
Numerical Linear Algebra

Preliminaries

Conditioning and Stability

• Some problems are inherently difficult: no algorithm involving rounding
of inputs can be expected to work well. Such problems are called ill-
conditioned.

• A numerical measure of conditioning, called a condition number, can
sometimes be defined:

– Suppose the objective is to compute y = f (x).

– If x is perturbed by ∆x then the result is changed by

∆y = f (x+∆x)− f (x).

– If
|∆y|
|y|
≈ κ
|∆x|
|x|

for small perturbations ∆x then κ is the condition number for the
problem of computing f (x).

• A particular algorithm for computing an approximation f̃ (x) to f (x) is
numerically stable if for small perturbations ∆x of the input the result is
close to f (x).
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Error Analysis

• Analyzing how errors accumulate and propagate through a computation,
called forward error analysis, is sometimes possible but often very diffi-
cult.

• Backward error analysis tries to show that the computed result

ỹ = f̃ (x)

is the exact solution to a slightly perturbed problem, i.e.

ỹ = f (x̃)

for some x̃≈ x.

• If

– the problem of computing f (x) is well conditioned, and

– the algorithm f̃ is stable,

then

ỹ = f̃ (x) computed result
= f (x̃) exact result for some x̃≈ x
≈ f (x) since f is well-conditioned

• Backward error analysis is used heavily in numerical linear algebra.
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Solving Linear Systems

Many problems involve solving linear systems of the form

Ax = b

• least squares normal equations:

XT Xβ = XT y

• stationary distribution of a Markov chain:

πP = π

∑πi = 1

If A is n×n and non-singular then in principle the solution is

x = A−1b

This is not usually a good numerical approach because

• it can be numerically inaccurate;

• it is inefficient except for very small n.
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Triangular Systems

• Triangular systems are easy to solve.

• The upper triangular system[
5 3
0 2

][
x1
x2

]
=

[
16
4

]
has solution

x2 = 4/2 = 2
x1 = (16−3x2)/5 = 10/5 = 2

• This is called back substitution

• Lower triangular systems are solved by forward substitution.

• If one of the diagonal elements in a triangular matrix is zero, then the
matrix is singular.

• If one of the diagonal elements in a triangular matrix is close to zero,
then the solution is very sensitive to other inputs:[

1 a
0 ε

][
x1
x2

]
=

[
b1
b2

]
has solution

x2 =
b2

ε

x1 = b1−a
b2

ε

• This sensitivity for small ε is inherent in the problem: For small values
of ε the problem of finding the solution x is ill-conditioned.
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Gaussian Elimination

• The system [
5 3

10 8

][
x1
x2

]
=

[
16
36

]
can be reduced to triangular form by subtracting two times the first equa-
tion from the second.

• In matrix form: [
1 0
−2 1

][
5 3

10 8

][
x1
x2

]
=

[
1 0
−2 1

][
16
36

]
or [

5 3
0 2

][
x1
x2

]
=

[
16
4

]
which is the previous triangular system.

• For a general 2× 2 matrix A the lower triangular matrix used for the
reduction is [

1 0
−a21

a11
1

]
• The ratio a21

a11
is a called a multiplier.

• This strategy works as long as a11 6= 0.

• If a11 ≈ 0, say

A =

[
ε 1
1 1

]
for small ε , then the multiplier 1/ε is large and this does not work very
well, even though A is very well behaved.

• Using this approach would result in a numerically unstable algorithm for
a well-conditioned problem.
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Partial Pivoting

• We can ensure that the multiplier is less than or equal to one in magnitude
by switching rows before eliminating:[

0 1
1 0

][
5 3

10 8

][
x1
x2

]
=

[
0 1
1 0

][
16
36

]
or [

10 8
5 3

][
x1
x2

]
=

[
36
16

]
• The matrix to reduce this system to triangular form is now[

1 0
−0.5 1

]
• So the final triangular system is constructed as[

1 0
−0.5 1

][
0 1
1 0

][
5 3

10 8

][
x1
x2

]
=

[
1 0
−0.5 1

][
0 1
1 0

][
16
36

]
or [

10 8
0 −1

][
x1
x2

]
=

[
36
−2

]
• Equivalently, we can think of our original system as[

0 1
1 0

][
1 0

0.5 1

][
10 8
0 −1

][
x1
x2

]
=

[
16
36

]
• The decomposition of A as

A = PLU

with P a permutation matrix, L lower trianbular with ones on the diago-
nal, and U upper triangular is called a PLU decomposition.
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PLU Decomposition

• In general, we can write a square matrix A as

A = PLU

where

– P is a permutation matrix, i.e.

* it is an identity matrix with some rows switched

* it satisfies PPT = PT P = I, i.e. it is an orthogonal matrix

– L is a unit lower triangular matrix, i.e.

* it is lower triangular

* it has ones on the diagonal

– U is upper triangular

• The permutation matrix P can be chosen so that the multipliers used in
forming L all have magnitude at most one.

• A is non-singular if and only if the diagonal entries in U are all non-zero.

• If A is non-singular, then we can solve

Ax = b

in three steps:

1. Solve Pz = b for z = PT b (permute the right hand side)

2. Solve Ly = z for y (forward solve lower triangular system)

3. Solve Ux = y for x (back solve upper triangular system)

• Computational complexity:

– Computing the PLU decomposition takes O(n3) operations.

– Computing a solution from a PLU decomposition takes O(n2) oper-
ations.
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Condition Number

• Linear systems Ax = b have unique solutions if A is non-singular.

• Solutions are sensitive to small perturbations if A is close to singular.

• We need a useful measure of closeness to singularity

• The condition number is a useful measure:

κ(A) =
maxx 6=0

‖Ax‖
‖x‖

minx 6=0
‖Ax‖
‖x‖

=

(
max
x 6=0

‖Ax‖
‖x‖

)(
max
x 6=0

‖A−1x‖
‖x‖

)
= ‖A‖‖A−1‖

where ‖y‖ is a vector norm (i.e. a measure of length) of y and

‖B‖= max
x 6=0

‖Bx‖
‖x‖

is the corresponding matrix norm of B.

• Some common vector norms:

‖x‖2 =

√
n

∑
i=1

x2
i Euclidean norm

‖x‖1 =
n

∑
i=1
|xi| L1 norm, Manhattan norm

‖x‖∞ = max
i
|xi| L∞ norm
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Some Properties of Condition Numbers

• κ(A)≥ 1 for all A.

• κ(A) = ∞ if A is singular

• If A is diagonal, then

κ(A) =
max |aii|
min |aii|

• Different norms produce different values; the values are usually qualita-
tively similar

Sensitivity of Linear Systems

Suppose x solves the original system and x∗ solves a slightly perturbed system,

(A+∆A)x∗ = b+∆b

and suppose that

δκ(A)≤ 1
2

‖∆A‖
‖A‖

≤ δ

‖∆b‖
‖b‖

≤ δ

Then
‖x− x∗‖
‖x‖

≤ 4δκ(A)
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Stability of Gaussian Elimination with Partial Pivoting

Backward error analysis: The numerical solution x̂ to the system

Ax = b

produced by Gaussian elimination with partial pivoting is the exact solution
for a perturbed system

(A+∆A)x̂ = b

with
‖∆A‖∞

‖A‖∞

≤ 8n3
ρu+O(u2)

• The value of ρ is not guaranteed to be small, but is rarely larger than 10

• The algorithm would be considered numerically stable if ρ were guaran-
teed to be bounded.

• Complete pivoting is a bit more stable, but much more work.

• The algorithm is considered very good for practical purposes.
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General Linear Systems in R

R provides

• solve for general systems, based on LAPACK’s DGESV.

• DGESV uses the PLU decomposition.

• forwardsolve, backsolve for triangular systems.

• kappa computes an estimate of the condition number or the exact con-
dition number based on the Euclidean norm.
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Cholesky Factorization

Suppose A is symmetric and (strictly) positive definite, i.e.

xT Ax > 0

for all x 6= 0. Examples:

• If X is the n× p design matrix for a linear model and X is of rank p, then
A = XT X is strictly positive definite.

If X is not of full rank then A = XT X is non-negative definite or positive
semi-definite, i.e. xT Ax≥ 0 for all x.

• If A is the covariance matrix of a random vector X then A is positive
semidefinite:

cT Ac = cT E[(X−µ)(X−µ)T ]c

= E[((X−µ)T c)T (X−µ)T c]

= Var((X−µ)T c)≥ 0

The covariance matrix is strictly positive definite unless P(cT X = cT µ)=
1 for some c 6= 0, i.e. unless there is a perfect linear relation between
some of the components of X .

Theorem

If A is strictly positive definite, then there exists a unique lower triangular
matrix L with positive diagonal entries such that

A = LLT

This is called the Cholesky factorization.
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Properties of the Cholesky Factorization Algorithm

• It uses the symmetry to produce an efficient algorithm.

• The algorithm needs to take square roots to find the diagonal entries.

• An alternative that avoids square roots factors A as

A = LDLT

with D diagonal and L unit lower triangular.

• The algorithm is numerically stable, and is guaranteed not to attempt
square roots of negative numbers if

qnuκ2(A)≤ 1

where qn is a small constant depending on the dimension n.

• The algorithm will fail if the matrix is not (numerically) strictly positive
definite.

• Modifications using pivoting are available that can be used for nonnega-
tive definite matrices.

• Another option is to factor Aλ = A+λ I with λ > 0 chosen large enough
to make Aλ numerically strictly positive definite. This is often used in
optimization.
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Some Applications of the Cholesky Factorization

• Solving the normal equations in least squares. This requires that the
predictors be linearly independent

• Generating multivariate normal random vectors.

• Parameterizing strictly positive definite matrices: Any lower triangular
matrix L with arbitrary values below the diagonal and positive diagonal
entries determines and is uniquely determined by the positive definite
matrix A = LLT
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Cholesky Factorization in R

• The function chol computes the Cholesky factorization.

• The returned value is the upper triangular matrix R = LT .

• LAPACK is used.
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QR Factorization

An m×n matrix A with m≥ n can be written as

A = QR

where

• Q is m×n with orthonormal columns, i.e. QT Q = In

• R is upper triangular

• Several algorithms are available for computing the QR decomposition:

– Modified Gram-Schmidt

– Householder transformations (reflections)

– Givens transformations (rotations)

Each has advantages and disadvantages.

• LINPACK dqrdc and LAPACK DGEQP3 use Householder transforma-
tions.

• The QR decomposition exists regardless of the rank of A.

• The rank of A is n if and only if the diagonal elements of R are all non-
zero.
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Householder Transformations

• A Householder transformation is a matrix of the form

P = I−2vvT/vT v

where v is a nonzero vector.

• Px is the reflection of x in the hyperplane orthogonal to v.

• Given a vector x 6= 0, choosing v = x+αe1 with

α =±‖x‖2

and e1 the first unit vector (first column of the identity) produces

Px =∓‖x‖2e1

This can be used to zero all but the first element of the first column of a
matrix:

P


× × ×
× × ×
× × ×
× × ×
× × ×

=


× × ×
0 × ×
0 × ×
0 × ×
0 × ×


This is the first step in computing the QR factorization.

• The denominator vT v can be written as

vT v = xT x+2αx1 +α
2

• Choosing α = sign(x1)‖x‖2 ensures that all terms are non-negative and
avoids cancellation.

• With the right choice of sign Householder transformations are very sta-
ble.
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Givens Rotations

• A Givens rotation is a matrix G that is equal to the identity except for
elements Gii,Gi j,G ji,G j j, which are[

Gii Gi j
G ji G j j

]
=

[
c s
−s c

]
with c = cos(θ) and s = sin(θ) for some θ .

• Premultiplication by GT is a clockwise rotation by θ radians in the (i, j)
coordinate plane.

• Given scalars a,b one can compute c,s so that[
c s
−s c

]T [a
b

]
=

[
r
0

]
This allows G to zero one element while changing only one other ele-
ment.

• A stable way to choose c,s:

if b = 0
c = 1; s = 0

else
if |b|> |a|

τ =−a/b; s = 1/
√

1+ τ2; c = sτ

else
τ =−b/a; c = 1/

√
1+ τ2; s = cτ

end
end

• A sequence of Givens rotations can be used to compute the QR factor-
ization.

– The zeroing can be done working down columns or across rows.

– Working across rows is useful for incrementally adding more obser-
vations.
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Applications

• The QR decomposition can be used for solving n× n systems of equa-
tions

Ax = b

since Q−1 = QT and so
Ax = QRx = b

is equivalent to the upper triangular system

Rx = QT b

• The QR decomposition can also be used to solve the normal equations
in linear regression: If X is the n× p design matrix then the normal
equations are

XT Xb = XT y

If X = QR is the QR decomposition of X , then

XT X = RT QT QR = RT R

XT y = RT QT y

If X is of full rank then RT is invertible, and the normal equations are
equivalent to the upper triangular system

Rb = QT y

This approach avoids computing XT X .

• If X is of full rank then RT R is the Cholesky factorization of XT X (up to
multiplications of rows of R by ±1).

QR with Column Pivoting

Sometimes the columns of X are linearly dependent or nearly so.

By permuting columns we can produce a factorization

A = QRP

where
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• P is a permutation matrix

• R is upper triangular and the diagonal elements of R have non-increasing
magnitudes, i.e.

|rii| ≥ |r j j|

if i≤ j

• If some of the diagonal entries of R are zero, then R will be of the form

R =

[
R11 R12
0 0

]
where R11 is upper triangular with non-zero diagonal elements non-increasing
in magnitude.

• The rank of the matrix is the number of non-zero rows in R.

• The numerical rank of a matrix can be determined by

– computing its QR factorization with column pivoting

– specifying a tolerance level ε such that all diagonal entries |rii| < ε

are considered numerically zero.

– Modifying the computed QR factorization to zero all rows corre-
sponding to numerically zero rii values.
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Some Regression Diagnostics

The projection matrix, or hat matrix, is

H = X(XT X)−1XT = QR(RT R)−1RT QT = QQT

The diagonal elements of the hat matrix are therefore

hi =
p

∑
j=1

q2
i j

If êi = yi− ŷi is the residual, then

s2
−i =

SSE− ê2
i /(1−hi)

n− p−1
= estimate of variance without obs. i

ti =
êi

s−i
√

1−hi
= externally studentized residual

Di =
ê2

i hi

(1−hi)2s2 p
= Cook’s distance
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QR Decomposition and Least Squares in R

• The R function qr uses either LINPACK or LAPACK to compute QR
factorizations.

• LINPACK is the default.

• The core linear model fitting function lm.fit uses QR factorization
with column pivoting.
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Singular Value Decomposition

An m×n matrix A with m≥ n can be factored as

A =UDV T

where

• U is m×n with orthonormal columns, i.e. UTU = In.

• V is n×n orthogonal, i.e. VV T =V TV = In.

• D = diag(d1, . . . ,dn) is n×n diagonal with d1 ≥ d2 ≥ ·· · ≥ dn ≥ 0.

This is the singular value decomposition, or SVD of A.

• The values d1, . . . ,dn are the singular values of A.

• The columns of U are the right singular vectors of A.

• The columns of V are the left singular vectors of A.

• If the columns of A have been centered so the column sums of A are zero,
then the columns of UD are the principal components of A.

• Excellent algorithms are available for computing the SVD.

• These algorithms are usually several times slower than the QR algo-
rithms.
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Some Properties of the SVD

• The Euclidean matrix norm of A is defined as

‖A‖2 = max
x 6=0

‖Ax‖2

‖x‖2

with ‖x‖2 =
√

xT x the Euclidean vector norm.

• If A has SVD A =UDV T , then

‖A‖2 = d1

• If k < rank(A) and

Ak =
k

∑
i=1

diuivT
i

then
min

B:rank(B)≤k
‖A−B‖2 = ‖A−Ak‖= dk+1

In particular,

– d1u1vT
1 is the best rank one approximation to A (in the Euclidean

matrix norm).
– Ak is the best rank k approximation to A.
– If m = n then dn = min{d1, . . . .dn} is the distance between A and the

set of singular matrices.

• If A is square then the condition number based on the Euclidean norm is

κ2(A) = ‖A‖2‖A−1‖2 =
d1

dn

• For an n× p matrix with n > p we also have

κ2(A) =
maxx 6=0

‖Ax‖2
‖x‖2

minx 6=0
‖Ax‖2
‖x‖2

=
d1

dn

– This can be used to relate κ2(AT A) to κ2(A).
– This has implications for regression computations.

• The singular values are the non-negative square roots of the eigenvalues
of AT A and the columns of V are the corresponding eigenvectors.
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Moore-Penrose Generalized Inverse

Suppose A has rank r ≤ n and SVD A =UDV T . Then

dr+1 = · · ·= dn = 0

Let

D+ = diag
(

1
d1
, . . . ,

1
dr
,0, . . . ,0

)
and

A+ =V D+UT

Then A+ satisfies

AA+A = A
A+AA+ = A+

(AA+)T = AA+

(A+A)T = A+A

A+ is the unique matrix with these properties and is called the Moore-Penrose
generalized inverse or pseudo-inverse.
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SVD and Least Squares

If X is an n× p design matrix of less than full rank, then there are infinitely
many values of b that minimize

‖y−Xb‖2
2

Among these solutions,
b = (XT X)+XT y

minimizes ‖b‖2.

This is related to penalized regression where one might choose b to minimize

‖y−Xb‖2
2 +λ‖b‖2

2

for some choice of λ > 0.
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SVD and Principal Components Analysis

• Let X be an n× p matrix of n observations on p variables.

• Principal components analysis involves estimating the eigenvectors and
eigenvalues of the covariance matrix.

• Let X̃ be the data matrix with columns centered at zero by subtracting
the column means.

• The sample covariance matrix is

S =
1

n−1
X̃T X̃

• Let X̃ =UDV T be the SVD of the centered data matrix X̃ .

• Then
S =

1
n−1

V DUTUDV T =
1

n−1
V D2V T

• So

– The diagonal elements of 1
n−1D2 are the eigenvalues of S.

– The columns of V are the eigenvectors of S.

• Using the SVD of X̃ is more numerically stable than

– forming X̃T X̃

– computing the eigenvalues and eigenvectors.
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SVD and Numerical Rank

• The rank of a matrix A is equal to the number of non-zero singular values.

• Exact zeros may not occur in the SVD due to rounding.

• Numerical rank determination can be based on the SVD. All di ≤ δ can
be set to zero for some choice of δ . Golub and van Loan recommend
using

δ = u‖A‖∞

• If the entries of A are only accurate to d decimal digits, then Golub and
van Loan recommend

δ = 10−d‖A‖∞

• If the numerical rank of A is r̂ and dr̂� δ then r̂ can be used with some
confidence; otherwise caution is needed.
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Other Applications

• The SVD is used in many areas of numerical analysis.

• It is also often useful as a theoretical tool.

• Some approaches to compressing m×n images are based on the SVD.

• A simple example using the volcano data:

Original Image Rank 1 Approximation Rank 2 Approximation

Rank 3 Approximation Rank 4 Approximation Rank 5 Approximation

head(s$d, 10)

## [1] 9644.28782 488.60992 341.18358 298.76602 141.83363
## [6] 72.12443 43.55698 33.52319 27.38376 19.97622

tail(s$d, 2)

## [1] 1.0526941 0.9545092

29
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SVD in R

• R provides the function svd to compute the SVD.

• Implementation used to use LINPACK but now can use LINPACK or
LAPACK, with LAPACK the default.

• You can ask for the singular values only—this is will be faster for larger
problems.
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Eigenvalues and Eigenvectors

Let A be an n×n matrix. λ is an eigenvalue of A if

Av = λv

for some v 6= 0; v is an eigenvector or A.

• If A is a real n×n matrix then it has n eigenvalues.

– Several eigenvalues may be identical
– Some eigenvalues may be complex; if so, then they come in conju-

gate pairs.
– The set of eigenvalues is called the spectrum

• If A is symmetric then the eigenvalues are real

• If A is symmetric then

– A is strictly positive definite if and only if all eigenvalues are posi-
tive.

– A is positive semi-definite if and only if all eigenvalues are non-
negative.

– There exists an orthogonal matrix V such that

A =V ΛV T

with Λ = diag(λ1, . . . ,λn); the columns of V are the corresponding
normalized eigenvectors.

– This is called the spectral decomposition of A.

• Some problems require only the largest eigenvalue or the largest few,
sometimes the corresponding eigenvectors are also needed.

– The stationary distribution of an irreducible finite state-space Markov
chain is the unique eigenvector, normalized to sum to one, corre-
sponding to the largest eigenvalue λ = 1.

– The speed of convergence to the stationary distribution depends on
the magnitude of the second largest eigenvalue.

• The R function eigen can be used to compute eigenvalues and, option-
ally, eigenvectors.
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Determinants

• Theoretically the determinant can be computed as the product of

– the diagonals of U in the PLU decomposition

– the squares of the diagonals of L in the Cholesky factorization

– the diagonals of R in the QR decomposition

– the eigenvalues

• Numerically these are almost always bad ideas.

• It is almost always better to work out the sign and compute the sum of
the logarithms of the magnitudes of the factors.

• The R functions det and determinant compute the determinant.

– determinant is more complicated to use, but has a logarithm
option.

• Likelihood and Bayesian analyses often involve a determinant;

– usually the log likelihood and log determinant should be used.

– usually the log determinant can be computed from a decomposition
needed elsewhere in the log likelihood calculation, e.g. a Cholesky
factorization
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Non-Negative Matrix Factorization

A number of problems lead to the desire to approximate a non-negative matrix
X by a product

X ≈WH

where W , H are non-negative matricies of low rank, i.e. with few columns.

There are a number of algorithms available, most of the form

min
W,H

[D(X ,WH)+R(W,H)]

where D is a loss function and R is a possible penalty for encouraging desirable
characteristics of W , H, such as smoothness or sparseness.

The R package NMF provides one approach, and a vignette in the package
provides some background and references.

As an example, using default settings in the NMF package the volcano
image can be approximated with factorizations of rank 1, . . . ,5 by

library(NMF)
nmf1 = nmf(volcano, 1); V1 <- nmf1@fit@W %*% nmf1@fit@H
nmf2 = nmf(volcano, 2); V2 <- nmf2@fit@W %*% nmf2@fit@H
nmf3 = nmf(volcano, 3); V3 <- nmf3@fit@W %*% nmf3@fit@H
nmf4 = nmf(volcano, 4); V4 <- nmf4@fit@W %*% nmf4@fit@H
nmf5 = nmf(volcano, 5); V5 <- nmf5@fit@W %*% nmf5@fit@H

The relative error for the final image is

max(abs(volcano - V5)) / max(abs(volcano))

## [1] 0.03096702

33



Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

The images:

Original Image Rank 1 Approximation Rank 2 Approximation

Rank 3 Approximation Rank 4 Approximation Rank 5 Approximation

Another application is recommender systems.

• For example, X might be ratings of movies (columns) by viewers (rows).

• The set of actual values would be very sparse as each viewer will typi-
cally rate only a small subset of all movies.

• W would be a user preference matrix, H a corresponding movie feature
matrix.

• The product WH would provide predicted ratings for movies the users
have not yet seen.
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Other Factorizations

Many other factorizations of matrices are available and being developed. Some
examples are

• Robust variants of the SVD

• Sparse variants, e.g. Dan Yang, Zongming Ma, and Andreas Buja (2014),
“A Sparse Singular Value Decomposition Method for High-Dimensional
Data,” Journal of Computational and Graphical Statistics 23(4), 923–
942.

• Constrained factorizations, e.g. C. Ding, T. Li, and M. I. Jordan (2010),
“Convex and Semi-Nonnegative Matrix Factorizations,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 32(1), 45–55.
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Exploiting Special Structure

Specialized algorithms can sometimes be used for matrices with special struc-
ture.

Toeplitz Systems

• Stationary time series have covariance matrices that look like
σ0 σ1 σ2 σ3 . . .
σ1 σ0 σ1 σ2 . . .
σ2 σ1 σ0 σ1 . . .

σ3 σ2 σ1 σ0
. . .

. . . . . . . . . . . . . . .


• This is a Toeplitz matrix.

• This matrix is also symmetric — this is not required for a Toeplitz matrix.

• Special algorithms requiring O(n2) operations are available for Toeplitz
systems.

• General Cholesky factorization requires O(n3) operations.

• The R function toeplitz creates Toeplitz matrices.
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Circulant Systems

• Some problems give rise to matrices that look like

Cn =


a1 a2 a3 . . . an
an a1 a2 . . . an−1

an−1 an a1 . . . an−2
... ... ... . . . ...

a2 a3 a4 . . . a1


• This is a circulant matrix, a subclass of Toeplitz matrices.

• Circulant matrices satisfy

Cn = F∗n diag(
√

nFna)Fn

where Fn is the Fourier matrix with

Fn( j,k) =
1√
n

e−( j−1)(k−1)2π
√
−1/n

and F∗n is the conjugate transpose, Hermitian transpose, or adjoint ma-
trix of Fn.

• The eigen values are the elements of
√

nFna.

• Products Fn x and F∗n x can be computed with the fast Fourier transform
(FFT).

• In R
√

nFnx = fft(x)
√

nF∗n x = fft(x, inverse = TRUE)

• These computations are generally O(n logn) in complexity.

• Circulant systems can be used to approximate other systems.

• Multi-dimensional analogs exist as well.

• A simple example is available on line.
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Sparse Systems

• Many problems lead to large systems in which only a small fraction of
coefficients are non-zero.

• Some methods are available for general sparse systems.

• Specialized methods are available for structured sparse systems such as

– tri-diagonal systems

– block diagonal systems

– banded systems

• Careful choice of row and column permutations can often turn general
sparse systems into banded ones.

Sparse and Structured Systems in R

• Sparse matrix support in R is improving.

• Some packages, like nlme, provide utilities they need.

• One basic package available on CRAN is sparseM

• A more extensive package is Matrix

• Matrix is the engine for mixed effects/multi-level model fitting in lme4
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Update Formulas

• Update formulas are available for most decompositions that allow for
efficient adding or dropping of rows or columns.

• These can be useful for example in cross-validation and variable selec-
tion computations.

• They can also be useful for fitting linear models to very large data sets;
the package biglm uses this approach.

• I am not aware of any convenient implementations in R at this point but
they may exist.
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Iterative Methods

• Iterative methods can be useful in large, sparse problems.

• Iterative methods for sparse problems can also often be parallelized ef-
fectively.

• Iterative methods are also useful when

– Ax can be computed efficiently for any given x

– It is expensive or impossible to compute A explicitly

Gauss-Seidel Iteration

Choose an initial solution x(0) to

Ax = b

and then update from x(k) to x(k+1) by

x(k+1)
i =

1
aii

(
bi−

i−1

∑
j=1

ai jx
(k+1)
j −

n

∑
j=i+1

ai jx
(k)
j

)

for i = 1, . . . ,n.

This is similar in spirit to Gibbs sampling.
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This can be written in matrix form as

x(k+1) = (D+L)−1(−Ux(k)+b)

with

L =


0 0 . . . . . . 0

a21 0 . . .
...

a31 a32
. . . 0

... 0 0
an1 an2 . . . an,n−1 0


D = diag(a11, . . . ,ann)

U =


0 a12 . . . . . . a1n

0 0 . . .
...

0 0 . . . an−2,n
... an−1,n
0 0 . . . 0 0


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Splitting Methods

The Gauss-Seidel method is a member of a class of splitting methods where

Mx(k+1) = Nx(k)+b

with A = M−N.

For the Gauss-Seidel method

M = D+L
N =−U.

Other members include Jacobi iterations with

MJ = D
NJ =−(L+U)

Splitting methods are practical if solving linear systems with matrix M is easy.

Convergence

A splitting method for a non-singular matrix A will converge to the unique
solution of Ax = b if

ρ(M−1N)< 1

where
ρ(G) = max{|λ | : λ is an eigenvalue of G}

is the spectral radius of G.

This is true, for example, for the Gauss-Seidel method if A is strictly positive
definite.

Convergence can be very slow if ρ(M−1N) is close to one.
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Successive Over-Relaxation

A variation is to define

x(k+1)
i =

ω

aii

(
bi−

i−1

∑
j=1

ai jx
(k+1)
j −

n

∑
j=i+1

ai jx
(k)
j

)
+(1−ω)x(k)i

or, in matrix form,
Mωx(k+1) = Nωx(k)+ωb

with

Mω = D+ωL
Nω = (1−ω)D−ωU

for some ω , usually with 0 < ω < 1.

• This is called successive over-relaxation (SOR), from its first application
in a structural engineering problem.

• For some choices of ω we can have

ρ(M−1
ω Nω)� ρ(M−1N)

and thus faster convergence.

• For some special but important problems the value of ω that minimizes
ρ(M−1

ω Nω) is known or can be computed.
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Conjugate Gradient Method

If A is symmetric and strictly positive definite then the unique solution to
Ax = b is the unique minimizer of the quadratic function

f (x) =
1
2

xT Ax− xT b

Any nonlinear or quadratic optimization method can be used to find the min-
imum; the most common one used in this context is the conjugate gradient
method.

Choose an initial x0, set d0 = −g0 = b− Ax0, and then, while gk 6= 0, for
k = 0,1, . . . compute

αk =−
gT

k dk

dT
k Adk

xk+1 = xk +αkdk

gk+1 = Axk+1−b

βk+1 =
gT

k+1Adk

dT
k Adk

dk+1 =−gk+1 +βk+1dk

Some properties:

• An alternate form of gk+1 is

gk+1 = gk +αkAdk

This means only one matrix-vector multiplication is needed per iteration.

• The vector gk is the gradient of f at xk.

• The initial direction d0 =−g0 is the direction of steepest descent from x0

• The directions d0,d1, . . . are A-conjugate, i.e. dT
i Ad j = 0 for i 6= j.

• The directions d0,d1, . . . ,dn−1 are linearly independent.
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Convergence

• With exact arithmetic,
Axn = b

That is, the conjugate gradient algorithm terminates with the exact solu-
tion in n steps.

• Numerically this does not happen.

• Numerically, the directions will not be exactly A-conjugate.

• A convergence tolerance is used for termination; this can be based on the
relative change in the solution

‖xk+1− xk‖
‖xk‖

or the residual or gradient

gk = Axk−b

or some combination; an iteration count limit is also a good idea.

• If the algorithm does not terminate within n steps it is a good idea to
restart it with a steepest descent step from the current xk.

• In many sparse and structured problems the algorithm will terminate in
far fewer than n steps for reasonable tolerances.

• Convergence is faster if the condition number of A is closer to one. The
error can be bounded as

‖x− xk‖A ≤ 2‖x− x0‖A

(√
κ2(A)−1√
κ2(A)+1

)k

with ‖x‖A =
√

xT Ax.

• Preconditioning strategies can improve convergence; these transform the
original problem to one with Ã =C−1AC−1 for some symmetric strictly
positive definite C, and then use the conjugate gradient method for Ã

• Simple choices of C are most useful; sometimes a diagonal matrix will
do.

• Good preconditioners can sometimes be designed for specific problems.
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A Simple Implementation

cg <- function(A, b, x, done) {
dot <- function(x, y) crossprod(x, y)[1]

n <- 0
g <- A(x) - b
d <- -g

repeat {
h <- A(d)
u <- dot(d, h)
a <- -dot(g, d) / u

n <- n + 1
x.old <- x
x <- x + a * d
g <- g + a * h

b <- dot(h, g) / u
d <- -g + b * d
if (done(g, x, x.old, n))

return(list(x = as.vector(x),
g = as.vector(g),
n = n))

}
}

• The linear transformation and the termination condition are specified as
functions.

• The termination condition can use a combination of the gradient, current
solution, previous solution, or iteration count.
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A simple example:

X <- crossprod(matrix(rnorm(25), 5))
y <- rnorm(5)
cg(A = function(x) X %*% x,

b = y,
x = rep(0, 5),
done = function(g, x, x.old, n) n >= 5)

## $x
## [1] -1.0829111 -0.0410215 0.1092576 -1.1596751 -0.4051707
##
## $g
## [1] 1.276756e-15 -2.151057e-15 -1.276756e-15 -3.178013e-15
## [5] 1.221245e-15
##
## $n
## [1] 5

solve(X, y)

## [1] -1.0829111 -0.0410215 0.1092576 -1.1596751 -0.4051707

A simple conjugate gradient based solve function might be defined as

cgsolve <- function(X, y, tol =sqrt(.Machine$double.eps)) {
A <- function(x)

X %*% x
done <- function(g, x, x.old, n)

n >= length(x) ||
(max(abs(x - x.old) / (tol + abs(x.old))) < tol &&
max(abs(g)) < tol)

x <- rep(0, length(y))
v <- cg(A, y, x, done = done)
if (v$n >= length(y))

message("iteration limit reached")
else

message(v$n, " iterations")
v$x

}

47



Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

With a positive definite matrix with a large diagonal component cgsolve
can be very effective:

N <- 1000
X <- crossprod(matrix(rnorm(N * N), N))
XX <- X / N + 5 * diag(N)
y <- rnorm(N)

system.time(v0 <- solve(XX, y))

## user system elapsed
## 0.167 0.000 0.167

system.time(v <- cgsolve(XX, y))

## 14 iterations

## user system elapsed
## 0.03 0.00 0.03

max(abs((v - v0)/ v0))

## [1] 2.215307e-09
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Linear Algebra Software

Some Standard Packages

Open source packages developed at national laboratories:

• LINPACK for linear equations and least squares

• EISPACK for eigenvalue problems

• LAPACK newer package for linear equations and eigenvalues

Designed for high performance. Available from Netlib at

http://www.netlib.org/

Commercial packages:

• IMSL used more in US

• NAG used more in UK

• ...
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BLAS: Basic Linear Algebra Subroutines

Modern BLAS has three levels:

Level 1: Vector and vector/vector operations such as

• dot product xT y

• scalar multiply and add (axpy): αx+ y

• Givens rotations

Level 2: Matrix/vector operations, such as Ax

Level 3: Matrix/matrix operations, such as AB

• LINPACK uses only Level 1; LAPACK uses all three levels.

• BLAS defines the interface.

• Standard reference implementations are available from Netlib.

• Highly optimized versions are available from hardware vendors and re-
search organizations.
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Cholesky Factorization in LAPACK

The core of the DPOTRF routine:

*
* Compute the Cholesky factorization A = L*L'.

*
DO 20 J = 1, N

*
* Compute L(J,J) and test for non-positive-definiteness.

*
AJJ = A( J, J ) - DDOT( J-1, A( J, 1 ), LDA, A( J, 1 ),

$ LDA )
IF( AJJ.LE.ZERO ) THEN

A( J, J ) = AJJ
GO TO 30

END IF
AJJ = SQRT( AJJ )
A( J, J ) = AJJ

*
* Compute elements J+1:N of column J.

*
IF( J.LT.N ) THEN

CALL DGEMV( 'No transpose', N-J, J-1, -ONE, A( J+1, 1 ),
$ LDA, A( J, 1 ), LDA, ONE, A( J+1, J ), 1 )

CALL DSCAL( N-J, ONE / AJJ, A( J+1, J ), 1 )
END IF

20 CONTINUE

• DDOT and DSCAL are Level 1 BLAS routines

• DGEMV is a Level 2 BLAS routine
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ATLAS: Automatically Tuned Linear Algebra Software

Available at

http://math-atlas.sourceforge.net/

• Analyzes machine for properties such as cache characteristics.

• Runs extensive tests to determine performance trade-offs.

• Creates Fortran and C versions of BLAS and some LAPACK routines
tailored to the particular machine.

• Provides some routines that take advantage of multiple processors using
worker threads.

OpenBLAS

• Another high-performance BLAS library was developed and maintained
by Kazushige Goto.

• This is now being developed and maintained as the OpenBLAS project,
available from

http://xianyi.github.com/OpenBLAS/

• Also provides versions that take advantage of multiple processors.

Vendor Libraries

• Intel provides the Math Kernel Libraries (MKL)

• AMD has a similar library.
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Using a High-Performance BLAS with R

• R comes with a basic default BLAS.

• R can be built to use a specified BLAS.

• Once built one can change the BLAS R uses by replacing the shared
library R uses.

• Some simple computations using the default and MKL vendor BLAS for
the data

N <- 1000
X <- matrix(rnorm(Nˆ2), N)
XX <- crossprod(X)

Results:

Default/ MKL MKL
Timing Expression Reference SEQ THR
system.time(for (i in 1:5) crossprod(X)) 2.107 0.405 0.145
system.time(for (i in 1:5) X %*% X) 3.401 0.742 0.237
system.time(svd(X)) 3.273 0.990 0.542
system.time(for (i in 1:5) qr(X)) 2.290 1.094 1.107
system.time(for (i in 1:5) qr(X, LAPACK=TRUE)) 2.629 0.834 0.689
system.time(for (i in 1:20) chol(XX)) 2.824 0.556 0.186

• These results are based on the non-threaded and threaded Intel Math Ker-
nel Library (MKL) using the development version of R.

• Versions of the current R using MKL for BLAS are available as

/group/statsoft/R-patched/build-MKL-seq/bin/R
/group/statsoft/R-patched/build-MKL-thr/bin/R

• Currently the standard version of R on our Linux systems seems to be
using OpenBLAS with multi-threading disabled.
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Final Notes

• Most reasonable approaches will be accurate for reasonable problems.

• Choosing good scaling and centering can make problems more reason-
able (both numerically and statistically)

• Most methods are efficient enough for our purposes.

• In some problems worrying about efficiency is important if reasonable
problem sizes are to be handled.

• Making sure you are using the right approach to the right problem is
much more important than efficiency.

• Some quotes:

– D. E. Knuth, restating a comment by C. A. R. Hoare:

We should forget about small efficiencies, say about 97%
of the time: premature optimization is the root of all evil.

– W. A. Wulf:

More computing sins are committed in the name of effi-
ciency (without necessarily achieving it) than for any other
single reason — including blind stupidity.
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