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About the cover figure

The figure in the lower right-hand corner of the book cover illustrates the three
themes from inside the book, wavelets, signals, and fractals: Firstly, this graph is one
of the functions which are generated with the use of four magic numbers. Specifi-
cally, these same numbers also start an algorithmic generation of Daubechies wavelet
functions, and the reader is referred to Figures 7.5 and 7.16 on pages 120—121 and
134 for more images, for mathematical background and explanations, more figures,
as well as for theory and exercises in Chapter 7 itself.

To the experts: Figure 7.5 includes the cover figure, and it represents the progres-
sion of functions which starts with one of the four-tap cases, and which is governed
by the so-called pyramid algorithm. The pyramid algorithm in turn is a delicate de-
sign used in the generation of sequences of basis functions. These functions are then
further scaled and used in the representation of wavelet packets. And the represen-
tations and the choices leads to new bases, selections from “libraries of bases” and
based on entropy considerations; hence probability!

More probability: The random-walk approach to the analysis of pyramid algo-
rithms in turn is where the calculus of probability comes into the mix. And signals:
To begin with, the use of four magic numbers is by adaptation from an algorithmic
design which was first used by engineers, and which is fundamental in signal pro-
cessing; now more recently adapted to image processing as well. But the particular
function on the cover also represents the kind of sound signals that feature a beat.
A quick glimpse of the figure finally reveals its fractal nature: By this we mean that
shapes in a picture are repeated at different scales up to similarity; and which further
display an underlying algorithm. Example: Large-scale shapes which envelop similar
shapes at smaller scales!



Preface

If people do not believe that mathematics is simple, it is only because they
do not realize how complicated life is. —John von Neumann

While this is a course in analysis, our approach departs from the beaten path in some
ways. Firstly, we emphasize a variety of connections to themes from neighboring
fields, such as wavelets, fractals and signals; topics typically not included in a gradu-
ate analysis course. This in turn entails excursions into domains with a probabilistic
flavor. Yet the diverse parts of the book follow a common underlying thread, and to-
gether they constitute a good blend; each part in the mix naturally complements the
other.

In fact, there are now good reasons for taking a wider view of analysis, for ex-
ample the fact that several applied trends have come to interact in new and exciting
ways with traditional mathematical analysis—as it was taught in graduate classes for
generations. One consequence of these impulses from “outside” is that conventional
boundaries between core disciplines in mathematics have become more blurred.

Fortunately this branching out does not mean that students will need to start out
with any different or additional prerequisites. In fact, the ideas involved in this book
are intuitive, natural, many of them visual, and geometric. The required background
is quite minimal and it does not go beyond what is typically required in most graduate
programs.

We believe that now is a good time to slightly widen the horizons of the subject
“analysis™ as we teach it by stressing its relations to neighboring fields; in fact we
believe that analysis is thereby enriched.

Despite the inclusion of themes from probability and even from engineering,
the course still has an underlying core theme: A constructive approach to building
bases in function spaces. The word “constructive” here refers to our use of recursive
algorithms. As it turns out, the algorithmic ideas involved are commonly used in such
diverse areas as wavelets, fractals, signal and image processing. And yet they share
an underlying analysis core which we hope to bring to light.



viii Preface

Our inclusion here of some applied topics (bordering probability theory and en-
gineering) we believe is not only useful in itself, but more importantly, core mathe-
matics, and analysis in particular have benefited from their many interconnections to
trends and influences from the “outside” world.

Yet our wider view of the topic analysis only entails a minor adjustment in course
planning. Our branching out to some applications will be guided tours: to topics
from probability theory (e.g., to certain random-walk models), and to signal and
image processing. The ideas are presented from scratch, are easy to follow, and they
do not require prior knowledge of probability or of engineering. But we will go a
little beyond the more traditional dose of measure theory and matrix algebra that is
otherwise standard or conventional fare in most first-year graduate courses.

For those reasons we believe the book may also be suitable for a ““second analysis
course,” and that it leaves the instructor a variety of good options for covering a
selection of neighboring disciplines and applications in more depth.

Iowa City,
June 2006 FPalle E. T. Jorgensen
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Drawing by the author, next page:

Wavelet algorithms are good for vast sets of numbers.

An engineering friend described the old approach to data mining as

“Just drop a computer down onto a gigantic set of unstructured numbers!”
(data mining: see Section 6.2, pp. 102—105, and the Glossary, pp. xxiv—xxv).
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Getting started

From its shady beginnings devising gambling strategies and counting corp-
ses in medieval London, probability theory and statistical inference now
emerge as better foundations for scientific models, especially those of the
process of thinking and as essential ingredients of theoretical mathematics,
even the foundations of mathematics itself. —David Mumford

An apology

You ask: “Why all the fuss?” — Wavelets, signals, fractals? Isn’t all of this merely a
fad? Or a transient popularity trend? And what’s the probability part in the book all
about? And non-commuting operators? As for bases in linear spaces, what’s wrong
with Gram—Schmidt?

You may think: “Fourier has served us well for ages; so why do we need all the
other basis functions?”” — Wavelets and so on? — And why engineering topics in a
mathematics course? And the pictures? Are they really necessary?

And there are signal processing and image processing!? — Yes, technology is
lovely, but why not leave it to the engineers?

Response: The links between mathematics and engineering are much deeper than
the fact that we mathematicians teach service courses for engineers. Our bread and
butter!

Mathematics draws ideas and strengths from the outside world, and the connec-
tions to parts of engineering have been a boon to mathematics: From signal process-
ing to wavelet analysis! That is true even if we forget about all of the practical appli-
cations emerging from these connections. Without inspiration from the neighboring
sciences, mathematics would in all likelihood become rather sterile, and overly for-
mal. [ see opportunities at crossroads. In this book you will see the benefits mathe-
matics is reaping from trends and topics in engineering. It is witnessed in a striking
way by exciting developments in wavelets. From wavelets we see how notions of
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scale-similarity can be exploited in basis computations that use tricks devised for
signal processing. Just open the book and glance at some of the wavelet functions.
At the same time, the key notion of self-similarity, such as the scale-similarity used
everywhere for wavelets, is essential to our understanding of fractals: Fern-like pic-
tures that look the same at small and at large scales. One problem in the generation of
wavelet bases is selecting the “nice” (here this means differentiable) wavelets among
huge families of fractal-looking (non-smooth, or singular) functions. L?-functions
can be very “bad” indeed!! Computers generate the good and the bad, and we are
left with the task of sorting them out and making selections. We will see (directly
from large libraries of pictures) that mathematical wavelet machines are more likely
to spit out bad functions unless they are told where to concentrate the search from
the intrinsic mathematics.

These wavelets, signals, and fractals are things that have caught our attention
in recent decades, but the mathematical part of this has roots back at least a hun-
dred years, for example, to Alfred Haar and to Oliver Heaviside at the turn of the
last century. From Haar we have the first wavelet basis, and with Heaviside we see
the beginning of signal analysis. It is unlikely that either one knew about the other.
Ironically, at the time (1909), Haar’s paper had little impact and was hardly noticed,
even on the small scale of “notice” that is usually applied to mathematics papers.
Haar’s wonderful wavelet only began to draw attention in the mid-nineteen-eighties
when the connections to modern signal processing became much better understood.
These connections certainly served as a main catalyst in what are now known as
wavelet tools in pure and applied mathematics. But at the outset, the pioneers in
wavelets had to “rediscover” a lot of stuff from signal processing: frequency bands,
high-pass, low-pass, analysis and synthesis using down-sampling, and up-sampling,
reconstruction of signals, resolution of images; all tools that have wonderful graphics
representations in the engineering literature.

But still, why would we think that Fourier’s basis, and his lovely integral decom-
position, are not good enough? Many reasons: Fourier’s method has computational
drawbacks. This was less evident before computers became common and began to
play important roles in applied and theoretical work. But expansion of functions or
signals into basis decompositions (called “analysis” in signal processing) involves
basis coefficients (Fourier coefficients, and so on), and if we are limited to Fourier
bases, then the computation of the coefficients must by necessity rely on integration.
“Computers can’t integrate!” Hmmm! Well, not directly. The problem must first be
discretized. And there is need for a more direct and algorithmic approach. Hence the
wavelet algorithm! In any case, algorithms are central in mathematics even if you
do not concern yourself with computers. And it is the engineering connections that
inspired the most successful algorithms in our subject.



