
Numerical Linear Algebra

Preliminaries

Conditioning and Stability

• Some problems are inherently difficult: no algorithm involving rounding
of inputs can be expected to work well. Such problems are called ill-
conditioned.

• A numerical measure of conditioning, called a condition number, can
sometimes be defined:

– Suppose the objective is to compute y = f (x).

– If x is perturbed by ∆x then the result is changed by

∆y = f (x+∆x)− f (x).

– If
|∆y|
|y|
≈ κ
|∆x|
|x|

for small perturbations ∆x then κ is the condition number for the
problem of computing f (x).

• A particular algorithm for computing an approximation f̃ (x) to f (x) is
numerically stable if for small perturbations ∆x of the input the result is
close to f (x).

1

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

Error Analysis

• Analyzing how errors accumulate and propagate through a computation,
called forward error analysis, is sometimes possible but often very diffi-
cult.

• Backward error analysis tries to show that the computed result

ỹ = f̃ (x)

is the exact solution to a slightly perturbed problem, i.e.

ỹ = f (x̃)

for some x̃≈ x.

• If

– the problem of computing f (x) is well conditioned, and

– the algorithm f̃ is stable,

then

ỹ = f̃ (x) computed result
= f (x̃) exact result for some x̃≈ x
≈ f (x) since f is well-conditioned

• Backward error analysis is used heavily in numerical linear algebra.

2

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

Solving Linear Systems

Many problems involve solving linear systems of the form

Ax = b

• least squares normal equations:

XT Xβ = XT y

• stationary distribution of a Markov chain:

πP = π

∑πi = 1

If A is n×n and non-singular then in principle the solution is

x = A−1b

This is not usually a good numerical approach because

• it can be numerically inaccurate;

• it is inefficient except for very small n.

3

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

Triangular Systems

• Triangular systems are easy to solve.

• The upper triangular system[
5 3
0 2

][
x1
x2

]
=

[
16
4

]
has solution

x2 = 4/2 = 2
x1 = (16−3x2)/5 = 10/5 = 2

• This is called back substitution

• Lower triangular systems are solved by forward substitution.

• If one of the diagonal elements in a triangular matrix is zero, then the
matrix is singular.

• If one of the diagonal elements in a triangular matrix is close to zero,
then the solution is very sensitive to other inputs:[

1 a
0 ε

][
x1
x2

]
=

[
b1
b2

]
has solution

x2 =
b2

ε

x1 = b1−a
b2

ε

• This sensitivity for small ε is inherent in the problem: For small values
of ε the problem of finding the solution x is ill-conditioned.

4

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

Gaussian Elimination

• The system [
5 3

10 8

][
x1
x2

]
=

[
16
36

]
can be reduced to triangular form by subtracting two times the first equa-
tion from the second.

• In matrix form: [
1 0
−2 1

][
5 3

10 8

][
x1
x2

]
=

[
1 0
−2 1

][
16
36

]
or [

5 3
0 2

][
x1
x2

]
=

[
16
4

]
which is the previous triangular system.

• For a general 2× 2 matrix A the lower triangular matrix used for the
reduction is [

1 0
−a21

a11
1

]
• The ratio a21

a11
is a called a multiplier.

• This strategy works as long as a11 6= 0.

• If a11 ≈ 0, say

A =

[
ε 1
1 1

]
for small ε , then the multiplier 1/ε is large and this does not work very
well, even though A is very well behaved.

• Using this approach would result in a numerically unstable algorithm for
a well-conditioned problem.

5

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

Partial Pivoting

• We can ensure that the multiplier is less than or equal to one in magnitude
by switching rows before eliminating:[

0 1
1 0

][
5 3

10 8

][
x1
x2

]
=

[
0 1
1 0

][
16
36

]
or [

10 8
5 3

][
x1
x2

]
=

[
36
16

]
• The matrix to reduce this system to triangular form is now[

1 0
−0.5 1

]
• So the final triangular system is constructed as[

1 0
−0.5 1

][
0 1
1 0

][
5 3

10 8

][
x1
x2

]
=

[
1 0
−0.5 1

][
0 1
1 0

][
16
36

]
or [

10 8
0 −1

][
x1
x2

]
=

[
36
−2

]
• Equivalently, we can think of our original system as[

0 1
1 0

][
1 0

0.5 1

][
10 8
0 −1

][
x1
x2

]
=

[
16
36

]
• The decomposition of A as

A = PLU

with P a permutation matrix, L lower trianbular with ones on the diago-
nal, and U upper triangular is called a PLU decomposition.

6

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

PLU Decomposition

• In general, we can write a square matrix A as

A = PLU

where

– P is a permutation matrix, i.e.

* it is an identity matrix with some rows switched

* it satisfies PPT = PT P = I, i.e. it is an orthogonal matrix

– L is a unit lower triangular matrix, i.e.

* it is lower triangular

* it has ones on the diagonal

– U is upper triangular

• The permutation matrix P can be chosen so that the multipliers used in
forming L all have magnitude at most one.

• A is non-singular if and only if the diagonal entries in U are all non-zero.

• If A is non-singular, then we can solve

Ax = b

in three steps:

1. Solve Pz = b for z = PT b (permute the right hand side)

2. Solve Ly = z for y (forward solve lower triangular system)

3. Solve Ux = y for x (back solve upper triangular system)

• Computational complexity:

– Computing the PLU decomposition takes O(n3) operations.

– Computing a solution from a PLU decomposition takes O(n2) oper-
ations.

7

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

Condition Number

• Linear systems Ax = b have unique solutions if A is non-singular.

• Solutions are sensitive to small perturbations if A is close to singular.

• We need a useful measure of closeness to singularity

• The condition number is a useful measure:

κ(A) =
maxx 6=0

‖Ax‖
‖x‖

minx 6=0
‖Ax‖
‖x‖

=

(
max
x 6=0

‖Ax‖
‖x‖

)(
max
x 6=0

‖A−1x‖
‖x‖

)
= ‖A‖‖A−1‖

where ‖y‖ is a vector norm (i.e. a measure of length) of y and

‖B‖= max
x 6=0

‖Bx‖
‖x‖

is the corresponding matrix norm of B.

• Some common vector norms:

‖x‖2 =

√
n

∑
i=1

x2
i Euclidean norm

‖x‖1 =
n

∑
i=1
|xi| L1 norm, Manhattan norm

‖x‖∞ = max
i
|xi| L∞ norm

8

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

Some Properties of Condition Numbers

• κ(A)≥ 1 for all A.

• κ(A) = ∞ if A is singular

• If A is diagonal, then

κ(A) =
max |aii|
min |aii|

• Different norms produce different values; the values are usually qualita-
tively similar

Sensitivity of Linear Systems

Suppose x solves the original system and x∗ solves a slightly perturbed system,

(A+∆A)x∗ = b+∆b

and suppose that

δκ(A)≤ 1
2

‖∆A‖
‖A‖

≤ δ

‖∆b‖
‖b‖

≤ δ

Then
‖x− x∗‖
‖x‖

≤ 4δκ(A)

9

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

Stability of Gaussian Elimination with Partial Pivoting

Backward error analysis: The numerical solution x̂ to the system

Ax = b

produced by Gaussian elimination with partial pivoting is the exact solution
for a perturbed system

(A+∆A)x̂ = b

with
‖∆A‖∞

‖A‖∞

≤ 8n3
ρu+O(u2)

• The value of ρ is not guaranteed to be small, but is rarely larger than 10

• The algorithm would be considered numerically stable if ρ were guaran-
teed to be bounded.

• Complete pivoting is a bit more stable, but much more work.

• The algorithm is considered very good for practical purposes.

10

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

General Linear Systems in R

R provides

• solve for general systems, based on LAPACK’s DGESV.

• DGESV uses the PLU decomposition.

• forwardsolve, backsolve for triangular systems.

• kappa computes an estimate of the condition number or the exact con-
dition number based on the Euclidean norm.

11

http://www.netlib.org/lapack/explore-html/d8/d72/dgesv_8f.html

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

Cholesky Factorization

Suppose A is symmetric and (strictly) positive definite, i.e.

xT Ax > 0

for all x 6= 0. Examples:

• If X is the n× p design matrix for a linear model and X is of rank p, then
A = XT X is strictly positive definite.

If X is not of full rank then A = XT X is non-negative definite or positive
semi-definite, i.e. xT Ax≥ 0 for all x.

• If A is the covariance matrix of a random vector X then A is positive
semidefinite:

cT Ac = cT E[(X−µ)(X−µ)T]c

= E[((X−µ)T c)T (X−µ)T c]

= Var((X−µ)T c)≥ 0

The covariance matrix is strictly positive definite unless P(cT X = cT µ)=
1 for some c 6= 0, i.e. unless there is a perfect linear relation between
some of the components of X .

Theorem

If A is strictly positive definite, then there exists a unique lower triangular
matrix L with positive diagonal entries such that

A = LLT

This is called the Cholesky factorization.

12

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

Properties of the Cholesky Factorization Algorithm

• It uses the symmetry to produce an efficient algorithm.

• The algorithm needs to take square roots to find the diagonal entries.

• An alternative that avoids square roots factors A as

A = LDLT

with D diagonal and L unit lower triangular.

• The algorithm is numerically stable, and is guaranteed not to attempt
square roots of negative numbers if

qnuκ2(A)≤ 1

where qn is a small constant depending on the dimension n.

• The algorithm will fail if the matrix is not (numerically) strictly positive
definite.

• Modifications using pivoting are available that can be used for nonnega-
tive definite matrices.

• Another option is to factor Aλ = A+λ I with λ > 0 chosen large enough
to make Aλ numerically strictly positive definite. This is often used in
optimization.

13

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

Some Applications of the Cholesky Factorization

• Solving the normal equations in least squares. This requires that the
predictors be linearly independent

• Generating multivariate normal random vectors.

• Parameterizing strictly positive definite matrices: Any lower triangular
matrix L with arbitrary values below the diagonal and positive diagonal
entries determines and is uniquely determined by the positive definite
matrix A = LLT

14

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

Cholesky Factorization in R

• The function chol computes the Cholesky factorization.

• The returned value is the upper triangular matrix R = LT .

• LAPACK is used.

15

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

QR Factorization

An m×n matrix A with m≥ n can be written as

A = QR

where

• Q is m×n with orthonormal columns, i.e. QT Q = In

• R is upper triangular

• Several algorithms are available for computing the QR decomposition:

– Modified Gram-Schmidt

– Householder transformations (reflections)

– Givens transformations (rotations)

Each has advantages and disadvantages.

• LINPACK dqrdc and LAPACK DGEQP3 use Householder transforma-
tions.

• The QR decomposition exists regardless of the rank of A.

• The rank of A is n if and only if the diagonal elements of R are all non-
zero.

16

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

Householder Transformations

• A Householder transformation is a matrix of the form

P = I−2vvT/vT v

where v is a nonzero vector.

• Px is the reflection of x in the hyperplane orthogonal to v.

• Given a vector x 6= 0, choosing v = x+αe1 with

α =±‖x‖2

and e1 the first unit vector (first column of the identity) produces

Px =∓‖x‖2e1

This can be used to zero all but the first element of the first column of a
matrix:

P


× × ×
× × ×
× × ×
× × ×
× × ×

=


× × ×
0 × ×
0 × ×
0 × ×
0 × ×


This is the first step in computing the QR factorization.

• The denominator vT v can be written as

vT v = xT x+2αx1 +α
2

• Choosing α = sign(x1)‖x‖2 ensures that all terms are non-negative and
avoids cancellation.

• With the right choice of sign Householder transformations are very sta-
ble.

17

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

Givens Rotations

• A Givens rotation is a matrix G that is equal to the identity except for
elements Gii,Gi j,G ji,G j j, which are[

Gii Gi j
G ji G j j

]
=

[
c s
−s c

]
with c = cos(θ) and s = sin(θ) for some θ .

• Premultiplication by GT is a clockwise rotation by θ radians in the (i, j)
coordinate plane.

• Given scalars a,b one can compute c,s so that[
c s
−s c

]T [a
b

]
=

[
r
0

]
This allows G to zero one element while changing only one other ele-
ment.

• A stable way to choose c,s:

if b = 0
c = 1; s = 0

else
if |b|> |a|

τ =−a/b; s = 1/
√

1+ τ2; c = sτ

else
τ =−b/a; c = 1/

√
1+ τ2; s = cτ

end
end

• A sequence of Givens rotations can be used to compute the QR factor-
ization.

– The zeroing can be done working down columns or across rows.

– Working across rows is useful for incrementally adding more obser-
vations.

18

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

Applications

• The QR decomposition can be used for solving n× n systems of equa-
tions

Ax = b

since Q−1 = QT and so
Ax = QRx = b

is equivalent to the upper triangular system

Rx = QT b

• The QR decomposition can also be used to solve the normal equations
in linear regression: If X is the n× p design matrix then the normal
equations are

XT Xb = XT y

If X = QR is the QR decomposition of X , then

XT X = RT QT QR = RT R

XT y = RT QT y

If X is of full rank then RT is invertible, and the normal equations are
equivalent to the upper triangular system

Rb = QT y

This approach avoids computing XT X .

• If X is of full rank then RT R is the Cholesky factorization of XT X (up to
multiplications of rows of R by ±1).

QR with Column Pivoting

Sometimes the columns of X are linearly dependent or nearly so.

By permuting columns we can produce a factorization

A = QRP

where

19

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

• P is a permutation matrix

• R is upper triangular and the diagonal elements of R have non-increasing
magnitudes, i.e.

|rii| ≥ |r j j|

if i≤ j

• If some of the diagonal entries of R are zero, then R will be of the form

R =

[
R11 R12
0 0

]
where R11 is upper triangular with non-zero diagonal elements non-increasing
in magnitude.

• The rank of the matrix is the number of non-zero rows in R.

• The numerical rank of a matrix can be determined by

– computing its QR factorization with column pivoting

– specifying a tolerance level ε such that all diagonal entries |rii| < ε

are considered numerically zero.

– Modifying the computed QR factorization to zero all rows corre-
sponding to numerically zero rii values.

20

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

Some Regression Diagnostics

The projection matrix, or hat matrix, is

H = X(XT X)−1XT = QR(RT R)−1RT QT = QQT

The diagonal elements of the hat matrix are therefore

hi =
p

∑
j=1

q2
i j

If êi = yi− ŷi is the residual, then

s2
−i =

SSE− ê2
i /(1−hi)

n− p−1
= estimate of variance without obs. i

ti =
êi

s−i
√

1−hi
= externally studentized residual

Di =
ê2

i hi

(1−hi)2s2 p
= Cook’s distance

21

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

QR Decomposition and Least Squares in R

• The R function qr uses either LINPACK or LAPACK to compute QR
factorizations.

• LINPACK is the default.

• The core linear model fitting function lm.fit uses QR factorization
with column pivoting.

22

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

Singular Value Decomposition

An m×n matrix A with m≥ n can be factored as

A =UDV T

where

• U is m×n with orthonormal columns, i.e. UTU = In.

• V is n×n orthogonal, i.e. VV T =V TV = In.

• D = diag(d1, . . . ,dn) is n×n diagonal with d1 ≥ d2 ≥ ·· · ≥ dn ≥ 0.

This is the singular value decomposition, or SVD of A.

• The values d1, . . . ,dn are the singular values of A.

• The columns of U are the right singular vectors of A.

• The columns of V are the left singular vectors of A.

• If the columns of A have been centered so the column sums of A are zero,
then the columns of UD are the principal components of A.

• Excellent algorithms are available for computing the SVD.

• These algorithms are usually several times slower than the QR algo-
rithms.

23

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

Some Properties of the SVD

• The Euclidean matrix norm of A is defined as

‖A‖2 = max
x 6=0

‖Ax‖2

‖x‖2

with ‖x‖2 =
√

xT x the Euclidean vector norm.

• If A has SVD A =UDV T , then

‖A‖2 = d1

• If k < rank(A) and

Ak =
k

∑
i=1

diuivT
i

then
min

B:rank(B)≤k
‖A−B‖2 = ‖A−Ak‖= dk+1

In particular,

– d1u1vT
1 is the best rank one approximation to A (in the Euclidean

matrix norm).
– Ak is the best rank k approximation to A.
– If m = n then dn = min{d1,dn} is the distance between A and the

set of singular matrices.

• If A is square then the condition number based on the Euclidean norm is

κ2(A) = ‖A‖2‖A−1‖2 =
d1

dn

• For an n× p matrix with n > p we also have

κ2(A) =
maxx 6=0

‖Ax‖2
‖x‖2

minx 6=0
‖Ax‖2
‖x‖2

=
d1

dn

– This can be used to relate κ2(AT A) to κ2(A).
– This has implications for regression computations.

• The singular values are the non-negative square roots of the eigenvalues
of AT A and the columns of V are the corresponding eigenvectors.

24

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

Moore-Penrose Generalized Inverse

Suppose A has rank r ≤ n and SVD A =UDV T . Then

dr+1 = · · ·= dn = 0

Let

D+ = diag
(

1
d1
, . . . ,

1
dr
,0, . . . ,0

)
and

A+ =V D+UT

Then A+ satisfies

AA+A = A
A+AA+ = A+

(AA+)T = AA+

(A+A)T = A+A

A+ is the unique matrix with these properties and is called the Moore-Penrose
generalized inverse or pseudo-inverse.

25

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

SVD and Least Squares

If X is an n× p design matrix of less than full rank, then there are infinitely
many values of b that minimize

‖y−Xb‖2
2

Among these solutions,
b = (XT X)+XT y

minimizes ‖b‖2.

This is related to penalized regression where one might choose b to minimize

‖y−Xb‖2
2 +λ‖b‖2

2

for some choice of λ > 0.

26

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

SVD and Principal Components Analysis

• Let X be an n× p matrix of n observations on p variables.

• Principal components analysis involves estimating the eigenvectors and
eigenvalues of the covariance matrix.

• Let X̃ be the data matrix with columns centered at zero by subtracting
the column means.

• The sample covariance matrix is

S =
1

n−1
X̃T X̃

• Let X̃ =UDV T be the SVD of the centered data matrix X̃ .

• Then
S =

1
n−1

V DUTUDV T =
1

n−1
V D2V T

• So

– The diagonal elements of 1
n−1D2 are the eigenvalues of S.

– The columns of V are the eigenvectors of S.

• Using the SVD of X̃ is more numerically stable than

– forming X̃T X̃

– computing the eigenvalues and eigenvectors.

27

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

SVD and Numerical Rank

• The rank of a matrix A is equal to the number of non-zero singular values.

• Exact zeros may not occur in the SVD due to rounding.

• Numerical rank determination can be based on the SVD. All di ≤ δ can
be set to zero for some choice of δ . Golub and van Loan recommend
using

δ = u‖A‖∞

• If the entries of A are only accurate to d decimal digits, then Golub and
van Loan recommend

δ = 10−d‖A‖∞

• If the numerical rank of A is r̂ and dr̂� δ then r̂ can be used with some
confidence; otherwise caution is needed.

28

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

Other Applications

• The SVD is used in many areas of numerical analysis.

• It is also often useful as a theoretical tool.

• Some approaches to compressing m×n images are based on the SVD.

• A simple example using the volcano data:

Original Image Rank 1 Approximation Rank 2 Approximation

Rank 3 Approximation Rank 4 Approximation Rank 5 Approximation

head(s$d, 10)

[1] 9644.28782 488.60992 341.18358 298.76602 141.83363
[6] 72.12443 43.55698 33.52319 27.38376 19.97622

tail(s$d, 2)

[1] 1.0526941 0.9545092

29

https://teara.govt.nz/en/photograph/3920/maungawhau-mt-eden

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

SVD in R

• R provides the function svd to compute the SVD.

• Implementation used to use LINPACK but now can use LINPACK or
LAPACK, with LAPACK the default.

• You can ask for the singular values only—this is will be faster for larger
problems.

30

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

Eigenvalues and Eigenvectors

Let A be an n×n matrix. λ is an eigenvalue of A if

Av = λv

for some v 6= 0; v is an eigenvector or A.

• If A is a real n×n matrix then it has n eigenvalues.

– Several eigenvalues may be identical
– Some eigenvalues may be complex; if so, then they come in conju-

gate pairs.
– The set of eigenvalues is called the spectrum

• If A is symmetric then the eigenvalues are real

• If A is symmetric then

– A is strictly positive definite if and only if all eigenvalues are posi-
tive.

– A is positive semi-definite if and only if all eigenvalues are non-
negative.

– There exists an orthogonal matrix V such that

A =V ΛV T

with Λ = diag(λ1, . . . ,λn); the columns of V are the corresponding
normalized eigenvectors.

– This is called the spectral decomposition of A.

• Some problems require only the largest eigenvalue or the largest few,
sometimes the corresponding eigenvectors are also needed.

– The stationary distribution of an irreducible finite state-space Markov
chain is the unique eigenvector, normalized to sum to one, corre-
sponding to the largest eigenvalue λ = 1.

– The speed of convergence to the stationary distribution depends on
the magnitude of the second largest eigenvalue.

• The R function eigen can be used to compute eigenvalues and, option-
ally, eigenvectors.

31

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

Determinants

• Theoretically the determinant can be computed as the product of

– the diagonals of U in the PLU decomposition

– the squares of the diagonals of L in the Cholesky factorization

– the diagonals of R in the QR decomposition

– the eigenvalues

• Numerically these are almost always bad ideas.

• It is almost always better to work out the sign and compute the sum of
the logarithms of the magnitudes of the factors.

• The R functions det and determinant compute the determinant.

– determinant is more complicated to use, but has a logarithm
option.

• Likelihood and Bayesian analyses often involve a determinant;

– usually the log likelihood and log determinant should be used.

– usually the log determinant can be computed from a decomposition
needed elsewhere in the log likelihood calculation, e.g. a Cholesky
factorization

32

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

Non-Negative Matrix Factorization

A number of problems lead to the desire to approximate a non-negative matrix
X by a product

X ≈WH

where W , H are non-negative matricies of low rank, i.e. with few columns.

There are a number of algorithms available, most of the form

min
W,H

[D(X ,WH)+R(W,H)]

where D is a loss function and R is a possible penalty for encouraging desirable
characteristics of W , H, such as smoothness or sparseness.

The R package NMF provides one approach, and a vignette in the package
provides some background and references.

As an example, using default settings in the NMF package the volcano
image can be approximated with factorizations of rank 1, . . . ,5 by

library(NMF)
nmf1 = nmf(volcano, 1); V1 <- nmf1@fit@W %*% nmf1@fit@H
nmf2 = nmf(volcano, 2); V2 <- nmf2@fit@W %*% nmf2@fit@H
nmf3 = nmf(volcano, 3); V3 <- nmf3@fit@W %*% nmf3@fit@H
nmf4 = nmf(volcano, 4); V4 <- nmf4@fit@W %*% nmf4@fit@H
nmf5 = nmf(volcano, 5); V5 <- nmf5@fit@W %*% nmf5@fit@H

The relative error for the final image is

max(abs(volcano - V5)) / max(abs(volcano))

[1] 0.03096702

33

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

The images:

Original Image Rank 1 Approximation Rank 2 Approximation

Rank 3 Approximation Rank 4 Approximation Rank 5 Approximation

Another application is recommender systems.

• For example, X might be ratings of movies (columns) by viewers (rows).

• The set of actual values would be very sparse as each viewer will typi-
cally rate only a small subset of all movies.

• W would be a user preference matrix, H a corresponding movie feature
matrix.

• The product WH would provide predicted ratings for movies the users
have not yet seen.

34

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

Other Factorizations

Many other factorizations of matrices are available and being developed. Some
examples are

• Robust variants of the SVD

• Sparse variants, e.g. Dan Yang, Zongming Ma, and Andreas Buja (2014),
“A Sparse Singular Value Decomposition Method for High-Dimensional
Data,” Journal of Computational and Graphical Statistics 23(4), 923–
942.

• Constrained factorizations, e.g. C. Ding, T. Li, and M. I. Jordan (2010),
“Convex and Semi-Nonnegative Matrix Factorizations,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 32(1), 45–55.

35

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

Exploiting Special Structure

Specialized algorithms can sometimes be used for matrices with special struc-
ture.

Toeplitz Systems

• Stationary time series have covariance matrices that look like
σ0 σ1 σ2 σ3 . . .
σ1 σ0 σ1 σ2 . . .
σ2 σ1 σ0 σ1 . . .

σ3 σ2 σ1 σ0
. . .

.


• This is a Toeplitz matrix.

• This matrix is also symmetric — this is not required for a Toeplitz matrix.

• Special algorithms requiring O(n2) operations are available for Toeplitz
systems.

• General Cholesky factorization requires O(n3) operations.

• The R function toeplitz creates Toeplitz matrices.

36

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

Circulant Systems

• Some problems give rise to matrices that look like

Cn =


a1 a2 a3 . . . an
an a1 a2 . . . an−1

an−1 an a1 . . . an−2
...

a2 a3 a4 . . . a1


• This is a circulant matrix, a subclass of Toeplitz matrices.

• Circulant matrices satisfy

Cn = F∗n diag(
√

nFna)Fn

where Fn is the Fourier matrix with

Fn(j,k) =
1√
n

e−(j−1)(k−1)2π
√
−1/n

and F∗n is the conjugate transpose, Hermitian transpose, or adjoint ma-
trix of Fn.

• The eigen values are the elements of
√

nFna.

• Products Fn x and F∗n x can be computed with the fast Fourier transform
(FFT).

• In R
√

nFnx = fft(x)
√

nF∗n x = fft(x, inverse = TRUE)

• These computations are generally O(n logn) in complexity.

• Circulant systems can be used to approximate other systems.

• Multi-dimensional analogs exist as well.

• A simple example is available on line.

37

http://www.stat.uiowa.edu/~luke/classes/STAT7400-2020/examples/circulant.Rmd

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

Sparse Systems

• Many problems lead to large systems in which only a small fraction of
coefficients are non-zero.

• Some methods are available for general sparse systems.

• Specialized methods are available for structured sparse systems such as

– tri-diagonal systems

– block diagonal systems

– banded systems

• Careful choice of row and column permutations can often turn general
sparse systems into banded ones.

Sparse and Structured Systems in R

• Sparse matrix support in R is improving.

• Some packages, like nlme, provide utilities they need.

• One basic package available on CRAN is sparseM

• A more extensive package is Matrix

• Matrix is the engine for mixed effects/multi-level model fitting in lme4

38

http://cran.r-project.org

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

Update Formulas

• Update formulas are available for most decompositions that allow for
efficient adding or dropping of rows or columns.

• These can be useful for example in cross-validation and variable selec-
tion computations.

• They can also be useful for fitting linear models to very large data sets;
the package biglm uses this approach.

• I am not aware of any convenient implementations in R at this point but
they may exist.

39

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

Iterative Methods

• Iterative methods can be useful in large, sparse problems.

• Iterative methods for sparse problems can also often be parallelized ef-
fectively.

• Iterative methods are also useful when

– Ax can be computed efficiently for any given x

– It is expensive or impossible to compute A explicitly

Gauss-Seidel Iteration

Choose an initial solution x(0) to

Ax = b

and then update from x(k) to x(k+1) by

x(k+1)
i =

1
aii

(
bi−

i−1

∑
j=1

ai jx
(k+1)
j −

n

∑
j=i+1

ai jx
(k)
j

)

for i = 1, . . . ,n.

This is similar in spirit to Gibbs sampling.

40

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

This can be written in matrix form as

x(k+1) = (D+L)−1(−Ux(k)+b)

with

L =


0 0 0

a21 0 . . .
...

a31 a32
. . . 0

... 0 0
an1 an2 . . . an,n−1 0


D = diag(a11, . . . ,ann)

U =


0 a12 a1n

0 0 . . .
...

0 0 . . . an−2,n
... an−1,n
0 0 . . . 0 0



41

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

Splitting Methods

The Gauss-Seidel method is a member of a class of splitting methods where

Mx(k+1) = Nx(k)+b

with A = M−N.

For the Gauss-Seidel method

M = D+L
N =−U.

Other members include Jacobi iterations with

MJ = D
NJ =−(L+U)

Splitting methods are practical if solving linear systems with matrix M is easy.

Convergence

A splitting method for a non-singular matrix A will converge to the unique
solution of Ax = b if

ρ(M−1N)< 1

where
ρ(G) = max{|λ | : λ is an eigenvalue of G}

is the spectral radius of G.

This is true, for example, for the Gauss-Seidel method if A is strictly positive
definite.

Convergence can be very slow if ρ(M−1N) is close to one.

42

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

Successive Over-Relaxation

A variation is to define

x(k+1)
i =

ω

aii

(
bi−

i−1

∑
j=1

ai jx
(k+1)
j −

n

∑
j=i+1

ai jx
(k)
j

)
+(1−ω)x(k)i

or, in matrix form,
Mωx(k+1) = Nωx(k)+ωb

with

Mω = D+ωL
Nω = (1−ω)D−ωU

for some ω , usually with 0 < ω < 1.

• This is called successive over-relaxation (SOR), from its first application
in a structural engineering problem.

• For some choices of ω we can have

ρ(M−1
ω Nω)� ρ(M−1N)

and thus faster convergence.

• For some special but important problems the value of ω that minimizes
ρ(M−1

ω Nω) is known or can be computed.

43

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

Conjugate Gradient Method

If A is symmetric and strictly positive definite then the unique solution to
Ax = b is the unique minimizer of the quadratic function

f (x) =
1
2

xT Ax− xT b

Any nonlinear or quadratic optimization method can be used to find the min-
imum; the most common one used in this context is the conjugate gradient
method.

Choose an initial x0, set d0 = −g0 = b− Ax0, and then, while gk 6= 0, for
k = 0,1, . . . compute

αk =−
gT

k dk

dT
k Adk

xk+1 = xk +αkdk

gk+1 = Axk+1−b

βk+1 =
gT

k+1Adk

dT
k Adk

dk+1 =−gk+1 +βk+1dk

Some properties:

• An alternate form of gk+1 is

gk+1 = gk +αkAdk

This means only one matrix-vector multiplication is needed per iteration.

• The vector gk is the gradient of f at xk.

• The initial direction d0 =−g0 is the direction of steepest descent from x0

• The directions d0,d1, . . . are A-conjugate, i.e. dT
i Ad j = 0 for i 6= j.

• The directions d0,d1, . . . ,dn−1 are linearly independent.

44

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

Convergence

• With exact arithmetic,
Axn = b

That is, the conjugate gradient algorithm terminates with the exact solu-
tion in n steps.

• Numerically this does not happen.

• Numerically, the directions will not be exactly A-conjugate.

• A convergence tolerance is used for termination; this can be based on the
relative change in the solution

‖xk+1− xk‖
‖xk‖

or the residual or gradient

gk = Axk−b

or some combination; an iteration count limit is also a good idea.

• If the algorithm does not terminate within n steps it is a good idea to
restart it with a steepest descent step from the current xk.

• In many sparse and structured problems the algorithm will terminate in
far fewer than n steps for reasonable tolerances.

• Convergence is faster if the condition number of A is closer to one. The
error can be bounded as

‖x− xk‖A ≤ 2‖x− x0‖A

(√
κ2(A)−1√
κ2(A)+1

)k

with ‖x‖A =
√

xT Ax.

• Preconditioning strategies can improve convergence; these transform the
original problem to one with Ã =C−1AC−1 for some symmetric strictly
positive definite C, and then use the conjugate gradient method for Ã

• Simple choices of C are most useful; sometimes a diagonal matrix will
do.

• Good preconditioners can sometimes be designed for specific problems.

45

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

A Simple Implementation

cg <- function(A, b, x, done) {
dot <- function(x, y) crossprod(x, y)[1]

n <- 0
g <- A(x) - b
d <- -g

repeat {
h <- A(d)
u <- dot(d, h)
a <- -dot(g, d) / u

n <- n + 1
x.old <- x
x <- x + a * d
g <- g + a * h

b <- dot(h, g) / u
d <- -g + b * d
if (done(g, x, x.old, n))

return(list(x = as.vector(x),
g = as.vector(g),
n = n))

}
}

• The linear transformation and the termination condition are specified as
functions.

• The termination condition can use a combination of the gradient, current
solution, previous solution, or iteration count.

46

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

A simple example:

X <- crossprod(matrix(rnorm(25), 5))
y <- rnorm(5)
cg(A = function(x) X %*% x,

b = y,
x = rep(0, 5),
done = function(g, x, x.old, n) n >= 5)

$x
[1] -1.0829111 -0.0410215 0.1092576 -1.1596751 -0.4051707
##
$g
[1] 1.276756e-15 -2.151057e-15 -1.276756e-15 -3.178013e-15
[5] 1.221245e-15
##
$n
[1] 5

solve(X, y)

[1] -1.0829111 -0.0410215 0.1092576 -1.1596751 -0.4051707

A simple conjugate gradient based solve function might be defined as

cgsolve <- function(X, y, tol =sqrt(.Machine$double.eps)) {
A <- function(x)

X %*% x
done <- function(g, x, x.old, n)

n >= length(x) ||
(max(abs(x - x.old) / (tol + abs(x.old))) < tol &&
max(abs(g)) < tol)

x <- rep(0, length(y))
v <- cg(A, y, x, done = done)
if (v$n >= length(y))

message("iteration limit reached")
else

message(v$n, " iterations")
v$x

}

47

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

With a positive definite matrix with a large diagonal component cgsolve
can be very effective:

N <- 1000
X <- crossprod(matrix(rnorm(N * N), N))
XX <- X / N + 5 * diag(N)
y <- rnorm(N)

system.time(v0 <- solve(XX, y))

user system elapsed
0.167 0.000 0.167

system.time(v <- cgsolve(XX, y))

14 iterations

user system elapsed
0.03 0.00 0.03

max(abs((v - v0)/ v0))

[1] 2.215307e-09

48

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

Linear Algebra Software

Some Standard Packages

Open source packages developed at national laboratories:

• LINPACK for linear equations and least squares

• EISPACK for eigenvalue problems

• LAPACK newer package for linear equations and eigenvalues

Designed for high performance. Available from Netlib at

http://www.netlib.org/

Commercial packages:

• IMSL used more in US

• NAG used more in UK

• ...

49

http://www.netlib.org/

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

BLAS: Basic Linear Algebra Subroutines

Modern BLAS has three levels:

Level 1: Vector and vector/vector operations such as

• dot product xT y

• scalar multiply and add (axpy): αx+ y

• Givens rotations

Level 2: Matrix/vector operations, such as Ax

Level 3: Matrix/matrix operations, such as AB

• LINPACK uses only Level 1; LAPACK uses all three levels.

• BLAS defines the interface.

• Standard reference implementations are available from Netlib.

• Highly optimized versions are available from hardware vendors and re-
search organizations.

50

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

Cholesky Factorization in LAPACK

The core of the DPOTRF routine:

*
* Compute the Cholesky factorization A = L*L'.

*
DO 20 J = 1, N

*
* Compute L(J,J) and test for non-positive-definiteness.

*
AJJ = A(J, J) - DDOT(J-1, A(J, 1), LDA, A(J, 1),

$ LDA)
IF(AJJ.LE.ZERO) THEN

A(J, J) = AJJ
GO TO 30

END IF
AJJ = SQRT(AJJ)
A(J, J) = AJJ

*
* Compute elements J+1:N of column J.

*
IF(J.LT.N) THEN

CALL DGEMV('No transpose', N-J, J-1, -ONE, A(J+1, 1),
$ LDA, A(J, 1), LDA, ONE, A(J+1, J), 1)

CALL DSCAL(N-J, ONE / AJJ, A(J+1, J), 1)
END IF

20 CONTINUE

• DDOT and DSCAL are Level 1 BLAS routines

• DGEMV is a Level 2 BLAS routine

51

http://www.netlib.org/lapack/explore-3.1.1-html/dpotf2.f.html

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

ATLAS: Automatically Tuned Linear Algebra Software

Available at

http://math-atlas.sourceforge.net/

• Analyzes machine for properties such as cache characteristics.

• Runs extensive tests to determine performance trade-offs.

• Creates Fortran and C versions of BLAS and some LAPACK routines
tailored to the particular machine.

• Provides some routines that take advantage of multiple processors using
worker threads.

OpenBLAS

• Another high-performance BLAS library was developed and maintained
by Kazushige Goto.

• This is now being developed and maintained as the OpenBLAS project,
available from

http://xianyi.github.com/OpenBLAS/

• Also provides versions that take advantage of multiple processors.

Vendor Libraries

• Intel provides the Math Kernel Libraries (MKL)

• AMD has a similar library.

52

http://math-atlas.sourceforge.net/
http://xianyi.github.com/OpenBLAS/

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

Using a High-Performance BLAS with R

• R comes with a basic default BLAS.

• R can be built to use a specified BLAS.

• Once built one can change the BLAS R uses by replacing the shared
library R uses.

• Some simple computations using the default and MKL vendor BLAS for
the data

N <- 1000
X <- matrix(rnorm(Nˆ2), N)
XX <- crossprod(X)

Results:

Default/ MKL MKL
Timing Expression Reference SEQ THR
system.time(for (i in 1:5) crossprod(X)) 2.107 0.405 0.145
system.time(for (i in 1:5) X %*% X) 3.401 0.742 0.237
system.time(svd(X)) 3.273 0.990 0.542
system.time(for (i in 1:5) qr(X)) 2.290 1.094 1.107
system.time(for (i in 1:5) qr(X, LAPACK=TRUE)) 2.629 0.834 0.689
system.time(for (i in 1:20) chol(XX)) 2.824 0.556 0.186

• These results are based on the non-threaded and threaded Intel Math Ker-
nel Library (MKL) using the development version of R.

• Versions of the current R using MKL for BLAS are available as

/group/statsoft/R-patched/build-MKL-seq/bin/R
/group/statsoft/R-patched/build-MKL-thr/bin/R

• Currently the standard version of R on our Linux systems seems to be
using OpenBLAS with multi-threading disabled.

53

Computer Intensive Statistics STAT:7400, Spring 2020 Tierney

Final Notes

• Most reasonable approaches will be accurate for reasonable problems.

• Choosing good scaling and centering can make problems more reason-
able (both numerically and statistically)

• Most methods are efficient enough for our purposes.

• In some problems worrying about efficiency is important if reasonable
problem sizes are to be handled.

• Making sure you are using the right approach to the right problem is
much more important than efficiency.

• Some quotes:

– D. E. Knuth, restating a comment by C. A. R. Hoare:

We should forget about small efficiencies, say about 97%
of the time: premature optimization is the root of all evil.

– W. A. Wulf:

More computing sins are committed in the name of effi-
ciency (without necessarily achieving it) than for any other
single reason — including blind stupidity.

54

	Preliminaries
	Conditioning and Stability
	Error Analysis

	Solving Linear Systems
	Triangular Systems
	Gaussian Elimination
	Partial Pivoting
	PLU Decomposition
	Condition Number
	Some Properties of Condition Numbers
	Sensitivity of Linear Systems
	Stability of Gaussian Elimination with Partial Pivoting
	General Linear Systems in R

	Cholesky Factorization
	Properties of the Cholesky Factorization Algorithm
	Some Applications of the Cholesky Factorization
	Cholesky Factorization in R

	QR Factorization
	Householder Transformations
	Givens Rotations
	Applications
	QR with Column Pivoting
	Some Regression Diagnostics
	QR Decomposition and Least Squares in R

	Singular Value Decomposition
	Some Properties of the SVD
	Moore-Penrose Generalized Inverse
	SVD and Least Squares
	SVD and Principal Components Analysis
	SVD and Numerical Rank
	Other Applications
	SVD in R

	Eigenvalues and Eigenvectors
	Determinants
	Non-Negative Matrix Factorization
	Other Factorizations
	Exploiting Special Structure
	Toeplitz Systems
	Circulant Systems
	Sparse Systems
	Sparse and Structured Systems in R
	Update Formulas

	Iterative Methods
	Gauss-Seidel Iteration
	Splitting Methods
	Convergence
	Successive Over-Relaxation

	Conjugate Gradient Method
	Convergence
	A Simple Implementation

	Linear Algebra Software
	Some Standard Packages
	BLAS: Basic Linear Algebra Subroutines
	Cholesky Factorization in LAPACK
	ATLAS: Automatically Tuned Linear Algebra Software
	OpenBLAS
	Vendor Libraries
	Using a High-Performance BLAS with R

	Final Notes

