U
1

,
which renders the implementation of the covert channel more
complex.

Another scheme, which does not require such coordination,
is the following 2-phase mechanism.

Phase 1: At each time slot, U
1

sends a packet, and T
1

either
sends a packet or idles with equal probability.

Phase 2: Both U
1

and T
1

idle completely.
The overall information rate using this scheme is K

N bit per
slot (the covert channel is utilized only during Phase 1), and
the total packet arrival rate is 3K

2N . To maintain the stability
of the queue, we require that 3K

2N 1. This implies the
maximum information rate of this scheme is 0.67 bit per time

slot, achieved by picking K
N =

2

3

. The information rate of this
scheme is close to the achievable scheme discussed earlier and
does not require the receiver to distinguish between T

1

’s three
actions, which in turn simplifies the encoding/decoding, hence
we employ this in our experiments.

C. Adaptive Decoding Scheme
In IPD channels like ours, to decode individual bits as either

a zero or a one two problems need to be addressed. Firstly
determining the threshold value is very important. Bits whose
delay lies above the threshold value are decoded as one and
those below are decoded as zero. Secondly, the issue of bit
marking where we need to mark packets belonging to the
same bit, i.e., where a particular bit starts and where it ends
(syncing the sender and the receiver). We address the two
issues separately below:

Threshold Calculation: The optimal thresholding value can
be determined using a brute force scan, which requires the
original string of bits to minimize the error. As the original
string is not known to us, we use the mean of the dataset for
simplicity. However, due to the changing nature of the cross
traffic, such as a flash crowd, a solitary global mean gives poor
results as shown in Section V. Our scheme solves this problem
by splitting the message up. Instead of performing the analysis
above on a large stream of n-bits, the decoder splits up the
stream into multiple regions where a region is a sequence of
bits with uniform cross traffic across. This “region marking”
is performed over the entire bit sequence at the decoding side
with no assistance from the sender. The decoder takes the
first i bits in the message and calculates their mean m

1

. Then
the second i bits are taken and their mean m

2

is compared
against mean m

1

. If both values are “close” to each other
(half a standard deviation in our case) then the first 2i bits are
marked as one big region with one threshold value else they
are marked as separate regions. The process of comparing the
mean of each subsequent set of i bits with the last marked
region continues until the entire message has been iterated
and all the regions have been marked. Afterwards a separate
threshold value is used for each region reducing the overall
error by limiting the contamination of flash crowds and sudden
variations in cross traffic to specific intervals.

Bit Marking: The second major issue in IPD channels is
that of bit marking. In our scheme, the duration of the on-

4

off interval is known beforehand to both the sender and the
receiver. The sender starts off by sending a preamble signal
(predetermined sequence of bits), which effectively syncs the
two. The preamble signal is also used by the receiver to
determine the average number of packets in the on and off
intervals. This gives the algorithm reference points of what
latencies and numbers to expect. To identify each bit, it
keeps cumulating the packet delays that it observes and if
the cumulative delay crosses the duration of the on (or off)
interval and the number of cumulated packets are “close” to
the average number of packets observed in the on (or off)
interval of the preamble sequence then the cumulated packets
are all marked as belonging to the same bit. This process
keeps the sender and the receiver in sync. However, since
the cross traffic keeps changing, the number of packets in an
interval might increase or decrease (e.g., packet drops from
queue buffering) resulting in cascading errors. To cater to this
change, a third parameter is introduced, which is the mean
of the current region. Empirically, we observed that the mean
of a region is inversely proportional to the number of packets
in the on-off interval. This can be understood intuitively as
well since a higher mean represents higher traffic loads and
a higher probability of packet loss. The relationship between
the number of packets and the mean was found to be linear in
nature. Hence, before the decoding algorithm marks the bits in
a region it adjusts its expectations for the number of packets
by taking into account the mean of that region.

V. EVALUATIONS

Multiple distinct testbeds and commercial clouds were used
for a thorough experimental evaluation. We first explain all
environments here and then present the main results from a
few them in the interest of space. Detailed results can be found
in our technical report [29].

The first testbed was a cluster comprising six machines
set up in a dumbbell topology with three machines on each
end and two disjoint paths connecting the two sub-clusters
together. All links were 1Gbps and the switches were 8-
Port Non-Blocking Gigabit GREENnet Full-Duplex Switches
(Model # TEG-S80Dg). In this paper we refer to this testbed as
the cluster. The second testbed was our in-house cloud, which
is an SDN-based (OpenFlow [30]) testbed. It is composed of
176 server ports and 676 switch ports, using Pica8 Pronto
3290 switches via TAM Networks (running Open vSwitch
[31]), NIAGARA 32066 NICs from Interface Masters, and
servers from Dell. We refer to it as In-House Cloud or IHC
here. Results for the Emulab Network Emulation Testbed were
also gathered along with extensive simulations on Network
Simulator-2 (NS-2), both of which allowed us to test various
topologies (Fat Tree, VL2 etc.) with varying sizes. Finally, we
successfully demonstrated the practicality and seriousness of
our channel by testing it on EC2 and Azure.

We implemented the coding scheme presented in Section
IV-B but did not incorporate error-correction. We discuss our
modified algorithm, which performs Forward Error Correction
(FEC) on the decoded bits in our technical report [29]. Our

0.05 0.65
0.5

1
1.5

D
el

ay
 (m

illi
se

co
nd

s)

Bit Rate= 33.5 bits/s On−Off Interval = 0.02 second
(i)

Time (seconds)

0.2 0.35 0.5

(ii)

0.1 1.35
0.4
1.2
2

0.35 0.6 0.85 1.1

Time (seconds)

Fig. 4: 1s are represented by an on interval and 0s are
represented by an off interval. Alternating 1s and 0s and as
were sent. The red line is the threshold line below which we
decode a zero and above it is a one.

results here were achieved using an alternating bit sequence
for visual clarity however, we also tried arbitrary bit sequences
(such as private keys) and achieved very similar results.

Wherever needed, cross-traffic was generated using network
traces from actual data center traffic dumps [32], normalized
for our set up so as to cater to link speeds and bandwidth
availability. The generated cross-traffic turned out to be a
mix of temporally-spaced TCP and UDP flows with different
durations and sizes. During flow extraction, we filtered out
extremely small micro flows as they did not affect the ex-
perimentation in any way and sped up the empirical analysis
considerably. The volume of cross-traffic generated in all
experiments was in correspondence to what was observed in
the actual traffic dumps.
Waveform Experiments: Figure 4 shows the first set of
experiments that we conducted. Following the set up shown
in Figure 1, we used node T

1

(encoder) to send a message
containing a sequence of alternating 1s and 0s. This bit se-
quence was encoded in the form of alternating on-off intervals
for a UDP flow, which in turn induced corresponding latency
variations into the constant stream of packets (also UDP) being
sent from node U

1

to node U
2

(which was the decoder). Figure
4(i) shows the latency between successive UDP packets (of the
outsider flow) as seen by node U

2

. We conducted an additional
series of experiments with actual cross traffic as shown in
Figure 4(ii) and still observed high bit rates and low percentage
error.

0 4 8 12 16 20 24 28 320

20

Packet Size (KB)

Optimum Packet Size

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

5

8x 104

Packet Latency (milliseconds)

Nu
m

be
r o

f P
ac

ke
ts

Without Cross−Traffic
With Cross−Traffic

0.5 0.7 0.9 1.1 1.30

1500

3000

Packet Latency (milliseconds)

(i) CDF

(ii) PDF

Fig. 5: Frequency Distribution Functions.

Distribution Functions: To measure the distribution of packet
delays during the on-off intervals we plot the distribution
functions. Figure 5(i) shows that during the on interval packets
tend to cluster around two values, which are both above

5

Bit Rate Error without
Cross Traffic

Error with Cross
Traffic (No Mes-
sage Splitting)

Error Cross
Traffic + Message
Splitting

100 0 % 3.30 % 0 %
200 0 % 42.80 % 0 %
500 0 % Error > 80 % 8.68 %

TABLE I: Our channel performs at very high speeds in the
absence of noise. However, as cross traffic increases the error
rates spike but our adaptive decoding scheme coupled with
message splitting almost removes the entire error.

the threshold latency induced by an on interval. A similar
phenomenon can also be seen for the off interval where
packets primarily group around two latencies. This intra-
interval latency gap does not affect our results in any way, as
these values fall well above or below the threshold value used
by the decoder. We believe this latency gap is a function of
the packet size as we observed fluctuating values with different
combinations of packet sizes. This is why we see four “steps”
(instead of two) in Figure 5(ii), which plots the Probability
Distribution Function for our data sets.
Percentage Error vs Bit Rate and Message Splitting: Table
I explores the relationship between percentage error and bit
rate. The channel becomes harder to decode, as bit transitions
become packed more tightly together. If we continue reducing
the on-off interval then beyond a point (region 2) the error
rate spikes. We noticed this upward spike for both cross-traffic
and without cross-traffic experiments at almost the same bit
rate, suggesting that in Region 2 the errors are because of
the limitations of the hardware (the NIC can not send and
receive packets at such small intervals). On the other hand,
in Region 1 all error incurred is solely because of the cross-
traffic. The graph also highlights the benefits of our message
splitting mechanism. The substantial difference between the
error values for the decoded message with and without mes-
sage splitting shows the effectiveness of our decoding scheme.

0 4 8 12 16 20 24 28 320

20

Packet Size (KB)

Optimum Packet Size

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

5

10x 104

Packet Latency (milliseconds)

 N
um

be
r

of
 P

ac
ke

ts

Without Cross−Traffic
With Cross−Traffic

0.5 0.7 0.9 1.1 1.30

2000

Packet Latency (milliseconds)

(i)

(ii)

Fig. 6: We kept the bit rate constant at 268 bits/s and ran
experiments for packets sizes ranging from 4KB to 32KB with
4KB steps and observed that the lowest percentage error is
achieved at 16KB packet size.
Effect of Packet Size: Since the participants of the covert
channel have the ability to tune the size of packets we decided
to check the effects of this parameter as well. We observed
that packets that are too small fail to induce noticeable latency
into the packets of the outsider flow resulting in a very high
percentage of errors. On the other hand, using very large
packets results in the capture of the channel by the insider flow,
causing packets from the outsider flow to starve and eventually
get dropped as the queue fills up. We found that packets
with size around 16KB worked the best and induced visible

On-Off Interval Upper-Bound Encoding
Scheme

Empirical Bit
Rate

0.5 1.6754 1.34 1.34
0.1 8.377 6.7 6.633
0.02 41.885 33.5 31.49
0.01 83.77 67 61.975
0.005 167.54 134 122.61

TABLE II: Table comparing theoretically determined bit rates
to empirically achieved goodput (bit rate adjusted for error).

latencies while keeping the percentage error to a minimum.
This phenomenon is captured in Figure 6.
Theoretical vs Empirical Bit Rate: To measure the empirical
performance of our channel, we compare the empirically
measured goodput (bit rate adjusted for error) of the channel
against the bit rates determined theoretically from the upper-
bound and the simple scheme mentioned in Section IV. As
seen in Table II, the goodput was observed to be close to the
theoretically calculated bit rates in all experiments, highlight-
ing the applicability of our analytical model to practice.
Effect of Total Traffic Load/Network Condition: To mea-
sure how network conditions affect our channel we performed
a series of experiments increasing link utilization by 20%
before each run. We observed a constant upward shift in
the average delay of packets at the receiver however, since
the increase is roughly uniform it does not interfere with
the decoding process. Figure 7(i) illustrates this step-wise
increase. We conclude that our channel can function efficiently
in varying network conditions irrespective of the degree of
traffic load.

20 40 60 80
0.5
0.8
1.1
1.4
1.7

2

Percentage Traffic Load

 A

ve
ra

ge
 P

ac
ke

t

 L
at

en
cy

 (m
s)

20% Load 40% Load 60% Load 80% Load

0 2000 4000 6000 8000
0.45

0.55

0.65

0.75

Es
tim

at
ed

 H
ur

st
 E

xp
on

en
t

Self Similarity Threshold

(i)

(ii)

Number of Packets

Fig. 7: (i) effect of traffic load (ii) self-similarity of channel.

Detectability of the Covert Channel: Several studies [33],
[34] have suggested that under normal conditions, network
traffic exhibits self-similarity whereas this property is lost
during anomalous conditions such as malicious intrusions and
resource-exhaustion attacks [35]. While a Cumulative Distri-
bution Function (CDF) can be used to flag such anomalous
traffic patterns, the Hurst exponent (H) is typically used as
a measure for determining self-similarity. For a self-similar
process the Hurst exponent takes a value between 0.5 and
1, and the degree of self-similarity increases as the value

6

approaches 1. To measure how anomalous our channel seems
to a network profiling tool we measured the Hurst exponent
in the presence of background traffic under different bit rates.
Figure 7(ii) shows that even for bit rates as high as 200 bits/s
our covert channel blends in nicely with the cross-traffic as
the Hurst exponent stays well above the threshold value for
self-similarity. It is worth mentioning here that even though it
seems from our graphs that the waveform is very distinct and
easily recognizable, it is only because we are transmitting a
bit sequence with alternating ones and zeros, which is not the
case with actual covert messages.
Effect of Queuing Policy and Hypervisor: To study the
sensitivity of our covert channel to different queuing schemes,
we conducted simulations on NS-2, which enabled us to
study a broader set of queuing policies than is possible with
hardware switches, some of which do not implement or give
access to configuration of multiple queuing strategies. So far,
our results were based on switches using FIFO queuing. In this
particular experiment we tried Stochastic Fair Queuing (SFQ),
Fair Queuing (FQ), Drop Tail (DT), Random Early Detection
(RED) and Deficit Round Robbin (DRR). Figure 8 shows some
waveform results that we obtained. Surprisingly we found that
our channel works extremely well in almost all schemes that
we tried. We found that RED and DT behaved remarkably
similar to each other so we show one graph representing both
of them.

Building on this result, we contend that the underlying
hypervisor design does not affect our channel. The virtual
switch (residing on the host) uses one of the aforementioned
policies and as shown above they don’t have any negative
effect on the channel’s performance. Similarly, another entity
that could potentially disrupt the channel is the hypervisor
scheduler. Here again, we point out that since we managed
to run all our experiments on a wide variety of different
hypervisors (Xen, VMWare’s vSphere, VirtualBox, Amazon’s
customized Xen, and Azure’s Hyper-V) without any modifi-
cation to the code or channel semantics, we are confident that
the underlying hypervisor design, particularly the scheduler,
does not influence our channel in any way.

0 15 30
0.2

0.35

0.5

(a) SFQ

D
el

ay
 (m

illi
se

co
nd

s)

0 15 30
0.2

0.3

0.4

(b) RED/DT

0 15 30
0.3

0.7

1.1

(c) FQ

Time (milliseconds)
0 15 30

0.2

0.35

0.5

(d) DRR

Fig. 8: Waveform simulations for various queuing schemes.

Azure and EC2: Apart from testing our covert channel in
a synthetic environment, we performed experiments on EC2

0 0.1 0.2 0.3 0.4

4

6

8

0 0.1 0.2 0.3 0.4
3

5

7

Time (seconds)

D
el

ay
 (m

illi
se

co
nd

s) (ii) EC2(i) Azure

Fig. 9: Waveforms for commercial clouds.

and Azure as well. To set up our channel on these commercial
environments we had to successfully achieve link sharing
on the insider and outsider flows. This was mainly achieved
through hit and trial however, we tried to increase our chances
of link sharing by provisioning senders and receivers very
carefully in these clouds. Specifically, the documentation of
EC2 hints at the fact that inter-availability zone traffic could
share underlying resources. Hence we provisioned the senders
and the receivers on neighboring availability zones while
keeping each sender-receiver VM-pair on the the same Virtual
Private Cloud (VPC). This greatly increased our chances of
achieving coresidency on links in EC2. A similar argument
holds true for achieving link-sharing in Azure but again some
hit and trial is needed. For a detailed study on some state of
the art techniques to achieve coresidency we refer the reader
to [36], [37].

For these experiments, we performed serveral different runs
at different times of the day and noticed that even though the
effect of cross-traffic was noticeable, our channel performed
decently. Figure 9(i) shows one such run at 100 bits/s for
Azure and Figure 9(ii) shows the waveform for EC2 at 100
bits/s. We also noticed that for different types of instances our
results varied. For example, the compute-optimized instances
gave us better results compared to instances with very limited
resources. Intuitively, it can be argued that instances with
more resources, particularly higher network bandwidth and
presumably better NICs, should improve our results. This is
because our channel depends on how fast we can send packets
and how much we can send. The aforementioned effect has
been captured in Figure 10 for Azure. A similar trend was
observed in EC2 with “larger” instances performing much
better.

0
5

10
15
20
25
30
35

A1 A5

P
er

ce
nt

ag
e

E
rr

or

A3
VM Instance

1 bps
10 bps
100 bps

Fig. 10: Performance of various instance types in Azure with
A1 being the smallest and A5 the largest.

VI. MITIGATION

Many researchers in the covert channel community argue
that covert channels can never be eliminated from a system in

7

their entirety [20], [38], [39] unless sharing is done away with
altogether [5]. For this reason we present a mitigation scheme
that primarily aims to rate-limit the capacity of the covert
channel by essentially minimizing the time spent on shared
resources rather than eliminating the virtualization altogether
so that resources can still be multiplexed.

Our mitigation scheme is built on top of two key insights.
Firstly, data centers are typically over-provisioned in terms
of the number of paths between two communicating hosts to
cater for link or switch failures [40]. Secondly, data centers
often employ high-speed load balancers (hashing 5-tuple flow
IDs onto different outbound interfaces) to ensure efficient link
utilization and to reduce link congestion [40]. However, such
static load balancing may increase the attacker’s ability to
establish co-location; by repeatedly modifying the 5-tuple the
attacker can cycle through a set of paths until one shared
with the outsider is attained. With these insights in mind,
we developed a scheme that involves dynamically migrating
flows in order to reduce the amount of time spent on the
same underlying resource while minimizing modifications to
the load balancing infrastructure. The basic idea is to select a
candidate flow after it has been scheduled on a particular link
and migrate it to a different path dynamically and repeatedly
(if possible), ideally node-disjoint or at least edge-disjoint,
based on the characteristics of a flow or the current state
of the resource being shared. It is important to note here
that reallocation of flows should not be done too quickly so
as to maintain stability of transmission. We explain various
different mechanisms that can be employed, in combination,
depending on the circumstances. For instance if a trustworthy
tenant is scheduled alongside an untrusted tenant, the flows
of the untrusted tenant could be assigned a more aggressive
hopping scheme. We present our hopping schemes below.
Path Hopping: If multiple node-disjoint paths are avail-
able between the insider and outsider’s flows, changing the
path of either of the flows would eliminate the sharing and
severely limit the capacity of the channel. This “post-load
balancing” migration of the flow can be achieved with simple
modifications to the load balancing strategy. With network
virtualization platforms in place, there is also an opportunity to
migrate entire virtual networks around. LIME[41] is one such
example where overlay networks are migrated to a distinct
or partially distinct set of physical resources. In order for
the load balancer to migrate a flow, we first need to decide
which flow to migrate (flow selection). We then need to decide
on a location where we move the flow to (flow placement).
We present some alternate simple schemes for both problems
below:

1) Flow Selection:
Similarity-Based Selection: SDNs give us the ability to query
real time traffic statistics from each switch. If two flows are
found to be similar in terms of their link utilization (or other
such metrics), we simply swap them with each other so as to
minimize the effect of hopping on the other flows. If either of
the swapped flows happens to be a participant in the covert

mixed unmixed

3(k � 1)

4k

4k � 3

4k

3

4k

k + 3

4k

Fig. 11: The Markov chain of state of the covert channel
applying Random hopping and Random Placement.

channel, the channel will break down.
Timed Selection: In this scheme we associate a timer with
each flow and whenever the timer expires we migrate the flow
to another path.
Random Selection: The system has a global timer and when
the timer expires a (weighted) coin is flipped for each flow. If
the coin lands on its head then we migrate the flow, else we
leave the flow as it is.

2) Flow Placement:
Random Placement: Select the destination path randomly
from a set of paths.
Anti-Social Placement: Select the destination path that is least
crowded (in terms of the number of flows or the link utiliza-
tion). Such live migration also has the effect of alleviating
congestion.
Quick Selection: Select the destination path that gives the
least downtime.

Our mitigation scheme also has the potential of mitigating
cross-VM covert and side channels [5], [13], [18]. Migrating
one of the VMs to a different server would eliminate any
sharing. We call this process “location hopping” and all
schemes mentioned in the previous section can be applied to
the context of VMs directly.

A. Mathematical Analysis of Path Hopping
In the interest of space, we analyze the performance of

two of the proposed schemes, namely Random Hopping (for
flow selection) joined together with Random Placement (for
flow placement). For a detailed analysis and evaluation of all
proposed schemes see our technical report [29]. Assume there
are in total k paths available for selection, and define state
mixed to be the case when the two flows reside on the same
path (the covert channel exists), and state unmixed to be the
case when they are scheduled onto different paths (the covert
channel is eliminated).
Random Selection + Random Placement: In this mitigation
scheme, every time the global timer fires, each flow is migrated
with probability 1

2

, and the destination path of the migration
is randomly selected from the k paths. As a result, the state
transition of the covert channel can be described by the
Markov chain in Figure 11, from which it is easy to show that
on average for k�1

k of the time, the system stays in unmixed
state, i.e., the covert channel does not exist.

B. Empirical Results of Path Hopping
We implemented the scheme described above and show the

performance of Random Selection + Random Placement in

8

Figure 12. The region where the sharing took place can be
seen in the start followed by two intervals of no sharing
(resulting from path hopping) and then sharing again. We
noticed downtimes on the orders of tens of milliseconds
mostly to a couple of hundreds at times. Given these low
downtimes we believe that we can hop more frequently if a
tenant reputation system is in place and the tenant has a low
reputation score. This would ensure that the tenant’s flows
keep moving around in the data center, which in turn would
induce an unstable covert channel (if the insider does manage
to repeatedly achieve co-location).

0 5 10 15 200

1

2

3

Time (seconds)

Pa
ck

et
 L

at
ne

cy

(m
illi

se
co

nd
s)

Peaks Showing Downtime During Migration

Fig. 12: Random Selection + Random Placement mitigation
scheme.

VII. CONCLUSION

Software-isolated virtual machines and networks create the
illusion of a personally-owned computing machine with a
secure communication channel. However, the shared physical
resources underlying the virtualized isolation present the op-
portunity for malicious data transfer.In this paper, we highlight
a growing trend in covert channels and present novel ways
of compromising the private data of a user by exploiting
the weaknesses that go hand-in-hand with the flexibility that
virtualization has to offer. We present a discussion on cross-
VN covert channels and analyze their channel capacity. We
propose a defensive scheme that reduces the effects of these
channels by decreasing the time spent on shared resources
and complicating the ability of the attacker to “map out” the
network.

REFERENCES

[1] “Experian runs its private cloud on VMware,”
https://tinyurl.com/p8ljc57.

[2] “Cleardata Customers,” http://www.cleardata.com/cm/content/customers.asp.
[3] “Dod Cloud Broker,” http://www.disa.mil/Services/DoD-Cloud-Broker.
[4] “Amazon Again Beats IBM For CIA Cloud Contract,”

https://tinyurl.com/oegycn7.
[5] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, You, Get off

of My Cloud: Exploring Information Leakage in Third-party Compute
Clouds,” in ACM CCS, 2009, pp. 199–212.

[6] “White House says Sony hack is a serious national security matter,” The
Washington Post, Dec. 2014, https://tinyurl.com/nkf8mpg.

[7] “4-year long HIPAA breach uncovered,” Healthcare IT News, Jan. 2014,
https://tinyurl.com/ls66a3a.

[8] “Tracking GhostNet: Investigating a Cyber Espionage Network,” ProP-
ublica, Apr. 2012, https://tinyurl.com/ygakufq.

[9] “SHADOWS IN THE CLOUD:Investigating Cyber Espionage 2.0,”
https://tinyurl.com/3qwrfrc.

[10] “Researchers Identify Sophisticated Chinese Cyberespionage Group,”
The Washington Post, Oct. 2014, https://tinyurl.com/pntdm64.

[11] “VMware NSX,” http://www.vmware.com/products/nsx.
[12] Y. Xu, M. Bailey, F. Jahanian, K. Joshi, M. Hiltunen, and R. Schlichting,

“An Exploration of L2 Cache Covert Channels in Virtualized Environ-
ments,” in ACM CCSW, 2011, pp. 29–40.

[13] Z. Wu, Z. Xu, and H. Wang, “Whispers in the Hyper-space: High-speed
Covert Channel Attacks in the Cloud,” in USENIX Security Symposium,
2012.

[14] Z. Wang and R. B. Lee, “Covert and Side Channels Due to Processor
Architecture,” in ACSAC, 2006.

[15] J. Kong, O. Aciimez, J.-P. Seifert, and H. Zhou, “Hardware-software
integrated approaches to defend against software cache-based side
channel attacks,” in HPCA, 2009, pp. 393–404.

[16] “Virtual Private Cloud,” http://aws.amazon.com/vpc/.
[17] Y. Zhang, A. Juels, A. Oprea, and M. K. Reiter, “HomeAlone: Co-

residency Detection in the Cloud via Side-Channel Analysis,” in IEEE
SSP, 2011, pp. 313–328.

[18] J. Wu, L. Ding, Y. Wu, N. Min-Allah, S. U. Khan, and Y. Wang,
“C2detector: a covert channel detection framework in cloud computing,”
Security and Communication Networks, 2014.

[19] S.-Y. Chung, J. Forney, G.D., T. Richardson, and R. Urbanke, “On
the design of low-density parity-check codes within 0.0045 db of the
shannon limit,” Communications Letters, IEEE, 2001.

[20] S. Zander, G. J. Armitage, and P. Branch, “A survey of covert channels
and countermeasures in computer network protocols,” IEEE Communi-
cations Surveys and Tutorials, pp. 44–57, 2007.

[21] A.-R. Sadeghi, S. Schulz, and V. Varadharajan, “The Silence of the
LANs: Efficient Leakage Resilience for IPsec VPNs,” in ESORICS,
2012, pp. 253–270.

[22] A. M. Bates, B. Mood, J. Pletcher, H. Pruse, M. Valafar, and K. R. B.
Butler, “On detecting co-resident cloud instances using network flow
watermarking techniques,” Int. J. Inf. Sec., pp. 171–189, 2014.

[23] S. Cabuk, C. Adviser-Brodley, and E. Adviser-Spafford, “Network covert
channels: design, analysis, detection, and elimination,” 2006.

[24] S. Sellke, C. Wang, S. Bagchi, and N. Shroff, “Tcp/ip timing channels:
Theory to implementation,” in IEEE INFOCOM, 2009, pp. 2204–2212.

[25] Y. Liu, D. Ghosal, F. Armknecht, A. Sadeghi, S. Schulz, and S. Katzen-
beisser, “Hide and seek in timerobust covert timing channels,” Computer
Security–ESORICS 2009, pp. 120–135, 2009.

[26] H. Raj, R. Nathuji, A. Singh, and P. England, “Resource management for
isolation enhanced cloud services,” in NS Simulator for Beginners’09,
2009, pp. 77–84.

[27] T. M. Cover and J. A. Thomas, Elements of Information Theory. New
York: Wiley, 1987.

[28] S. G. Krantz, Handbook of Complex Variables. MA: BirkhŁuser, 1995.
[29] “Sneak-peek: High speed covert channels in data center networks,”

Technical Report, 2015. [Online]. Available: https://db.tt/JkMyvns6
[30] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[31] “Open vSwitch,” 2014, http://openvswitch.org/.
[32] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics

of data centers in the wild,” in ACM IMC, 2010.
[33] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson, “On the

self-similar nature of ethernet traffic (extended version),” IEEE/ACM
Trans. Netw., 1994.

[34] D. Ersoz, M. S. Yousif, and C. R. Das, “Characterizing network traffic
in a cluster-based, multi-tier data center,” in ICDCS, 2007, pp. –1–1.

[35] U. Premarathne, U. Premaratne, and K. Samarasinghe, “Network traffic
self similarity measurements using classifier based Hurst parameter
estimation,” in ICIAfS, 2010.

[36] A. Bates, B. Mood, J. Pletcher, H. Pruse, M. Valafar, and K. Butler,
“Detecting co-residency with active traffic analysis techniques,” in
Proceedings of the 2012 ACM Workshop on Cloud Computing Security
Workshop, ser. CCSW ’12, 2012.

[37] A. M. Bates, B. Mood, J. Pletcher, H. Pruse, M. Valafar, and K. R. B.
Butler, “On detecting co-resident cloud instances using network flow
watermarking techniques,” Int. J. Inf. Sec, vol. 13, no. 2, pp. 171–189,
2014. [Online]. Available: http://dx.doi.org/10.1007/s10207-013-0210-0

[38] A. B. Jeng and M. D. Abrams, “On network covert channel analysis,”
in 3rd Aerospace Computer Security Conference, 1987.

[39] I. S. Moskowitz and M. H. Kang, “Covert Channels - Here to Stay?” in
COMPASS, 1994.

[40] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “VL2: A Scalable and Flexible
Data Center Network,” in ACM SIGCOMM, 2009.

[41] E. Keller, S. Ghorbani, M. Caesar, and J. Rexford, “Live Migration of
an Entire Network (and Its Hosts),” in HotNets-XI, 2012.

9

