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Users can now elicit, store, and retrieve the “imagery-based” 
information content—metadata and visual features—in visual media

as easily as they query text documents.

VISUAL
INFORMATION

RETRIEVAL

to carry out the operation.” Moores was referring to
textual document retrieval, but his description cap-
tures what an information retrieval system is
expected to do, namely, help a user specify an expres-
sive query to locate relevant information. Here, we
extend this notion to nontextual information
sources.

Consider a repository of 500,000 stock video clips
and an advertising agency looking for just the right
footage for a new client request. “Find me a clip”
someone might say, “of about two seconds in which

a red car racing along a hillside road on a bright day
disappears as the road bends around the hill.” Now
imagine writing this query using a text search
engine. To those with experience permuting key-
words to locate the right document, the frustration
is obvious. Although the query statement arouses
similar mental images in most people, a textual spec-
ification that always fetches the right video clip is
not easy to formulate. The difficulty arises partly
because it is impossible to guarantee the video anno-
tator and the user issuing an ad hoc query use simi-

(Opposite) “Carriere de Bibemas” by Paul Cézanne and color histogram of the painting. The color bands (bottom) represent
the buckets into which the color space is divided. The vertical bars show the number of pixels in each color bucket.

N 1951, RESEARCHER AND BUSINESSMAN CALVIN MOORES COINED

the term information retrieval [10] to describe the process through

which a prospective user of information can convert a request for

information into a useful collection of references. “Information

retrieval,” he wrote, “embraces the intellectual aspects of the

description of information and its specification for search, and

also whatever systems, techniques, or machines that are employed
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lar expressions to describe a clip. There is also a
deeper reason: The information sought is inherently
in the form of imagery that a textual language, how-
ever powerful, is unable to express adequately, making

query processing inefficient.

HE ROLE OF THE EMERGING FIELD OF

visual information retrieval (VIR) sys-
tems is to go beyond text-based descrip-
tors to elicit, store, and retrieve this
“imagery-based” information content in
visual media. The basic premise behind

VIR systems is that images and videos are first-class
information-bearing entities and that users should
be able to query their content as easily as they query
textual documents, without necessarily using man-
ual annotation. Querying content-based alphanu-
meric information is a perfect example of a new
paradigm as described by Henry Lieberman of MIT’s
Media Laboratory [9]: “It must fundamentally
change the way we look at problems we have looked
at in the past. It must give us a new framework for
thinking about problems in the future . . . When
experts in different fields look with curiosity and
admiration at each other’s domains, and search for
commonalities and fresh perspectives on their own,
truly new paradigms result.” Indeed, the domain of
VIR has inherited the analysis component of com-
puter vision and the query component of database
systems by tapping older disciplines of computer
science: database management and information
retrieval systems and image processing and com-
puter vision.

To introduce VIR issues and techniques, we
address three basic questions:

• What constitutes the “information content” of an
image or video in the specific context of any
application? 

• With how much meaning can a user specify a
search for a desired piece of information?

• How efficient and accurate is the retrieval
process? 

What Is Visual Information?
Two kinds of information are associated with a

visual object (image or video): information about the
object, called its metadata, and information con-
tained within the object, called visual features.
Metadata is alphanumeric and generally expressible
as a schema of a relational or object-oriented data-
base. Visual features are derived through computa-
tional processes—typically image processing,
computer vision, and computational geometric rou-
tines—executed on the visual object. 

The simplest visual features that can be computed
are based on pixel values of raw data, and several
early image database systems [8] used pixels as the
basis of their data models. These systems can answer
such queries as:

• Find all images for which the 100th to 200th
pixels are orange if orange is defined as having a
mean value of (red = 255, green = 130, and blue
= 0).

• Find all images that have about the same color in
the central region of the image as this particular
one. The “central region” of the image can be
specified by a coordinate system, and the expres-
sion “about the same color” is usually defined by
computing a color distance. A variant of the
Euclidean distance is often used to compare two
color values.

• Find all images that are shifted versions of this
particular image, in which the maximum allow-
able shift is D.

If the user’s requirements are satisfied with this
class of queries, data modeling for visual information
is almost trivially simple. More realistically, how-
ever, a pixel-based model suffers from several draw-
backs. First, it is very sensitive to noise, and
therefore a couple of noise pixels may be sufficient to
cause it to discard a candidate image for the first two
queries. Second, translation and rotation invariance
are often desirable properties for images. For exam-
ple, for the third query, if the database contains a 15°
rotated version of this image, the rotated version
may not be reported by the system. Third, apart
from noise, variations in illumination and other
imaging conditions affect pixel values drastically,
leading to incorrect query results. 

most current systems try to 
minimize false-negative results at the
EXPENSE OF AN INCREASED NUMBER OF FALSE POSITIVES.
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These limitations are not to say that pixel-oriented
models are without merit. Significant video segmen-
tation results can be obtained by measuring pixel dif-
ferences over time. For example, an abrupt scene
change can be modeled by finding major discontinu-
ities in time-plots of cumulative pixel difference over
frames [7]. However, information retrieval based only
on pixel values is not very effective by itself. 

Furthermore, consider a database of aerial images
in which the only objects of interest are buildings,
ground vehicles, aircraft, roads, and general terrain.
Also imagine that a human interpreter draws bound-
ing rectangles for each region in an image in which
one or more of these five kinds of objects appear and
labels the regions accordingly. Now we have a fairly
precise specification of the information contained in
the images. That information can be directly mod-
eled by a relational database schema that maintains
the location (bounding box) of each object type and
a timestamp for each image. With some additional
geometric processing added to this relational model,
we can answer very complex queries:

• Is there any location where more than five ground
vehicles are close to a building located in the
middle of the general terrain?

• Have there been any changes in the position of the
aircraft at this location in the past couple of hours?

• Which approach roads have been used by ground
vehicles over the past few days to come close to
the aircraft?

While these queries are meaningful, the most cru-
cial part of information retrieval—information

extraction—is performed by a
human using his or her knowl-
edge and experience in aerial-
image interpretation. The
reason this task requires a
human is simple: Fully auto-
matic interpretation of aerial
images is still an unsolved
research problem. On the other
hand, if the human extracts the
useful information, one can use a
spatial database system to orga-
nize and retrieve the informa-
tion. In a real-life aerial
surveillance situation, this
approach is unrealistic. For a
battlefield application, the terri-
tory under surveillance is large
enough to need several camera-
carrying aircraft. Images from
every aircraft, each image several

MB in size, stream in at the video rate of 30 frames
per second. The high influx of images mean error-free
interpretation takes a long time; hence the simple
image database scenario we painted is not practical
for any time-critical operation. 

OST APPLICATIONS FOR VIR FALL

between automated pixel-ori-
ented information models and
fully human-assisted database
schemes. They do not require
pixel-level queries; nor are they

constrained to only a few object classes. For these
middle-of-the-spectrum applications, visual infor-
mation can be defined in terms of image-processing
transformations computed on the visual object.
Although many possible transformations yield
meaningful visual features, here we explore several
simple examples: 

Color. Suppose all the images in a collection are col-
ored. Color is typically characterized by two vari-
ables: hue and saturation. Hue denotes the spectrum
of colors; saturation for any given hue indicates how
much gray has been added to the pure color. Assume

Figure 2. The result of searching the sunset picture 
in the Query Window, emphasizing color similarity. The next

strongest emphasis is structure, which stands for the 
dominant edges in the picture (here, the horizon line 

and the outline of the sun).



that the system computes a 2D histogram of hue and
saturation from each image, so bright red and pink
occupy two different bins in the histogram. With
such computation, a user can answer the following
queries (all computing some form of color similarity
between images):

• Find all images in which more than 30% of the
pixels are sky blue and more than 25% of the pix-
els are grass green (an outdoor picture?). 

• Sort the bins of this image in descending order
and find the top five colors. Find all images with
the same dominant colors.

• Measure the color distance between two images
by computing first their binwise difference (sub-
tracting the first bin of the histogram of image 2
from the first bin of the histogram of image 1 and
so on for all bins) and then the sum of the differ-
ences over all the bins. Find all images within
color distance D of this image.

Figure 1 includes the color histogram (obtained
from [12]) of “Carriere de Bibemas” by Cézanne, and
Figure 2 shows a color-weighted query made with
the Virage Image Engine.

Color Composition. Compute the color histogram
of each image as before. Then break up the image
into its four quadrants and compute the local his-
togram for each. Continue this procedure recursively
until the quadrants are as small as 16 3 16 pixels.
The result is a data structure called a quadtree of his-
tograms that is yet another abstraction of the original
data. Since this abstraction contains some location
information, it can be used for more queries, such as:

• Find all images with more than 20% red-orange
pixels in the upper right quadrant, more than
20% yellow pixels in the upper left quadrant, and
about 30% brown to dark brown pixels in the
lower half of the image (a sunset picture?).

• Find all images with a red patch in the center of
the image and with a blue patch around it.

Shape. Assume the collection to have clip-art
images only. Clip-art images are usually composed of
“pure” colors (constant spectral colors with little

variation of hue and without added gray). Segment
each image into a number of color regions so each
region contains a connected set of points having the
same pure color. For each segment, compute four
properties: color, area, elongation (the ratio of the
square of the perimeter and the area), and centrality
(distance of the centroid of the region from the cen-
ter of the image normalized by the image length).
Therefore, each image can be abstracted as a list of
segments, each having these four properties. Using
this list for each image in the collection, we can
answer the following queries:

• Find all images having a dominant white square
in the center.

• Find all images containing two blue circles (i.e.,
elongation = 4π) and a red elliptical segment
close to the center.

Face Retrieval. A well-known VIR research system
is the eigenface image database developed at MIT’s
Media Laboratory [11]. The system geometrically
manipulates each input face image to lie in the same
standard coordinate system. The researchers trained
their system with a large number of these face
images to compute 20 features (called eigenfeatures)
representing any human face to a fair degree of
detail. Although these features do not correspond to
significant physical parts of the face, like eyes, nose,
and mouth, they capture enough mathematically
robust “information” to find similar faces with good
precision. 

The purpose of these image transformations is to
abstract a set of properties from visual objects suffi-
cient to allow them to be queried. Hopefully, they
serve to extract higher levels of information that are
more robust, more intuitively meaningful, and more
structured than raw pixel values. Not unexpectedly,
as the transformations grow increasingly meaning-
ful, they become more complex and more difficult to
automate. For example, in the face-retrieval exam-
ple, even the system’s designers needed training to
perform effective retrieval. In medical-image data-
bases, fully automatic feature extraction is still a
research problem. The general experience is that
completely automated image analysis works well
only for small, controlled domains and is very com-
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the domain of vir has inherited
the analysis component of computervision
and the query component of database systems
by tapping older disciplines of computer science.



putation intensive. Moreover,
controlling input in any data-
base is not practical. 

OVING FROM

images to
videos adds
several orders
of complexity.
Most research
and commer-

cial efforts take the following
approach: Consider a video clip as
a large number of image frames
with progressively varying image
content. From this sequence, find
the frames at which a significant
transition in image content occurs.
For example, a cut is an abrupt
scene transition, and a fade is a
gradual scene transition. The seg-
ments of the video between these
transitions are called shots. Use
some sampling strategy to extract
some “key frames” from each shot.
Treat each key frame as an image to perform the same
analysis as can be performed on still images. 

However, this approach does not
make good use of the temporal and
motion information inherent in
videos. Videos contain three kinds of
motion information: one due to
movement of the objects within a
scene, one due to motion of the cam-
era, and one due to special post-pro-
cessing effects, like image warping.
Some systems [4] use the motion-
encoding in compressed video for-
mats (e.g., MPEG video files) to
extract the motion information.
These systems work well for isolated
object motions in the scene. Some
systems [3] disregard the whole
problem of information extraction
from videos and assume that sym-
bolic descriptions of image sequences
are available. These systems treat
video information as a database
research problem for spatiotemporal
properties of rigid objects. Ideally, a
video information system integrates all
these different pieces into a single com-
putational framework, but current
research is not there yet.

Specifying a Visual Information Query
The primary intent of a visual query must be to cap-
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Figure 4. Query by video similarity. The first picture on the 
Results Panel shows the query video. The Vidview panel shows two 

rows of key frames from the clip. The first row oversamples 
(the deliberate picking of more frames than will be used) the video 
by computing the activity in the video. The second row refines the 

sampling by locating distinct key frames.

Figure 3. When a refinement is made to a Virage Canvas query—to 
indicate that, say, the user is much more interested in the “diagonal line”-ness 

of an image than in color—the results improve considerably. The road sign
images containing diamonds rank much higher after the refinement.



ture the user’s mental image of a specific picture or
video image. One style of research, evolving from
traditional approaches, has developed both textual
and visual query languages. A textual query lan-
guage, such as PICQUERY+ [1], has constructs to
“compose” a visual description through textually
specified attributes and operators to specify spatial,
temporal, “evolutionary” (e.g., splits into)
relationships. In a visual query language [2], the
user visually places object icons to specify relative
locations, orientations, and sizes of objects within
the desired image. 

Recently developed image information systems,
both research and commercial, lean more toward a
query-by-example paradigm. There are two different
ways an example can be provided. In the first, the
example is pictorial; the user specifies a query either
by providing another example image or by partly
drawing what a desired image should look like. Fig-
ure 3 shows the result of a query-by-image-example
in the Virage system. In the second [6], the user pro-
vides value-examples for one or more visual features,
something like: an image with about 30% green and
40% blue, with a grass-like texture in the green
part. The values not provided are in English but
through visual tools that allow the user to choose
colors and texture. Some recent systems also let users
refine their queries. Query refinement can be done
either by using a result image from a previous query
to launch a new query or by modifying a result
image with an image processing tool to specify the

additional criteria the returned images must satisfy.
Such operations might include erasing part of the
image, changing the brightness level, or painting a
part with a different color. Another kind of query
refinement involves changing the relative weights of
visual features and having the system re-rank the
previous results with the new weights. A query can
be refined in the Virage system by increasing the rel-
ative weight of a shape-like structure primitive.

Query specification is significantly more complex
for videos. With the current level of development,
systems are more concerned with correctly finding
the transitions or developing the right algorithm for
keyframe extraction and story grouping than with
video queries. These systems typically offer simple
video queries by example:

• Find a video collection with a keyframe like a
given image.

• Rank the clips in the video collection in order of
their similarity with a given video clip, in which
the criteria for similarity can be specified and
altered by setting and adjusting visual and
motion parameters displayed to the user.

• Cue the given video clip to the frame that is like
the given query image.

• Cue the given video to the frame that has the clos-
est framewise similarity to the given query video.

Figure 4 shows the results of a video similarity query
with the Virage system. 
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Figure 5. The semantics common to all images is a flying bird. An object-level query should 
find them similar, while an image-based query finds them different.



Most of the current VIR systems are limited in the
query types they can handle. Development of a com-
prehensive language for visual assets is a far more dif-
ficult task. However, query specification for visual
information should not be performed exclusively
with an example- or specification-based paradigm
but through a collection of different tools that—in
concert—serve as a VIR “query language.” Such a
collection should include at least nine items:

An image-processing tool. Such a tool would
interactively segment the image or modify the prop-
erties of a local region in the image. It might be used
both during the image insertion process to aid the
image analysis, and during the query to express
search conditions on specific regions of the image.
Such operations include changing the texture, past-
ing a different foreground object on the same back-
ground scene, or highlighting the edge of an unclear
region of interest.
A feature-space manipulation tool. Such a tool
would allow better specification of the search condi-
tion on the features instead of on an image. The his-
togram-based queries mentioned earlier exemplify
this class of query. More generally, such a tool would
allow the user to explore the feature space and to
specify a neighborhood query. The user might ask:
“If each image is viewed as a point in the n-dimen-
sional feature vector space, find the nearest x images
within distance d of this image.” While most current
systems support this kind of query, they execute it
blindly and do not allow the user to interactively
navigate in the feature space and modify query con-
ditions based on this interaction.
An object specification tool. Such a tool would
resolve the potential conflict between queries look-
ing for search conditions on images and those look-
ing for search conditions on objects recognizable
within images. To illustrate this difference, the three
images in Figure 5 are very different in their general
image content but contain similar objects, especially
for domain-specific systems in which the object of
interest occupies only part of the image. The same is
true for videos: An object for query might have to be
specified by analyzing the image sequence by motion
grouping.
A measurement specification tool. Such a tool
would be used in any domain in which the size of
the objects or regions in an image is an important
concern. As required in several image domains,
such as medical-image databases, this tool should
allow the user to perform online measurements and
provide tolerance conditions on a query region. It
should also allow the user to retrieve from differ-

ently zoomed versions of the same image.
A classification tool. Such a tool would allow the
user to perform a grouping operation on visual
objects by specifying a grouping criterion on one or
more visual features of interest. This grouping allows
queries like: “Based only on elongation and texture,
what are the major groups of tumor objects in this
collection of magnetic resonance images? Display
two images from each group.” 
A spatial arrangement tool. Such a tool would
allow the user to specify location-sensitive queries
and move query objects denoted by the object speci-
fication tool to position them in the place of interest.
A query might be stated as: “Find all images con-
taining all the same objects as this one but having
them arranged differently.” It should also allow the
user to state whether the location sensitivity of the
objects is absolute or relative and allow queries that
include area range restrictions that can be imposed
on image regions (e.g., all green regions should have
an area between A1 and A2), or that mention
Boolean combinations of spatial attributes (e.g., the
red circles could be here or possibly here, but not
there). 
A temporal arrangement tool. Such a tool for
video would specify temporal events as search condi-
tions. We are referring not to semantic events like
“the butler did it” but more to the change patterns
of objects and images. For example, in a video col-
lection, a query may ask: “Find all clips in which a
freeze shot is followed by a jump cut into a very
dynamic scene.” This tool must work together with
image motion descriptors and video segmentation
primitives so the user can specify search conditions
on temporal patterns of both image-related and
object-related transitions.
An annotation tool. Such a tool would alleviate the
one major limitation of example-based systems—
that users may know exactly what they are looking
for yet lack an example image to initiate the query.
Ideally, the annotation tool should have capabilities
similar to those of a text processing engine. How-
ever, it must allow different levels of annotation to be
associated with objects or regions within an image
frame, with a whole image frame, and with an image
group. Such annotation is necessary for video objects
for making annotations at the story level.
A data definition tool. Such a tool would enable
applications in which the user has a prior set of mod-
els to characterize properties of the image. For a data-
base of, say, chest X-rays or mug shots, the tool
would help define a database schema (to define the
contents), so the user can specify a query like: “Find
other mug shots with similar facial features, but big-
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ger eyes, wider lips, and a scar on the left side of the
eyebrow.” The other task of a data definition tool is
to support an ontology and examples of words for
cases in which visual descriptions with a schema are
too complex to create. An example would be to cre-
ate a set of image examples for the word “human” so
these examples may be used to start a query on
humans.

Comparing VIR Systems
N ITS CURRENT STATE OF DEVELOPMENT, VIR
faces several problems characteristic of any
emerging field. As the principles and tech-
niques behind VIR have matured and
improved over the past five years, more
commercial and research systems have
become available. As this issue went to press

there were at least 20 research groups working
toward some form of generic or specialized VIR sys-
tem, including at least three commercial products.
These systems differ in application domain, choice of
visual features, techniques employed for computing
visual features, and query mechanisms supported.
How can we compare these systems? Unfortunately,
not not enough effort has been directed to establish-
ing criteria for evaluating, benchmarking, and com-
paring VIR systems. This lack of effort is in part
attributable to the subjective character of the
domain. It is extremely difficult to set a gold stan-
dard for ranking a database of assorted images in
terms of their similarity to a given image. A signif-
icant variation can be observed among rankings pro-
duced by different users and even between two
assessments by the same user at different times.
Despite these hurdles, it is important to develop a
set of general criteria to assess the relative perfor-
mance of VIR systems. 

In our experience with user groups, we found
users make at least two kinds of judgments when
comparing VIR systems:

Goodness of retrieval. This judgment roughly cor-
responds to the extent to which a system’s query
results correspond to users’ mental images of what
should be retrieved by a system for a benchmark
database. Some simple “measures” are surmised
through user interaction, as in:

• “The system is good because querying with a
flower garden example retrieves 90% outdoor
scenes of which 80% are flower gardens.” The
user judges the system’s goodness by the number
of “correct” matches in the first few screenshots.

• “The color and texture of the third result are

about right, but this shape in the middle is not.”
Here, the user implicitly measures the dimension
and degree of relevance for each relevant result.

• “The result is poor because these three roses
should have been ranked higher than the car and
the baby on the grass.” The criterion here is rela-
tive rank of relevant vs. irrelevant objects. A sys-
tem in which for the same query some relevant
images are ranked lower than irrelevant images is
judged as performing worse than the system in
which the top images are consistently more rele-
vant than the images appearing in the lower
ranks.

• “Why didn’t that desert image I saw one time
show up in the first two screens? Does it appear
when I reduce the color weight? What if I also
increase the texture weight?” The user in this case
has shifted from an “image-browser” mode of
search to an “image-locator” mode of search. Now
the criterion for correctness is the deviation from
expected rank of a reference image and the incremen-
tal improvement achieved per query refinement
operation.

• “It is not clear what combination of weights can
retrieve what I want. Is there a way to mark the
results I liked and disliked and have the system
figure out how to improve the results?” The user
is referring to the need for relevance feedback, a
mechanism through which the user looks at the
responses produced by the system for a query and
rates the result objects with a score of their rele-
vance. The system uses this rating to modify and
repeat the query, expecting to come up with more
relevant results the next time.

The most noticeable aspect in these rough “mea-
sures” is that the users’ judgment of goodness is
based on how much of the retrieved data is good
rather than on how much of the relevant data is
retrieved [5]. Most current systems try to minimize
false-negative results at the expense of an increased
number of false positives. A balanced, optimized
approach to VIR performance improvement is not
yet a reality.

Effectiveness. As one moves from a general-purpose
system to a more domain- and application-specific
VIR deployment, user queries become more sophis-
ticated and purposeful. The criteria of assessment
also change in order to measure the effectiveness of
retrieval in the specific context of the application
problem. Based on the application problems for
which we have customized the extensible Virage
Image Engine, we offer several observations on the
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perception and the reality of effectiveness: 

• In many specific applications, the process of
visual feature extraction is limited by the avail-
ability of fast, implementable techniques in
image processing and computer vision—and is
never perfect. Therefore, it is necessary to treat
the effectiveness of retrieval separately from the
underlying image processing algorithms. How-
ever, users seldom make the distinction, judging
the system’s performance by the results of the
retrieval—without realizing there may be no
practical algorithm to effectively compute the
features they want. Making the distinction while
judging the efficacy of a VIR system is an impor-
tant part of a user’s education.

• We found it useful for the user to estimate how
different the result would be from the given
results by assuming the system produced perfect
feature extraction. The results of similarity-based
retrieval are generally not so sensitive to small
errors in feature extraction. For example, in an
ophthalmological application, although the fea-
ture extraction module did not find the complete
length of every blood vessel in the optical fundus,
a query like “Find all patients with a tortuosity
(curliness) pattern like this patient’s” produces
almost the same results as though blood vessels
were extracted perfectly. In the same vein (so to
speak), queries involving aggregate values (such
as density of microcalcifications in mammograms)
produce fairly faithful results. Queries involving
measurement (such as diameter of a lesion) work
better with human-assisted feature extraction.

• More often than not, the critical issues influenc-
ing effectiveness are the choice of similarity func-
tions and the selection of proper features. In a
trademark-search application, selecting a
moment-based shape feature made a dramatic
improvement in effectiveness for the user. In an
ophthalmological application, choosing a fuzzy
similarity function made a significant difference
over choosing a weighted Euclidean metric. Our
conclusion: Making the system more effective is
usually an engineering art. The real merit of a
VIR system is its ability to allow enough extensi-
bility and flexibility that it can be tuned to any
user application.

What’s Next? 
Many aspects of VIR systems are important but not
yet properly understood. An example is the delivery
mechanism for visual information. Many users need
to access images, but few can afford to maintain a

large repository. The technology will be grossly
underutilized if millions of users cannot access
remote and distributed repositories. Users should be
able to not only issue interactive queries but to use
them in conjunction with their limited local
resource and store some interesting results locally.
Another equally important need is for VIR develop-
ers and researchers to recognize that to a user, infor-
mation is a gestalt, and visual information retrieval,
like structured databases and text retrieval, is only
one part of it. It is mandatory for developers and
researchers to take steps to make visual information
easy to cross-reference from other modes of informa-
tion. At the rate technology is advancing, we are
hopeful that all these goals can be met in five to
seven years.
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