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Abstract. Active measurement tools are important to understand and
diagnose performance bottlenecks on the Internet. However, their over-
head is a concern because a high number of additional measurement
packets can congest the network they try to measure. To address this
issue, prior work has proposed in-band approaches that piggyback ap-
plication traffic for active measurements. However, prior approaches are
hard to deploy because they require either specialized hardware or mod-
ifications in the Linux kernel. In this paper, we propose FlowTrace–a
readily deployable user-space active measurement framework that lever-
ages application TCP flows to carry out in-band network measurements.
Our implementation of pathneck using FlowTrace creates recursive
packet trains to locate bandwidth bottlenecks. The experimental evalu-
ation on a testbed shows that FlowTrace is able to locate bandwidth
bottlenecks as accurately as pathneck with significantly less overhead.

1 Introduction

Background. Internet performance measurement plays an important role in
diagnosing network paths, improving web application performance, and inferring
quality of experience (QoE). A notable example is the use of available bandwidth
measurement in adaptive video streaming [20,15]. ISPs and content providers
are motivated to build web-based measurement tests (e.g., M-Lab NDT [19],
Ookla speed test, and Netflix fast.com [8]) to provide throughput measurement
services for end-users. These platforms estimate access link capacity by flooding
the network with one or more concurrent TCP flows [2], which result in very high
overhead [9]. Note that while such tools can be used by the end-users to measure
network performance, large scale deployment (e.g. by CDNs) to conduct Internet-
wide network measurements poses scalability concerns due to high overheads.
Limitations of Prior Work. Over the last decade, many light-weight end-
to-end active network measurement methods have been proposed to accurately
measure network path metrics, including latency [17], packet loss rate [26], avail-
able bandwidth [28,13,25], and capacity [3,14,5]. These tools inject crafted probe
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packets into the network with a specific packet sending pattern, and analyze the
timing or events of responses to compute the network metrics. However, these
tools are not widely adopted for measuring web service performance for two main
reasons.

1) Out-of-band. The measurement probes often used different flow tuples (types
of packets, source/destination ports) to user traffic [21]. The network path
traversed by the measurement flow could be different from the user traf-
fic, and thus the results may not be representative. In addition, some mea-
surement tools (e.g., pathload [13], pathChirp [25]) typically generate a
significant amount of traffic—carrying no useful data—to interact with and
measure the network.

2) Prior solutions are hard to deploy. Various solutions such as MGRP [24] and
minProbe [29] have been proposed to mitigate the impact of these mea-
surement tools on the network, by leveraging application traffic to conduct
measurements. Ideally, such tools can be deployed at the server-side to lever-
age ongoing downstream traffic to conduct end-to-end measurements to the
client-side. However, these solutions are limited in terms of feasibility of
deployment. For instance, MGRP requires modifications in the Linux ker-
nel, making it OS-specific, while minProbe requires dedicated FPGA-based
SoNIC hardware.

Proposed Approach. In this paper, we propose FlowTrace, a user-space
measurement framework to deploy in-band network measurement systems. Flow-
Trace overcomes the limitations of prior work as follows. First, it conducts in-
band measurements by intercepting and rescheduling application data packets.
Second, it only uses commodity Linux utilities such as iptables and NFQUEUE,
thereby avoiding the need to patch the kernel or additional hardware, making
it feasible to deploy across large scale infrastructures such as Content Delivery
Networks or measurement platforms such as M-Lab. Overall, FlowTrace in-
tercepts packets from the application flows and shapes them so as to implement
different measurement algorithms.

Evaluation. We have implemented a prototype of FlowTrace and evaluated
it using Emulab. Specifically, we demonstrate the effectiveness of FlowTrace
by implementing a well-known measurement tool pathneck [10] over Flow-
Trace, and comparing the measurements done using both implementations.
Note that pathneck uses recursive packet trains (RPTs) to locate the bottle-
neck by analyzing the packet dispersion of the ICMP TTL exceeded messages
returned by the intermediate hops. We show in our evaluation that measure-
ments done using pathneck implemented on FlowTrace closely follow the
measurements done using pathneck. Lastly, we show that using FlowTrace
only increases the application-perceived latency by at most 1.44 milliseconds.

We remark that FlowTrace can be used by various measurement platforms
to efficiently implement a vast array of measurement algorithms, that would
otherwise be infeasible to deploy at large scale.
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2 Background

There is a long line of research on active network measurements to measure dif-
ferent network performance metrics such as round-trip-time (RTT), packet loss
rate, and bandwidth [18,25,12,13,28,11,10]. These active measurement tools pro-
vide useful insights for network performance diagnosis, management, and even
protocol design. For instance, ping [16] is a simple yet effective tool to measure
RTT and packet loss between two hosts by constructing specially-crafted ICMP

messages that, when received by a receiver, are echoed back to the sender. iPerf
[6] is commonly used to measure bandwidth between two hosts by measuring the
time it takes to complete a bulk transfer between the two hosts. These tools and
their variants are used to conduct Internet-scale measurements using dedicated
measurement platforms such as M-Lab [18].

Prior work has proposed more sophisticated active measurement tools such
as pathload [12] and pathChirp [25] to measure available bandwidth as well as
pathneck [10] to localize the bandwidth bottleneck between two hosts. Instead
of relying on bulk data transfers, these tools probe the network and measure the
timing information of the responses to estimate the bandwidth characteristics.
More specifically, these tools craft probe packets that traverses the end-to-end
path between a source and a destination host and interacts with the underlying
network along the path. As a result, the underlying network modulates the probe
traffic (such as packet transmission rates at the links) and generates a “response”
(such as inter-packet gaps) as the probe packets move forward through the links
along the path. The tools then analyze this timing information to estimate the
bandwidth characteristics of the underlying network.

Even though these more sophisticated bandwidth measurement tools gener-
ate relatively less traffic as compared to iPerf, they still introduce non-trivial
probe traffic that can cause congestion in the very network they are trying to
measure. For instance, pathneck identifies the location of the bottleneck along
the path by constructing recursive packet trains (RPTs), consisting of large pay-
load packets wrapped around with small probe packets. Note that even though
the probe packets in the RPTs are negligible in size, payload packets are typi-
cally much larger and carry dummy payload that can congest the network. Such
non-trivial overheads make it infeasible to deploy these bandwidth measurement
tools on a large-scale.

To address this issue, prior work has proposed methods that allow these
measurement tools to piggyback useful application traffic onto the measurement
traffic [24,29]. More specifically, MGRP [24] was designed to mitigate the over-
heads of measurement tools such as pathload and pathChirp by piggybacking
payload data from all application flows destined to the remote host—to which
the measurement is to be done—into probe packets. These probe packets are
received and demultiplexed into the constituent application flows by the remote
host, while the measurement is done by observing the arrival times of the MGRP
probes. In the same vein, minProbe was proposed to leverage application traffic
in a middlebox environment for Gigabit-speed networks. Specifically, minProbe
[29] intercepts application flows destined to the target host at middleboxes and
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modulates (and measures) the transmission (and arrival) times of these packets
with nanosecond precision to allow for high-speed network measurements.

While existing methods such as MGRP [24] and minProbe [29] do mini-
mize measurement overheads by leveraging application traffic for probing, their
deployment requires specialized hardware or kernel-level modifications at the
hosts. minProbe requires specialized hardware such as FPGA pluggable boards
and Software-defined Network Interface Cards (SoNIC) making it infeasible for
Internet-scale deployment. MGRP requires changes to the Linux Kernel, making
it OS- and Kernel-specific and severely limiting its deployability as acknowledged
by [24].

3 FlowTrace

In this section, we first discuss some design goals of FlowTrace (§3.1), and
then describe the technical challenges we tackled in implementing FlowTrace
(§3.2).

3.1 Overview

The design of FlowTrace revolves around two main goals. First, FlowTrace
leverages ongoing TCP flows to conduct in-band network measurement. By em-
bedding measurement probes into the flows nwe make sure that the measure-
ment traffic follows the same path as the application traffic, thereby enabling
measurements along the paths undertaken by the application traffic. In addition,
leveraging application traffic to conduct measurements can significantly reduce
the measurement overheads. Second, FlowTrace can be feasibly deployed by
various server-end entities such as content-providers and measurement platforms
(such as M-lab) to measure the application of web services and conduct Internet-
wide measurements, without requiring significant changes to the Linux Kernel
and additional hardware respectively.

We use FlowTrace to perform pathneck-like measurements to locate net-
work bottlenecks. Identifying under-provisioned links is useful for load-balancing
traffic and improving the service quality. FlowTrace is implemented as an in-
band, user-space tool that leverages ongoing TCP flows for measurement.

FlowTrace monitors traffic to identify new TCP flows and decides which
flows to be measurement flows, and then intercepts packets from measurement
flows to construct RPTs, which comprise of large payload packets wrapped around
with TTL-limited probe packets. The routers on the path subsequently drop the
first and the last probe packets and generate TTL-exceeded ICMP response mes-
sages [10]. FlowTrace captures these response messages to infer the location of
the bottleneck. To this end, FlowTrace treats data packets in the flow as pay-
load packets, and inserts leading and trailing probe packets—called head packets
and tail packets, respectively. FlowTrace conducts bottleneck identification
and localization by analyzing the arrival time of the response packets triggered
by the dropped hand and tail packets. FlowTrace does not manipulate the
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TTL of data packets, allowing them to be received by the remote host without
any disruptions. Note that a large amount of data in the constructed RPT is
the original payload packets carrying useful application data, with FlowTrace
inserting only a number of small probe packets to conduct measurement.

3.2 Technical Challenges

While the basic concept behind FlowTrace is intuitive, as we discuss below,
it presents a unique set of technical challenges.

Lack of Kernel-level visibility. The first and foremost challenge in leveraging
ongoing application traffic to deploy active measurement techniques in user-space
is the lack of kernel-space visibility and packet-level control. Specifically, when
an application generates data that is to be sent to a remote host, it passes the
data down to the kernel where it is fragmented and formed into TCP/IP packets
after filling all the corresponding packet header fields, and is finally sent over
the wire. Prior approaches such as MGRP implemented an in-kernel solution to
intercept and piggyback application layer packets in probe packets to implement
various active measurement techniques. However, as mentioned before, MGRP
requires changes in Linux kernel, and is OS-specific, which makes it difficult to
deploy at a large scale.

On the contrary, we use commodity Linux-based utilities such as firewalls and
basic user-space libraries to implement FlowTrace. More specifically, Flow-
Trace relies on utilities such as iptables and NFQUEUE to obtain fine-grained
per-packet control in user-space. In this manner, FlowTrace intercepts packets
from application traffic, modifies (or modulates) packet transmission times, and
inserts probe packets to create RPTs. All in all, these commodity Linux-based util-
ities provide relatively fine-grained control and visibility over application layer
traffic without compromising on the feasibility for large-scale deployment.

Interception vs. “Respawning”. In addition to fine-grained control over ap-
plication traffic, active measurement techniques require control over the trans-
mission rate of the measurement traffic. Specifically, pathneck transmits a
“well-packed” RPTs at line rate from the source host to effectively locate bottle-
necks along the path. However, since FlowTrace leverages application layer
traffic to construct RPTs and conduct measurement, it is limited by the traffic
characteristics of the application. For instance, if the application generates pay-
load data at a rate slower than the line rate, FlowTrace will be unable to
construct “well-packed” RPTs, resulting in inaccurate network measurements.

To enable FlowTrace to send RPTs at line rate, we can buffer application
packets in the kernel using NFQUEUE, and transmit a “well-packed” RPT when
FlowTrace has received enough packets from the application layer. However,
a limitation of using NFQUEUE is that FlowTrace only has visibility at the head
of the queue, with no information about the number of packets in the queue. To
solve this, FlowTrace “respawns” the application layer traffic in the user space.
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FlowTrace retrieves and copies available packets in NFQUEUE, and notifies the
kernel to discard the original packet by returning NF DROP. Lastly, upon receiving
the specified number of application layer packets, FlowTrace constructs a
“well-packed” RPT using the buffered data packets, and (re-)transmits them using
pcap at line rate.

Minimizing the impact of packet buffering. Lastly, FlowTrace largely
depends on the traffic generation behavior of the application conduct measure-
ments. Note that traffic generation patterns and volume of traffic can vary sig-
nificantly across applications, ranging from small short-lived flows generated by
web browsing to long-lived flows for video streaming services. As a result, Flow-
Trace may not be able to receive and intercept sufficient data packets to gen-
erate measurement traffic according to the specified measurement configuration.
To this end, we can increase the time FlowTrace waits for the next packet
to accumulate more data packets. However, application packets may perceive
excessive buffering period before they are sent, thereby hurting the throughput
and responsiveness of the application.

To reduce the impact on the application performance, FlowTrace employs
an opportunistic approach to conduct measurement. FlowTrace continuously
monitors the inter-arrival delays of the new data packets. Whenever the inter-
arrival delay exceeds a certain time threshold, tipa, FlowTrace gives up on that
round of measurement, and immediately sends out all the buffered packets over
the wire using pcap, thereby resuming the flow. After resuming the flow, Flow-
Trace waits for the next chance to conduct the required measurement using
subsequent application packets. Note that the value of tipa governs the tradeoff
between the capability of FlowTrace to consistently conduct measurements
and application layer performance.

Another alternative approach to minimize the impact of buffering is to intro-
duce additional dummy data packets when the number of data packets from the
application is not enough. However, this approach introduces additional conges-
tion to the network which is against the design goal for FlowTrace. Therefore,
in this paper, we use tipa to configure the wait time and resume application flows
when FlowTrace receives insufficient data packets.

3.3 Implementation

FlowTrace employs NFQUEUE [22], which is a user-space library to intercept
an ongoing network flow from the system. FlowTrace identifies a flow of in-
terest based on the IP address provided by the operator, and sets up iptables

to intercept the application flow. Specifically, FlowTrace sets up iptables

rules inside the Linux kernel with NFQUEUE as the target, effectively redirecting
packets from the flow of interest to NFQUEUE. Consequently, whenever a packet
satisfies an iptables rule with an NFQUEUE target, the firewall enqueues the
packet and its metadata (a Linux kernel skb) into a packet queue such that the
decision regarding the corresponding packets can be delegated to a user-space
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Fig. 1. High level work flow of FlowTrace. FlowTrace first identifies an application
flow based on the 5-tuple. It then configures iptables rules such that the packets
from the application flow are directed towards the NFQUEUE target. NFQUEUE delegates
the decision of each packet to a user-space program spawned by FlowTrace, which
buffers the payload from each packet in user-space and directs NFQUEUE to drop the
packets. When FlowTrace receives enough application packets, it creates a “well-
packed” RPT out of the buffered application packets and transmits them on the wire
via pcap. Otherwise, FlowTrace transmits the buffered application packets without
any additional probe packets.

program. To this end, the kernel then executes a callback registered by the user-
space program, and sends the enqueued packet with the metadata using nfnetlink
protocol. The user-space program then parses the packet information and pay-
load, and can decide a verdict on dropping (NF DROP) or releasing (NF ACCEPT)
the packet. At a high-level, FlowTrace intercepts the packets from the flow
of interest, then handles these packets in the user-space and modulates traffic
accordingly to implement the measurement algorithm specified by the user. We
implemented a prototype of FlowTrace using GO programming language, that
supports lightweight concurrency using goroutine. As a result, we can conduct
measurement to multiple concurrent flows with small overheads.

Implementing pathneck. Based on the high-level idea described above, we
now describe how FlowTrace can be used to implement pathneck, as illus-
trated in Fig. 1.

1. Identifying the flow of interest. To avoid process all incoming/outgoing pack-
ets, the operator provides the IP address and port information of the flows,
directed towards the clients that we are interested in measuring (such as
port 80 and 443 for web servers). Consequently, FlowTrace can initialize
iptables rules and pcap filters to reduce workload. All the flows matched
the specified IP and ports consider as the flow of interest.

2. Intercepting flows. Once the initialization completed, FlowTrace creates
a map of flows using the 5-tuple (source IP, destination IP, source port,
destination port, protocol), and starts to handle packets using NFQUEUE and
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record the state of the flows. We do not perform any measurement in the
beginning of the flows, because the TCP congestion window during the slow-
start phase is too small for us to receive sufficient data packets to construct
measurement probes. In our implementation, we do not manipulate the first
10 packets of the flows.

3. Constructing measurement probes. We use the flows that transferred more
than 10 data packets to conduct measurements. FlowTrace waits for n
load packets from the TCP flow to construct a “well-packed” RPT. Fig. 2
depicts the construction of one RPT. As the application data arrives, Flow-
Trace first buffers the load packets and drops the original packets (using
NF DROP) (§3.2). When FlowTrace has n payload packets from the appli-
cation flow in the buffer, it first sends m TTL-limited zero-size measurement
packets, followed by the n load packets, and m tail packets. This way, Flow-
Trace injects a “well-packed” RPT constructed from the application traffic,
into the network.

4. Capturing and analyzing response packets. The final step is to monitor the
incoming traffic using pcap for the ICMP messages triggered by the RPT. Based
on the ICMP response messages from each hop, FlowTrace computes the
per-hop packet train dispersion and determine the network bottleneck.

FlowTrace...
Application traffic

3 2 11 2 3 ... ...
RPT

network

headload packetstail

packet buffer

Fig. 2. Details of RPT generation. Light blue squares are data packets from the appli-
cation, and green rectangles are probe packets. The number inside the green rectangles
are the TTL values of the packet.

Minimizing the impact of packet buffering. In step 3, the flow is effectively
stopped while we wait to receive n flow packets. Because the amount of applica-
tion data is unpredictable, it is possible that FlowTrace intercepts less than n
packets and keeps waiting for the next data packet to arrive. This can seriously
affect the throughput, RTT, and congestion control mechanisms of the applica-
tion. Therefore, we choose a small inter-packet-arrival timeout, tipa = 1, 000µs,
to ensure that FlowTrace does not wait and hold the flow packets for too
long while constructing RPTs. When FlowTrace receives a flow packet in user-
space, it sets up a timer of tipa for receiving the next flow packet. Upon the
arrival of the next packet, FlowTrace resets the timer.

In the event that timer expired, FlowTrace decides to not generate the RPT
and instead just reconstructs and sends the intercepted flow packets to recover
the flow. This way FlowTrace ensures that the flow RTT and congestion
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Fig. 3. Emulab topology configurations for our evaluation of the performance of both
pathneck and FlowTrace. The bottleneck hops in both Fig. 3(a) and Fig. 3(b) are
highlighted.

control mechanisms are not significantly affected as we will demonstrate in §4.3.

4 Evaluation

We now evaluate the implementation of pathneck on FlowTrace in a con-
trolled testbed environment for different network conditions. Specifically, we
want to see how closely the measurements done using pathneck implemented
on FlowTrace agree with the measurements done using pathneck. Emulab
[23] allows us to test and compare the measurements of the two against known
traffic workloads in a controlled testbed environment.

To this end, we create a linear network topology in Emulab as shown in Fig.
3 similar to that studied in [10]. Our network consists of a sender and a receiver
machine, connected to each other via a series of intermediate routers. In our
evaluation, we evaluate the performance of both pathneck and FlowTrace
in “two-bottlenecks scenario” and “three-bottlenecks scenario” as shown in Fig.
3(a) and Fig. 3(b) respectively.

In addition to the routers along the path from the sender to the receiver
machine, we generate background traffic as well, across the network as shown in
Figure 3. The background traffic comprises of two kinds of flows, 1) the back-
ground flow from the source machine to the destination machine, and 2) the
hop-by-hop cross-traffic flows that traverse the links between the intermediate
routers. In our setup, we use iPerf to set up bandwidth-constrained TCP flows
as the hop-by-hop cross-traffic flows. On the other hand, we set up a large file
transfer between a web server at the sender machine and a wget client at the
receiver machine as the background flow. Note that since FlowTrace leverages
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Fig. 4. Comparison of gap values reported by pathneck and FlowTrace across and
end-to-end network without cross traffic in a controlled emulab testbed.

ongoing traffic to construct RPTs and conduct measurement, we configure it to
leverage the background flow from source machine to the destination machine
in our experiments. In particular, each RPT constructed by FlowTrace is com-
posed of n = 10 payload packets, intercepted from the background flow, and
n = 15 TTL-limited probe packets. Lastly, we configure the link characteristics
such as link delays and link bandwidths, along the path, using commodity Linux
utilities such as tc and netem to create the aforementioned testbed scenarios.

4.1 Minimal cross traffic

We first consider the “bare-bones” scenario where there is minimal cross traffic
along the links in the network and the choke points and bottlenecks are primarily
dictated by the change in link capacities along the end-to-end path. This scenario
is ideal for pathneck, as the RPTs are affected only by the capacity of the links
along the path without any interference from the cross traffic, making it easier
to identify choke points and locate bottleneck. To this end, we configure the
hop-by-hop cross traffic across all the links in Fig. 3 to be only 0.01 Mbps.

Fig. 4 plots the median gap values along with the standard deviation (for 15
runs each), across the hops in the end-to-end path reported by both pathneck
and FlowTrace for both “two-bottlenecks” and “three-bottlenecks” scenarios.
We note that both pathneck and FlowTrace report similar gap values across
the hops for both scenarios. For instance, FlowTrace exhibits a gap value
increase of 2.41 milliseconds and 8.05 milliseconds, whereas pathneck exhibits
a gap value increase of 2.59 milliseconds and 8.27 milliseconds in gap values
at hops 2 and 3, where the link capacities decrease by 50 Mbps and 20 Mbps
respectively, in Fig. 4(a). On the other hand, FlowTrace exhibits a gap value
increase of 0.77 milliseconds, 0.97 milliseconds, and 1.95 milliseconds, whereas
pathneck exhibits a gap value increase of 0.62 milliseconds, 1.0 milliseconds,
and 1.88 milliseconds in gap values at hops 3, 6, and 8, where the link capacities
decrease from 100 Mbps to 80 Mbps, 60 Mbps, and 40 Mbps respectively, in Fig.
4(a). All in all, our results show that both pathneck and FlowTrace largely
agree with one another in terms of reported gap values for various network



FlowTrace 11

1 2 3 4 5 6 7 8 9
Hop ID

0

5

10

15

M
ed

ia
n 
(m

s)

(a) Two bottlenecks

1 2 3 4 5 6 7 8 9
Hop ID

0

2

4

6

8

M
ed

ia
n 
(m

s)

tracetcp
Pathneck

(b) Three bottlenecks

Fig. 5. Comparison of gap values reported by pathneck and FlowTrace across and
end-to-end network with cross traffic in a controlled emulab testbed.

configurations given that cross-traffic is minimal—which has been shown to be
largely the case across the Internet in prior literature [10].

4.2 With cross-traffic

We now evaluate the impact of cross-traffic along the links in the end-to-end
path, on the gap values reported by both pathneck and FlowTrace. To this
end, we consider the impact of forward (upstream) cross-traffic—the downstream
links do not experience any cross-traffic 3. Note that ideally, in this scenario,
the returning ICMP messages from each hop should be received by the sender
machine without experiencing any interference from cross-traffic. In this case,
we configure the hop-by-hop iPerf clients to generate cross-traffic equal to 5%
of the corresponding link capacities.

Fig. 5 plots the median gap values along with the standard deviation (for 15
runs each), across each hop in the end-to-end path as reported by both path-
neck and FlowTrace for both “two-bottlenecks” and “three-bottlenecks” sce-
nario. We again note that both pathneck and FlowTrace report similar gap
values across the hops in the end-to-end path. For instance, FlowTrace ex-
hibits a gap value increase of 2.38 milliseconds and 9.16 milliseconds, whereas
pathneck exhibits a gap value increase of 2.55 milliseconds and 8.04 millisec-
onds in gap values at hops 2 and 3, where the link capacities decrease by 50
Mbps and 20 Mbps respectively, in Fig. 5(a). We observe similar pattern for the
“three-bottlenecks” scenario in Fig. 5(b). We do note that the forward cross-
traffic results in significantly higher variance as compared to the scenarios with-
out cross-traffic, especially for the hops farther away from the sender machine

3 Hu et al. [10] reported that reverse path effects may impact the performance of
pathneck as they may perturb the gaps between the ICMP response messages on the
way back. Our goal is that FlowTrace performs well when pathneck performs well.
Therefore, we do not evaluate the impact of reverse path effects on the performance
of FlowTrace in this work for brevity.
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in both scenarios in Fig. 5. For instance, the standard deviation for Flow-
Trace increased from 0.05 milliseconds at hop 1 to 2.01 milliseconds at the
last hop, whereas the standard deviation for pathneck increased from 0.23
milliseconds at hop 1 to 2.31 milliseconds at the last hop in Fig. 5(a). This is
because the error in gap values accumulates as the packets traverse the network.
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Fig. 6. Latency overheads involved in
FlowTrace perceived by the application.

4.3 Latency overhead

Since FlowTrace leverages applica-
tion flows to construct RPTs and con-
duct measurement, we evaluate the
impact of FlowTrace on the la-
tency experienced by the application
flows. Specifically, since FlowTrace
buffers and “respawns” the applica-
tion packets in the user-space, we re-
port the additional latency each appli-
cation packet experienced by the ap-
plication flow for different values of
the inter-arrival delay threshold, tipa,
in Fig. 6. As expected, we observe a
piece-wise linear pattern in Fig. 6. This is because the first packet generated by
the application, when intercepted by FlowTrace, has to be buffered all the
while FlowTrace waits for more application packets. On the other hand, as
soon as FlowTrace received enough application packets, it creates a RPT and
transmits it on the wire, thereby adding minimal latency for the last application
packet in the RPT.

Note that this overhead is primarily dictated by tipa and traffic characteristics
of the application as discussed in §3.2—the higher the value of tipa, the longer
the packets can potentially be buffered and therefore, the higher the overheads
in Fig. 6. This may result in FlowTrace affecting the latency characteristics—
such as RTT and jitter—perceived by the application. In our evaluation, from
Fig. 6, we observe that an application flow may experience an inflation of at most
1.44 milliseconds increase in application perceived latency, for tipa = 1 millisec-
onds, when leveraged by FlowTrace to conduct measurements. This overhead
decreases to 0.75 milliseconds for tipa = 0.25 milliseconds, because FlowTrace
waits for a shorter period of time for application packets before releasing the
buffered packets without constructing the RPT. To summarize, these latency
overheads are dictated by the traffic patterns of the underlying application—
burst of packets generated by the application may result in FlowTrace having
to wait for a lesser amount of time as compared to spaced out traffic patterns.

5 Related Work

Prior literature has proposed various tools and techniques to measure path per-
formance in terms of metrics such as available bandwidth [4,13,28,11,25], bot-
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tleneck location [10,1], and loss rates [26]. However, most of these tools can only
perform measurement out-of-band.

Few existing works adopted in-band measurement paradigm. Prior research
has proposed different approaches such as paratrace [7], Service traceroute [21],
and TCP Sidecar [27] to map Internet paths more effectively. These techniques
rely on embedding TTL-limited measurement probes alongside the non-measurement
application traffic, evading firewalls and NATs, and increasing the coverage of
measurement systems across the Internet. Papageorge et al. proposed MGRP
[24]—an in-kernel service that allows users to write measurement algorithms
which are subsequently implemented by piggybacking application data inside
probe traffic to minimize overheads and lower the impact of conducting mea-
surements on competing application traffic. However, MGRP requires changes
to the kernel at both the client- and the server-side machines, making it difficult
to deploy at a large scale. In the similar vein, Wang et al. proposed minProbe
[29]—a middlebox architecture that used application network traffic as probe
traffic to conduct measurements such as available bandwidth by modulating
packet transmissions with high fidelity. However minProbe requires specialized
hardware and physical access to both end-points, which is often hard to deploy.

QDASH [20] integrates pathload [13] into adaptive streaming flows. It re-
shapes video data packets into different sending rates to detect the highest video
bitrate the network can support. However, QDASH can only obtain end-to-end
available bandwidth information. It cannot locate the bottleneck on the path. In
this paper, we leverage application traffic to deploy pathneck, locating choke
points along the path and facilitate the measurements of bandwidth character-
istics of the network at a large scale.

6 Conclusion

We presented FlowTrace, an active measurement framework that conducts
in-band network measurements by piggybacking application data. We showed
that FlowTrace can transparently create recursive packet trains to locate
bandwidth bottlenecks with minimal impact on application performance. Flow-
Trace not only significantly reduces the overhead of active measurements but
can also be readily deployed in user-space without needing kernel modifications
or specialized hardware. The experimental evaluation showed that pathneck’s
implementation of using FlowTrace as well as the original pathneck imple-
mentation can both accurately locate bandwidth bottlenecks. As part of our
future work, we are interested in extending FlowTrace to implement other
active bandwidth measurement techniques. Furthermore, we aim to study the
impact of FlowTrace on the performance of different types of applications,
such as realtime video and web. We are also interested in large-scale deployment
of FlowTrace to conduct Internet measurements in the wild.
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