
Coloring the Mu Transpososome

Isabel K. Darcy∗1, Jeff Chang2, Nathan Druivenga3, Colin McKinney1, Ram K. Medikonduri1,
Stacy Mills4, Junalyn Navarra-Madsen5, Arun Ponnusamy6, Jesse Sweet2, Travis Thompson1

1Mathematics Department, University of Iowa, Iowa City, IA 52242, USA
2Mathematics Department, University of Texas at Austin, Austin, TX 78712, USA
3Mathematics Department, Indiana University, Bloomington, IN 47405, USA
4Mathematics Department, Florida State University, Tallahassee, FL 32306, USA
5Mathematics Department, Texas Woman’s University, Denton, TX 76204, USA
6Credit Suisse First, Boston, MA 02110, USA

Email: Isabel K. Darcy ∗- idarcy@math.uiowa.edu;

∗Corresponding author

Abstract

Background: Tangle analysis has been applied successfully to study proteins which bind two segments of DNA

and can knot and link circular DNA. We show how tangle analysis can be extended to model any stable

protein-DNA complex.

Results: We discuss a computational method for finding the topological conformation of DNA bound within a

protein complex. We use an elementary invariant from knot theory called colorability to encode and search for

possible DNA conformations. We apply this method to analyze the experimental results of Pathania, Jayaram,

and Harshey (Cell 2002). We show that the only topological DNA conformation bound by Mu transposase

which is biologically likely is the five crossing solution found by Pathania et al (although other possibilities are

discussed).

Conclusions: Our algorithm can be used to analyze the results of the experimental technique described in

Pathania et al in order to determine the topological conformation of DNA bound within a stable protein-DNA

complex.

1

Background

Tangles have many applications in modeling protein-DNA binding [1–5]. An n-string tangle consists of n

strings properly embedded in a 3-dimensional (3D) ball. Some examples of 2-string tangles and a 3-string

tangle are shown in Fig. 1. A protein complex bound to n segments of DNA can be modeled by an n-string

tangle. The protein complex is modeled by the 3D ball while the n DNA segments can be thought of as n

strings properly embedded in a protein ball (note each string represents one segment of double-stranded

DNA). This is an extremely simple model of protein-DNA binding. A 3D ball does not accurately represent

the shape of a protein complex, and DNA sometimes winds around a protein complex as opposed to being

embedded within the protein complex. However, much information can be gained from this simple model.

When modeling protein-DNA reactions, it is helpful to know how to draw the DNA segments bound by

the protein. For example, does the DNA molecule cross itself within the protein complex or does it bend

sharply? Tangle analysis can be used to determine the topological shape of the DNA segments bound by a

protein complex. Tangle analysis does not determine the exact geometry and hence cannot determine the

sharpness of DNA bending, but it can determine the overall topology. This can be used to infer which

DNA sequences are likely to be close to each other within the protein-DNA complex [5] as well as other

information useful for modeling protein-DNA reactions.

A.) B.)

Figure 1: A.) Some 2-string tangles. B.) a 3-string tangle.

The focus of this paper is two-fold: (1) we describe a computational method for solving n-string tangle

equations for small crossing solutions; (2) we apply this method to analyze the topology of the DNA bound

in the Mu transpososome.

Although our current C++ program is specific for analyzing the results of [5], we would be happy to

make any necessary modifications for solving any other system of tangle equations for small crossing

solutions, especially those modeling experimental data. The source code is also available upon request.

The Mu transpososome is involved in DNA transposition. DNA transposition is the process by which a

piece of DNA can change its location within a genome. The Mu transposition pathway involves the

formation of a series of protein-DNA complexes (for more biology background, see [5, 6]). The Mu

transpososome refers to the Mu transposase protein complex (Mu) and the three DNA segments bound by

2

this protein complex. Since three DNA segments are bound by Mu, the Mu transpososome can be modeled

by a 3-string tangle. An experimental technique called difference topology [5, 7–10] combined with tangle

analysis was used in [5] to determine that some of the Mu-DNA complexes can be modeled by the five

crossing 3-string tangle shown in Fig. 1B. There are an infinite number of tangles that mathematically

satisfy these experimental results (Darcy IK, Luecke J, Vazquez M: A tangle analysis of the Mu

transpososome protein complex which binds three DNA segments, manuscript in preparation). These other

conformations are very complicated and hence biologically unlikely to model the Mu transpososome, but

they leave open the possibility that there are other biologically relevant models.

We describe a computational algorithm we have implemented which solves for biologically relevant

topological conformations of DNA bound within the Mu transpososome using experimental results from [5].

For the purposes of this paper, we will consider a solution to be biologically relevant if it has a

2-dimensional projection with at most eight crossings. Observe that the solution found in [5] has five

crossings (Fig. 1B). Although we briefly describe in the Discussion and Conclusions section why we

believe the Mu transpososome contains at most eight crossings, our main reason for choosing to limit

solutions up to eight crossings is computational time. Currently our C++ algorithm takes two days on a

Linux computer with AMD Opteron Processor (2.2 GHz cpu) to find solutions up through eight crossings.

The speed of the algorithm can be significantly improved by, for example, parallelizing the algorithm and

running it on a cluster. Hence the algorithm can be improved to find solutions with around ten crossings.

But as the number of tangles grows exponentially with crossing number, it is unlikely that this method can

be used to find solutions with more than fifteen crossings due to computation time.

The experimental technique used in [5] can be applied to any protein complex which stably binds two

or more segments of DNA (see Discussion and Conclusions for limitations) in order to determine the

topological conformation of the DNA bound by the protein complex. The results of such experiments can

be analyzed using a modification of the software we developed for analyzing the Mu experiments. In other

words, this software can be modified to solve any system of n-string tangle equations for solutions

containing up to around ten crossings, including those modeling difference topology experiments applied to

a protein complex that stably binds any number of segments of DNA.

An example of a tangle equation

A description of the tangle equations modeling the difference topology experiments in [5] is given in [5]

without the use of mathematical notation. Since we use mathematical notation, we start with an example

3

of a tangle equation. Fig. 2A is a tangle equation with one unknown, the tangle T. A solution to this

equation is a tangle T such that the the conformation of the strands inside T combined with the

conformation of the strands outside T must equal the four crossing link on the right-side of the equation in

Fig. 2A. The tangle in Fig. 2B is a solution as shown in Fig. 2C. The three crossing tangle in Fig. 2D is

not a solution to the tangle equation in Fig. 2A as shown in Fig. 2E.

T

E.
T =

D.

A.

C.
T =

B.

=

=

=

Figure 2: A.) An example of a tangle equation. B.) A solution to the tangle equation in (A). C.) The
tangle equation from (A) where the tangle in (B) has been substituted for the tangle unknown T showing
that the tangle in (B) is a solution to the tangle equation in (A). D.) A tangle which is not a solution to
the tangle equation in (A). E.) When we plug the tangle in (D) into the equation in (A), we see that the
three crossing tangle cannot result in a four crossing link for this equation. Hence this three crossing tangle
is not a solution to the tangle equation in (A).

Cre recombinase

Cre recombinase was used to obtain the system of tangle equations in [5] and hence we give some

background information on Cre. Cre is a site-specific recombinase that will bind to 34 base pair DNA

sequences called loxP. When Cre binds two copies of this sequence, it breaks both sequences and switches

the ends before rejoining the DNA as shown in Fig. 3. If Cre acts on a circular DNA molecule containing

Cre binding sites which are directly repeated as in Fig. 3A, then the resulting product is a two component

link. If the circular DNA molecule contains inversely repeated Cre binding sites as illustrated Fig. 3B, then

the product is a one component knot.

==

B.) Inverted RepeatsA.) Direct Repeats

Figure 3: Cre recombination. A.) If the Cre binding sites are directly repeated, then Cre recombination
results in a link. B.) If the Cre binding sites are inversely repeated, then Cre recombination can knot circular
DNA.

4

Difference topology and tangle modeling

We will now describe some of the difference topology experiments as well as the tangle model from [5]. The

idea behind the experimental technique of difference topology is to use a protein such as Cre recombinase

to trap crossings bound by the protein under study (in this case, Mu). This is illustrated in Fig. 4 where

Mu is represented by the cyan colored ball. To show how a difference topology experiment works, we will

assume the DNA conformation bound by Mu corresponds to the five crossing 3-string tangle in Fig. 1B

based upon the results of [5]. In this technique, circular DNA is first incubated with the proteins involved

in Mu transposition. The Mu complex binds DNA, possibly trapping DNA crossings within the protein

complex. A second protein whose mechanism is well understood is added to the reaction (in this case, Cre,

represented by smaller pink ball). This second protein, Cre, cuts the DNA and changes the circular DNA

topology before resealing the breaks, resulting in knotted or linked DNA. The crossings bound by the first

protein, Mu, will affect the product topology. In Fig. 4, four of the five crossings bound by Mu are trapped

by the action of Cre, resulting in a four crossing link. Hence, one can gain information about the DNA

conformation trapped by the first protein, Mu, by determining the knot/link type of the DNA knots/links

produced by the second protein, Cre.

Before Cre recombination After Cre recombination

Mu =

Cre =Cre =

= =

Figure 4: Difference topology experiment. Mu represented by the cyan colored ball is shown bound to five
DNA crossings. Cre is represented by the smaller pink ball. Before Cre recombination, the DNA is circular
and unknotted. Cre recombination changes the DNA configuration outside of the Mu transpososome. Since
four of the five crossings bound by Mu are trapped by Cre recombination, the DNA product configuration
equals a four crossing link.

Note that in the substrate configuration, three loops emanate from the Mu transpososome. The two

binding sites for Cre can be placed in two of the three loops. By choosing on which pair of loops to place

the Cre binding sites, the location of Cre action can be controlled. Six different substrates were

constructed in [5] by varying the relative positions (choice of loop pairs) of the Cre sites as well as their

relative orientations (direct versus inverted repeats). Models proposed in [5] of these six reactions are

illustrated in Fig. 5. The cyan colored ball represents the DNA bound by Mu transposase while the pink

5

colored ball represents the DNA bound by Cre.

Observe that in Fig. 4 (bottom) the yellow and brown arrow heads in the Cre complex point in

opposite directions. Based on the crystal structure of Cre complexed with DNA [11], it was assumed in [5]

that the two Cre binding sites must be in anti-parallel orientation with respect to each other within the

Cre-DNA complex. Note that for the configuration in Fig. 3, an even number of crossings between Cre

binding sites are needed to achieve an anti-parallel orientation between the Cre binding when the Cre sites

are directly repeated (Fig. 3A) while an odd number of crossings are necessary when the Cre binding sites

are inversely repeated (Fig. 3B). In the Mu/Cre models in Fig. 5, sometimes an extra crossing not bound

by either protein is needed for correct DNA orientation within the Cre protein complex, depending on the

orientation of the Cre binding sites on the two loops. When comparing products where the Cre sites are

placed on the same pair of loops but in different orientations, it was assumed that the extra crossing

occurred with the higher crossing product. When this extra crossing exists, it is placed within the green

annulus in our figures. Hence crossings within the green annulus, if any, represent crossings not trapped by

either protein complex.

= = knot
5 crossing==

= = ==

= = ==

Figure 5: Tangle model from [5]. Mu is shown binding five DNA crossings (cyan ball). Cre recombination
(pink balls) results in knotted and linked products. The topology of the knotted/linked products is dependent
upon the location of the Cre binding sites and the DNA topology within the Mu transpososome.

If we do not assume that the shape of DNA bound by Mu is the five crossing 3-string tangle from Fig.

1B, we can instead enclose the protein-bound DNA conformation into an unknown tangle, T. The system

of tangle equations corresponding to these experiments is shown in Fig. 6 where the tangle T represents

the unknown DNA conformation bound by Mu. When the Cre sites are directly repeated, the products are

four crossing links regardless of the location of the Cre binding sites. The chirality of the four crossing links

was only determined in one of the three cases where the Cre binding sites are directly repeated. But as

6

there is only one four crossing link up to mirror image, the crossings of the two unidentified four crossing

link products are either all left-handed or all right-handed. When the Cre sites are inversely repeated, the

products are three crossing knots in two cases and a five crossing knot in the third case. Since there is only

one three crossing knot up to mirror image, the crossings of the unidentified three crossing knot are either

all left-handed or all right-handed. In Methods, we will prove mathematically that the five crossing knot

must also contain all left-handed or all right-handed crossings, but for now we will make no assumptions

regarding this knot other than that it contains five crossings as experimentally determined.

T T == 5 crossing
knot= =T T

T T= = T T= =

==T T = =T T

Figure 6: System of tangle equations corresponding to difference topology experiments in [5]. The tangle
T (cyan ball) represents the unknown DNA conformation bound by Mu. In two of the experiments, the
knot/link product was fully identified and hence we know that the crossings are all right-handed as shown
in the bottom two tangle equations. In the remaining four experiments, only the crossing number of the
knot/link was determined. There is only one three crossing knot and only one four crossing link up to mirror
image. Hence, we know that for the three and four crossing products, the crossings are either all left-handed
or all right-handed.

Mathematical Model: Determining the topological conformation of DNA bound by Mu is equivalent

to solving the system of tangle equations in Fig. 6 for the 3-string tangle T. A solution is a topological

approximation, given as a 2-dimensional projection of a 3-dimensional conformation.

An example of a 3-dimensional reconstruction using 2-dimensional tangle models is given in [3].

In order to find the Fig. 1B solution, Pathania et al [5] assumed the protein-bound DNA is a

3-branched supercoiled structure like those in Fig. 7. Furthermore, since the substrate was negatively

supercoiled unknotted DNA, Pathania et al [5] assumed that the crossings within each of the three

branches is right-handed. Pathania et al [5] used the number of crossings in the knotted and linked DNA

products to determine the number of crossings in each of the three branches in order to find the Fig. 1B

solution which is repeated in Fig. 7A for convenience. Next, we illustrate their method for finding the

7

number of crossings in each branch.

There exist four 3-branched supercoiled solutions to the tangle equations in Fig. 6. These solutions are

shown in Fig. 7. They were obtained by solving a system of linear equations. For example, looking at the

bottom left tangle equation in Fig. 6 in which the product is a right-handed three crossing knot, we

observe that if the solution is a 3-branched supercoiled conformation with x crossings in one branch

containing a Cre binding site and y crossings in the other branch containing the other Cre binding site,

then x + y = 3 (compare to bottom left tangle equation in Fig. 5). If we let z be the number of crossings in

the third branch, then the top left equation involving an unidentified four crossing link in Fig. 6

corresponds to the linear equation y + z = ±4, while the equation involving the unidentified three crossing

knot (middle left equation in Fig. 6) results in the equation x + z = ±3. If we solve the system of linear

equations, x + y = 3, y + z = ±4, x + z = ±3, we obtain x = 1, y = 2, z = 2 (Fig. 7A), x = 2, y = 1, z = −5

(Fig. 7B), x = −2, y = 5, z = −1 (Fig. 7C), x = 5, y = −2, z = −2 (Fig. 7D).

Note that we are actually solving four different systems of linear equations (where each system has a

unique 3-branched supercoiled solution) depending on whether the top left four crossing link is right- or

left-handed (y + z = ±4) and whether the unidentified three crossing knot is right- or left-handed

(x + z = ±3).

The solutions shown in Fig. 7B, C, D contain more crossings than the solution in Fig. 7A. Also, the

solutions in Fig. 7B, C, D contain left-handed crossings. As the substrate DNA was negatively supercoiled,

one would expect a 3-branched supercoiled structure to contain right-handed twists, not left-handed twists.

Hence the Fig. 7A solution [5] is biologically more likely than the other 3-branched supercoiled solutions

(Also, the solutions in Fig. 7B, C, do not satisfy additional experiments in [5] not described here).

A. B. C. D.

Figure 7: Three-branched supercoiled solutions to the tangle equations in Fig. 6.

The solutions in Fig. 7 are the only solutions if one considers only 3-branched supercoiled DNA

8

conformations, but the question remains whether there are any other biologically relevant solutions if we

do not assume a 3-branched supercoiled structure. In the next section, we describe colorability, the tangle

invariant which we use to search for solutions for T where the only restriction placed on T is that it has

eight or fewer crossings. However, a thorough understanding of this invariant is not necessary to

understand the main idea behind the algorithm discussed in Results.

The coloring invariants

A diagram, D(T) of a knot, link, or tangle T is a projection of T into R
2, the 2-dimensional plane, where

only double points are allowed at a crossing (two points are superimposed when strands cross), and gaps

are used to indicate which part of the knot crosses under. Two diagrams correspond to the same 3D

knot/link/tangle if one diagram can be converted to the other diagram via a sequence of Reidemeister

moves–RI, RII, and RIII (Fig. 8).

R1 RII RIII

Figure 8: Reidemeister moves.

An m-coloring of a diagram D(T) is a function C : {arcs of D(T)} 7→ Zm where the elements of

Zm = {0, 1, ..., m− 1} will be called colors, and such that at each crossing the relation y + z − 2x = 0 mod

m holds, where x is the color assigned to the overarc and y and z are the colors of the two underarcs. See

Fig. 9. A coloring is trivial if the coloring function is the constant map, i.e., all the arcs are assigned the

same value or "color". A knot or link, K is said to be m-colorable if there exists a non-trivial m-coloring of

D(K). This is a knot/link invariant in that if one diagram of the knot/link K is m colorable then all

diagrams corresponding to K are m-colorable [12]. For an elementary introduction to coloring knots

see [13]. We will more thoroughly define how coloring relates to tangles below [14,15].

A coloring matrix of a knot/link/tangle diagram, T, is any matrix, MT, which is row equivalent to a

coefficient matrix corresponding to the coloring equations. For example, the 6× 8 matrix in Eqn. (1) is a

coloring matrix corresponding to the tangle diagram in Fig. 9C. Each row corresponds to one of the six

crossings in the tangle diagram while each column represents one of the eight arcs, x5, x6, x7, x8, x1, x2,

x3, x4 in the tangle diagram.

9

x1 x2

3x2x + x − 2x = 0 mod m

1

1

1

x + x − 2x = 0 mod m3

23

2

3

x + x − 2x = 0 mod m

0 1

2
1 + 2 − 2(0) = 0 mod 3

0 + 1 − 2(2) = 0 mod 3

0 + 2 − 2(1) = 0 mod 3A.) B.)

C.) 4x x3

x2x1

x5

x7

6x x8
6x + x − 2x = 0 mod m

1

4

7x + x − 2x = 0 mod m

2x + x − 2x = 0 mod m

3

7

x + x − 2x = 0 mod m5

x + x − 2x = 0 mod m6 5

6

1 2

8

x + x − 2x = 0 mod m58

5

8

Figure 9: A.) Coloring a knot. The three arcs are labeled x1, x2, x3. A coloring of this knot diagram must
satisfy the three equations corresponding to the three crossings. B.) A 3-coloring of this knot. C.) Coloring
a 2-string tangle. The eight arcs are labeled x1, x2, ..., x8. The six crossings result in six equations.

















0 1 1 0 −2 0 0 0
1 −2 0 0 1 0 0 0
−2 1 0 0 0 0 0 1
0 0 1 1 0 −2 0 0
1 0 0 −2 0 1 0 0
−2 0 0 1 0 0 1 0

















×

























x5

x6

x7

x8

x1

x2

x3

x4

























=

























0
0
0
0
0
0
0
0

























mod m (1)

We will call the arcs which have one endpoint on the boundary of the tangle 3-ball endpoint arcs. The

remaining arcs will be called interior arcs. Notice that we place the four columns corresponding to the

endpoint arcs, x1, x2, x3, x4, as the four rightmost columns of the matrix MT. We can solve this system of

equations by performing the following row operations: (1) exchange two rows (row i←→ row j); (2) add a

multiple of one row to a different row (row i −→ row i + t · row j, i 6= j, t ∈ Z); (3) multiply a row by -1

(row i←→ −row i). Since we are working in Zm where m is an arbitrary integer, scaling a row is not

allowed.

The first non-zero term in a row is called a leading entry. A matrix is in echelon form if (1) rows

consisting of only zero’s occur below rows containing at least one non-zero term; (2) each entry below a

leading entry is zero; (3) If aih and ajk are leading entries and if i < j, then h < k (i.e., the leading entries

10

move to the right as the rows descend). An echelon form, EF (MT) of the matrix in Eqn. (1) is

EF (MT) =

















1 0 0 −2 0 1 0 0
0 1 1 0 −2 0 0 0
0 0 1 1 0 −2 0 0
0 0 0 3 0 −2 −1 0
0 0 0 0 1 −1 1 −1
0 0 0 0 0 0 3 −3

















(2)

We define the standard echelon form of a matrix, SF (M), to be the echelon form in which each leading

entry is positive and if aij is a leading entry of the ith row, then 0 ≤ arj ≤ aij − 1, 1 ≤ r < i. The standard

echelon form of a matrix is unique. Note that the matrix in Eqn. (2) is not in standard echelon form, but

the lower right hand corner 2× 4 submatrix is in standard echelon form (see also Eqn. (3)).

Let Ml(T) be the lower right hand corner 2× 4 submatrix of MT in standard echelon form. If the

endpoints arcs’ unknowns, x1, x2, x3, x4 correspond to the four rightmost columns, then Ml(T) is a tangle

invariant. It is a tangle invariant in that if you take two diagrams of the same tangle T and place the

endpoint arcs in the same order in the last columns of their respective coloring matrices, then no matter

how the interior arcs are labeled, Ml(T) will be the same for both diagrams. In addition, the absolute

value of the determinant of the upper left 4× 4 submatrix, du(T) = 3, is also an invariant.

Ml(T) =

(

1 −1 1 −1
0 0 3 −3

)

, du(T) = 3 (3)

In the above example, the tangle diagram T is a 2-string tangle with six crossings. Hence its coloring

matrix is a 6× (6 + 2) = 6× 8 matrix, and we were interested in the 2× 4 matrix Ml(T) as well as the

determinant of the upper left 4× 4 matrix. In the general case, suppose T is a diagram of an arbitrary

n-string tangle with a k × (k + n) coloring matrix MT (listing the 2n endpoint arcs in the right-most

columns of the matrix in a fixed order). Let Ml(T) be the lower right-hand corner n× 2n submatrix of

MT in standard echelon form, and let du(T) be the absolute value of the determinant of the upper left

(k − n)× (k − n) submatrix of MT. Both Ml(T) and du(T) are invariants of T [15]. Note that columns

corresponding to the endpoint arcs must be the right-most columns of the coloring matrix, and these

columns must be in a fixed order when calculating Ml(T). We will always order the endpoint arcs in a

clockwise manner starting with a northwest endpoint arc.

In order to calculate Ml(T) where T is an n-string tangle, we must label 2n endpoint arcs with distinct

variables. If a string consists of just one arc (i.e., a string does not pass under any other string including

itself so that it projects to just one arc; hence both endpoints of this arc lie on the boundary of the 3D

11

ball), we can doubly label the arc, labeling one half of this endpoint arc xi, the other half xj , and adding

the equation xi − xj = 0. Normally an n-string tangle with k crossings will have a k × (k + n) coloring

matrix. But if any arcs are doubly labeled, then the coloring matrix will have more than k rows and

(k + n) columns.

Results

We describe a computational algorithm we have implemented to solve the system of tangle equations in

Fig. 6. The full description is given in Methods. The majority of the algorithms were written so that this

program can easily be modified to solve any system of n-string tangle equations up to around 8-10

crossings, including those modeling difference topology experiments applied to a protein complex that

stably binds any number of segments of DNA.

We first determine how the strings enter and exit the tangle. The parity of a tangle refers to the order

in which the strings enter and exit the 3D ball. A solution to the tangle equations in Fig. 6 can have one of

two possible parities: the strings enter and exit the tangle as in Fig. 10A or as in Fig. 10B. This is easily

determined by noting which of the equations in Fig. 6 involve a knot (one component) versus a two

component link. For example, the string entering in at x1 cannot exit at x2 since the top left equation in

Fig. 6 involves the one component unknot. As discussed in Methods, we also use 2-string tangle analysis

to simplify the system of equations in Fig. 6.

A.)

X2 X3

X5

1

X6

X X4

B.) X5

X2

X4

X3

X6

X1

Figure 10: Possible parities.

A number of techniques have been used to encode knot diagrams for computational purposes [16, 17].

As described in Methods, we use coloring matrices to encode tangle diagrams. We generate matrices

which could correspond to tangle diagrams up through eight crossings. We check each matrix to determine

if it has the correct coloring invariants to be a solution to the tangle equations in Fig. 6. As shown in table

1, this eliminates the majority of the generated matrices. Not all generated matrices correspond to a

tangle. We use an algorithm similar to that described in [18] to remove all matrices which do not

correspond to a tangle.

12

Recall that a tangle can be represented by a number of different diagrams related by Reidemeister

moves. Unfortunately, there is no algorithm guaranteed to determine whether two tangle diagrams are

equivalent. In fact, in order to simplify a diagram, it may be necessary to first increase the number of

crossings in the diagram. Thus this software does not determine all tangle equivalences, but does reduce

the output sufficiently to handle the remaining possibly equivalent tangles by hand. While generating

matrices, we omit matrices where the corresponding diagram can be simplified by RI or RII moves (Fig.

8). As discussed in Methods, we also perform some other simplifications which involve a combination of

RI, RII, and RIII moves. As shown in table 1, this leaves us with 13 matrices that could correspond to

tangles satisfying the system of equations in Fig. 6: ten with the parity shown in Fig. 10A and three with

the parity shown in Fig. 10B.

of # of Parity Fig. 10A Parity Fig. 10B
Cross- Matrices Non- Non-
ings Generated Col Draw Equiv? Col Draw Equiv?
≤ 4 1,639 0 0 0 0 0 0
5 34,578 1 1 1 1 0 0
6 794,578 22 4 0 22 0 0
7 19,781,058 354 15 3 400 0 0
8 537,193,563 5019 106 6 5595 6 3

total (≤ 8) 10 3

Table 1: Number of matrices with the correct coloring invariants (Col columns), corresponding to a

drawable tangle (Draw columns), and which are potentially non-equivalent (Non-equiv columns). The first

column refers to the number of crossings in the tangle diagram. The second column gives the number of

matrices generated which could correspond to a tangle with a fixed crossing number. The results in the

next three columns assume the parity in Fig. 10A while the results in the last three columns assume the

parity in Fig. 10B. The columns labeled “Col” state the number of generated matrices which have the

correct coloring invariants to satisfy the equations in Fig. 6. However, not all generated matrices

correspond to a tangle. The columns labeled “Draw” give the number of matrices which correspond to a

drawable tangle with the correct coloring invariants. The number of these matrices which may correspond

to non-equivalent tangles is given in the columns labeled “Non-equiv?”. Note, however, that the algorithm

does not identify all equivalent tangles.

We checked the remaining thirteen tangles corresponding to these matrices by hand. The ten tangles

with Fig. 10A parity are all equivalent to the five crossing tangle found in [5] (Fig. 7A). The three tangles

with Fig. 10B parity are all equivalent to one of the two eight crossing tangles in Fig. 7B, C. Recall that

13

the two eight crossing solutions were not considered in [5] since the unknotted DNA substrate was

negatively supercoiled and hence trapping left-handed crossings is biologically unlikely.

Discussion and Conclusions

We have developed software to analyze the difference topology experiments in [5]. Pathania et al [5] needed

to assume the basic shape of a 3-branched supercoiled structure (Fig. 7) in order to find the solution

shown in Fig. 1B (= Fig. 7A). With our software, no assumptions regarding the DNA conformation bound

by the protein complex are needed except for an upper bound on the number of crossings. This algorithm

can also be modified to analyze any difference topology experiment regardless of the number of DNA

segments bound by the protein complex (although there is a bound on the topological complexity of the

protein-bound DNA as discussed below).

A tangle solution is a topological approximation given as a 2-dimensional projection of a 3-dimensional

structure. It does not determine sharpness of DNA bending, but it does give an important starting point

from which other modeling techniques may be applied. Limited information regarding the Mu-DNA

conformation existed before [5]. Since then a partial structure based on scanning transmission electron

microscopy (STEM) at cryo-temperatures has become available [19], but this involves only a portion of the

protein complex and a change in the DNA sequences bound by Mu. Information regarding protein-bound

DNA conformations can sometimes be obtained via crystallography, STEM, or FRET (fluorescence

resonance energy transfer), but all these techniques are quite difficult and currently can only be applied to

small protein-DNA complexes.

Recall that in the Mu tangle model from [5] (Figs. 5, 6), it is assumed that at most one crossing is

trapped outside of the protein complexes (modeled within the green annulus). Since Mu and Cre bind to

specific DNA sequences, the length of the DNA between the Mu binding sites and Cre binding sites can be

controlled. The shortest length needed for the reaction to take place was determined in [5] in order to

prevent trapping extraneous crossings. The difference topology experimental technique can also be applied

to proteins that bind to arbitrary DNA sequences rather than specific DNA sequences, but the results

would not be expected to be as clean (both in terms of experimental results as well as determining the

appropriate tangle model). It was shown in [20] that if the length of DNA between binding sites is not

properly controlled, then the number of protein-bound DNA crossings may be overestimated. But even if

we are left with a topological approximation, it is still a significant improvement over having little or no

information on how to draw the DNA in a protein-DNA complex.

14

We are not mathematically limited to equations resulting from Cre recombination. Any protein which

can change DNA topology could potentially be used in a set of difference topology experiments to obtain a

different system of tangle equations. For example topoisomerases change the topology of circular DNA by

changing DNA crossings. It may be possible to obtain a more 3-dimensional model by averaging

2-dimensional projections of tangle solutions from two or more systems of tangle equations or tangle

models [3, 4]. Cre, however, may be the easiest to work with due to its sequence specificity and its simple

mechanism.

The software and its applicability to n-string tangle equations

This software consists of 4 steps:

1. Matrices which could correspond to coloring matrices of tangle diagrams are generated (see

subsection Tangle generation in Methods)

2. The coloring invariants of each matrix are checked (subsection Checking the coloring invariants

in Methods). Implementing this part of the software requires that we first mathematically simplify

the system of tangle equations via 2-string tangle analysis (subsection 2-string tangle

simplification in Methods).

3. Not all the matrices generated in step 1 will correspond to a tangle diagram. Hence each generated

matrix is checked to determine if it actually corresponds to a tangle diagram (subsection

Non-drawable matrices in Methods).

4. Different matrices can correspond to the same tangle. Thus we remove some (but not all) of the

redundant matrices (subsection Equivalence moves in Methods)

No modifications are needed for Steps 1 and 3 in order to apply this algorithm to a different system of

n-string tangle equations. For step 2, additional invariants may be needed in addition to or in replacement

of the coloring invariants. Additional subroutines may also be needed for step 4.

Although coloring is not that powerful of a knot invariant, it is a powerful tangle invariant. As our

results show, it is the only invariant we need to check to determine if a tangle up through eight crossings is

a solution to the equations in Fig. 6. However, there is no guarantee that this invariant will be sufficient

for a different system of tangle equations. Hence we may need to check additional invariants. Fortunately,

there are a number of other invariants as well as software available for calculating these other invariants

15

which can be used when needed [17, 21]. In particular we plan to add the homflypt polynomial knot

invariant as an alternative option to the coloring invariant. The homflypt polynomial has been used in

other algorithms requiring computational speed [22]. Knots with nine or fewer crossings are uniquely

identified by their homflypt polynomial. Hence if the knotted products of the difference topology

experiments contain fewer than ten crossings, then checking the homflypt polynomial is sufficient (i.e., the

homflypt polynomial will completely determine if a tangle is a solution to a system of n-string tangle

equations if the equations only involve knots with less than ten crossings). Even if we need to use different

invariant(s), this does not affect any other part of the algorithm. In particular, we can still use coloring

matrices to encode tangle diagrams.

Our software left us with only 13 different coloring matrices which could correspond to tangle solutions

to the system of equations in Fig. 6. We could have added additional methods to determine if two tangle

diagrams are equivalent to further reduce this output, but it was quicker to check these 13 matrices by

hand. For a different system of equations, additional methods to determine tangle equivalence may be

needed to reduce the output to a handful of matrices. We will add additional subroutines to decrease the

number of redundant tangles as needed.

The modifications that may be needed are straightforward. In fact they have been used by others for a

computationally much more complex problem, knot tabulation [16]. The techniques we use are very similar

to those used to tabulate knots up through 16 crossings. The main difference between knot tabulation and

our algorithm is that in tabulating knots, every knot diagram must be fully identified and all redundancies

eliminated. In our algorithm, we discard diagrams that do not satisfy our equations, and hence only need

to analyze a very small fraction of diagrams compared to the number of diagrams analyzed in knot

tabulation. Also, since we focus on only a few systems of equations at a time, we can analyze by hand

some redundancies among our tangle solutions. Hence we don’t need to check nearly as many invariants or

computationally determine as many tangle equivalences as in knot tabulation where millions of knots have

been identified [23]. Thus our algorithm is computationally much simpler than that required for knot

tabulation.

Unfortunately, we cannot give a mathematical estimate regarding the number of solutions or the

number of redundancies for an arbitrary system of tangle equations. In most cases, any modifications

needed to reduce the number of repeated solutions will take at most a few days to implement. However, if

the system of tangle equations is under-determined so that it has many small crossing solutions, then

determining redundancies computationally will become much more important. An example of an

16

under-determined system would be one modeling a partial set of difference topology experiments. In [5],

Cre binding sites, in both inverted and direct orientations, were placed on each pair of the three loops

emanating from the Mu transpososome. Hence six different substrates were constructed. If a protein binds,

for example, four segments of DNA, then four loops will emanate from the protein-DNA complex. If Cre

binding sites are placed on each pair of these four loops in both inverted and direct orientation, twelve

substrates would be needed. In general if a protein-complex binds n segments of DNA, one would need to

contruct n(n− 1) different substrates if Cre binding sites are placed on each pair of loops in both

orientations. An under-determined system would result if Cre binding sites are not placed on each pair of

loops. We will eventually be able to solve under-determined systems for small crossing solutions as this

problem is still much simpler than knot tabulation, but we expect this will take longer to implement.

Other mathematical methods

There are many mathematical techniques (for example [1, 24–28,28–36]) as well as software [37, 38] for

solving 2-string tangle equations. Hence many (but not all) biologically relevant 2-string tangle equations

can be completely solved. Similar mathematics does not yet exist for solving n-string tangle equations for

n > 2. Some work has been done on 3-string tangles [39] and solving 3-string tangles equations involving

the class of 3-string tangles called 3-braids [40]. There is also some work on classifying n-string tangles (for

example, [41]). Also techniques in 3-manifold theory can be applied to solve n-string tangle equations for

small crossing solutions [42], (Darcy IK, Luecke J, Vazquez M: A tangle analysis of the Mu transpososome

protein complex which binds three DNA segments, manuscript in preparation). However, at the moment,

there are no mathematical methods for solving the system of 3-string tangle equations in Fig. 6 or for most

systems of n-string tangle equations.

Computational limitations

Currently this C++ algorithm takes about two days on a Linux computer with AMD Opteron Processor

(2.2 GHz cpu) to find solutions through eight crossings. However, the efficiency of the algorithm can be

significantly improved by parallelizing it and running it on a cluster. Hence it should be possible to find

solutions up to about ten crossings. As the number of tangles grows exponentially with crossing number,

this algorithm can not be used to find high crossing solutions. Knots have only been tabulated up through

sixteen crossings. Although our algorithm is computationally much simpler than knot tabulation, there are

more tangles with k crossings than there are knots with k crossings. Hence we do not expect to be able to

17

get much past ten crossings with a reasonable computation time.

Despite this computational limitation, we believe this algorithm is applicable to a wide array of

protein-DNA complexes. The length of DNA bound by the protein limits the bound DNA’s topological

complexity. For example, the three DNA segments bound within the Mu transpososome are 50, 175 and

190 base pairs. However, we do not know of a theoretical upper bound on the topological complexity of

protein-bound DNA.

We believe eight crossings is a reasonable limit for the Mu transpososome. In addition to limits

imposed by the lengths of the three protein-bound DNA sequences, the existence of a five crossing solution

implies that a much more complicated solution with eight or more crossing is less likely. However, we have

no proof that this is the case.

Conclusion

The computational algorithm described in this paper can be modified to solve any system of n-string tangle

equations for small crossing tangle solutions. A long-term goal is to create software accessible to those

without a background in knot theory. Eventually this software will be able to draw the tangle solutions.

Some additional work is needed to handle under-determined systems of tangle equations as discussed

above. But in the meantime if the system is not under-determined, we can readily modify this algorithm to

solve any specified system of tangle equations up to around ten crossings; hence an experimentalist need

not wait for the final version of this software before performing difference topology experiments.

Methods
Tangle generation

We use the coloring matrix of a tangle diagram to encode its shape. Recall that a solution to the tangle

equations in Fig. 6 can have one of two possible parities: the strings enter and exit the tangle as in Fig. 11A

or as in Fig. 11B. For tangle generation, we will not place the columns corresponding to the endpoint arcs

in the rightmost columns. This simplifies the matrix generation as well as determining if a matrix

corresponds to a drawable tangle or if two matrices correspond to the same tangle. In order to calculate

the coloring invariants, we will later move the columns corresponding to the endpoint arcs to the rightmost

columns. The red string which begins with the endpoint arc labeled x1 and ends with the endpoint arc xi

will be called string 1. The green string which begins with the endpoint arc labeled xi+1 and ends with the

endpoint arc xj will be called string 2 while the remaining blue string will be called string 3.

18

A.)

Xk Xi

XjXj+1

X1
Xi+1

B.) Xi

Xk

Xj+1

Xj

X1

Xi+1

Figure 11: Possible parities. Note that the endpoint arcs are neither labeled consecutively nor in a clockwise
fashion for tangle generation.

We first consecutively label the arcs of red string 1 beginning with x1 as illustrated with the example in

Fig. 12A. The red string is broken into four arcs with the arcs consecutively labeled x1, x2, x3, x4. We then

label the arcs of the green second string starting from the first endpoint arc clockwise from the red

endpoint arc x4. String 2 is broken into four arcs which are consecutively labeled x5, x6, x7, x8. We then

label the arcs of string 3, x9, x10, starting from the first endpoint arc clockwise from the last labeled arc of

string 2. Recall that the arcs correspond to columns in the coloring matrix (Fig. 12A). Hence for tangle

generation, we have chosen a particular ordering of the columns by ordering the arcs.

Recall that the coloring equations (which correspond to rows in the coloring matrix) are determined by

the crossings in the tangle diagram. Hence we determine the ordering of the rows by labeling the crossings.

Beginning with string 1, we consecutively number the under-crossings (Fig. 12B). Hence for string 1,

crossing number i occurs between string 1 arcs xi and xi+1. For string 2, crossing number j occurs between

string 2 arcs xj+1 and xj+2 while for string 3, crossing number k occurs between string 3 arcs xk+2 and

xk+3. This determines the placement of the two 1’s in each row (Fig. 12B). To generate matrices that

could correspond to a coloring matrix, we can now place one -2 in each row in all possible combinations.

Not all matrices that could correspond to a 3-string tangle are generated (see below). Not all generated

matrices correspond to a tangle (see section on Non-drawable matrices). Many different matrices

correspond to the same tangle (see below and section on Equivalence moves).

Matrices not generated. The algorithm under discussion does not generate all matrices which could

correspond to a tangle. A tangle diagram can contain an extraneous crossing manifested by the looping of

a string over itself. If the loop does not pass under any string, this results in the equation xi − xi+1 = 0.

This is more general than an RI move (Fig. 8) as there could be strings passing under this loop. In any

case this tangle diagram can be simplified, and hence we do not need to generate the matrix corresponding

to this diagram. Since all matrices generated have two “1”s and one “-2” in each row, none of the matrices

generated will correspond to a tangle containing such an extraneous crossing.

19

A.)

X

X

X

X

X

X

9

5

4

2

6
1

X10
X3

X7 X8

X1 X2 X3 X4 X5 X6 7 X8 X9 X10

1 1
1 1

1 1
1 1

1 1
1 1

1 1

X

B.)

1
2

3

4

5

6

7

crossing 1
crossing 2
crossing 3
crossing 4
crossing 5
crossing 6
crossing 7

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10




















1 1 0 0 0 0 0 0 0 −2
0 1 1 0 0 0 −2 0 0 0
0 0 1 1 −2 0 0 0 0 0
0 −2 0 0 1 1 0 0 0 0
0 0 0 0 0 1 1 0 −2 0
0 0 −2 0 0 0 1 1 0 0
0 0 0 0 0 −2 0 0 1 1





















Figure 12: A.) Example: labeling arcs. The arcs correspond to columns in the coloring matrix. The rows of
the coloring matrix are not determined until the crossings are labeled, but are included in the above figure for
illustrative purposes. The matrix is partitioned into blocks in order to emphasize the correlation between the
placement of 1’s and the number of arcs in each string. Observe 1’s only occur in the diagonal blocks in the
pattern shown. B.) Example: labeling crossings.

20

Another case that is not generated is the presence of a string not crossing under any arcs, and hence

consisting of just one arc doubly labeled xi and xi+1. This case results in the equation, xi − xi+1 = 0. We

could easily generate this, but the system of tangle equations in Fig. 6 rules out such tangles as possible

solutions.

The algorithm also does not generate matrices that correspond to tangles containing crossings which

can be removed by an RII move. These matrices contain -2’s in the same column in two consecutive rows

where the rows correspond to the same string. See Fig. 13. By not generating matrices containing the

submatrix in Fig. 13B, we do not generate any tangle diagrams which can be simplified by an RII move

(Fig.13A). This also eliminates other tangles whose coloring matrix also contains this submatrix. This

includes tangle diagrams containing a generalization of an RII move where strings are allowed to pass

under the strings which would otherwise correspond to an RII move (Fig. 13C, left-side) as well as tangles

containing diagrams like that on the right-side of Fig. 13C. All of these tangle diagrams can be simplified.

This is one advantage of using coloring matrices to generate tangles: we easily remove a number of

matrices that correspond to tangle diagrams where the number of crossings can be reduced.

jxix i+1x i+2x

xi xj
xi

xi+2

xj

R II move

1 1 −20
−20 11

crossing

(k+1)

k
k+1

row
row

A

B

i+1x

crossing
th

kth

C.)

xj xi+1

xi+2

xi xi xi+1 xi+2

x j

Figure 13: A.) An RII move. B.) Matrix corresponding to RII move. C.) Tangles which would also contain
the submatrix in Fig. 13B.

The next part of this software checks the coloring invariant as this removes the majority of the matrices

from consideration. However, for readability, we will discuss the drawability algorithm first.

21

Non-drawable matrices

Not all generated matrices correspond to a tangle. We use an algorithm almost identical to that described

in [18] to completely determine if a matrix corresponds to a drawable tangle. This algorithm determines if

all arcs can be drawn or if an arc becomes trapped in a region and cannot be completed. We illustrate with

an example. If the matrix in Eqn. (4) corresponds to a coloring matrix of a tangle, then since it has five

rows, the tangle must have five crossings. Also, based upon the pattern of 1’s in this matrix, the first string

should consist of four arcs, x1, x2, x2, x4, while the second string consists of arcs x5, x6 and the third string

consists of arcs x7 and x8. A matrix corresponds to a tangle diagram if we can embed all of the arcs. In

this case we say that the matrix is drawable. In order to determine if there exists a tangle diagram

associated to the matrix in Eqn. (4), we begin by drawing the arcs x1 and x2. Recall the first row

represents the first crossing with underarcs x1,x2. Since a -2 appears in the first row and the fourth

column, we know that x4 crosses over between x1 and x2. Hence we also draw a portion of the arc x4

between the arcs x1 and x2 (Fig. 14A). Similarly since a -2 appears in the second row and fifth column, we

know that x5 crosses over between x2 and x3 (Fig. 14B).

crossing 1
crossing 2
crossing 3
crossing 4
crossing 5

x1 x2 x3 x4 x5 x6 x7 x8












1 1 0 −2 0 0 0 0
0 1 1 0 −2 0 0 0
−2 0 1 1 0 0 0 0
0 0 −2 0 1 1 0 0
−2 0 0 0 0 0 1 1













(4)

In order to complete arc x3, we note that x1 crosses over between x3 and x4 (-2 appears in the third

row and first column and hence the x1 is the overcrossing for this third crossing). Since x1 has already

been drawn, we determine if the arc x1 is reachable from x3 by searching the region accessible to x3 (Fig.

14C, middle). In this case we see that x3 can reach x1 from both above and below and hence both cases

are checked. Thus we draw the arc x3 approaching x1 from above in one case (Fig. 14C, top) and from

below in the other case (Fig. 14C, bottom). We also draw the beginning part of the arc x4.

A portion of the arc x4 has been draw before (crossing over between x1 and x2), so we must determine

if we can connect the previously drawn part of x4 with the beginning part of x4 that we just added. We

determine if the previously drawn portion of x4 is within the region accessible to the newly drawn

beginning part of x4 (Fig. 14D, left). Note that exactly one side of the previously drawn part of x4 is

accessible. Hence there is exactly one way of connecting these two parts of x4 (Fig. 14D, right).

According to the matrix in Eqn. (4), the first string consists of exactly four arcs. Hence x4 must also

22

X4

X2
1X

X1

X4

X2

X5

X3

X1

X4

X2 X3

X5

X4

X1

X5 X3
X2

X4

X4

X1 X2 X3

X5

X4

X1

X5 X3
X2

X4

X1

X4

X2

X5

X3

X1

X4

X2 X3

X5

X4

X1

X5 X3
X4

X2

X4

X4

X1 X2 X3
X4

X5

X1

X5 X3
X2

X4

X4

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

A) Crossing 1

B) Crossing 2

C) Crossing 3 D) Crossing 4 E) cannot complete x4

Figure 14: The matrix in Eqn. (4) does not correspond to a 3-string tangle.

connect to the boundary of the tangle ball. Therefore we check if the boundary of the tangle ball is

accessible to the first part of x4 (Fig. 14E). It is not. After passing over between the arcs, x1 and x2, the

arc x4 arc is trapped in the shaded region and cannot connect to the boundary of the 3-ball without

introducing an extra crossing. Thus the matrix in Eqn. (4) does not correspond to a drawable tangle.

This is all done computationally. Currently no tangle diagrams are literally drawn. For a full

description of the algorithm applied to link diagrams, see [18]. The main difference between our algorithm

and the algorithm in [18] is that since we are interested in tangles, we must consider the boundary of the

tangle 3-ball as shown in the example in Fig. 14.

2-string tangle simplification

Coloring is a weak knot invariant, but a strong tangle invariant. Hence, in order to use this invariant for

solving tangle equations, we must first simplify the system of tangle equations in Fig. 6 by applying

2-string tangle analysis. Recall that the tangle T in Fig. 6 contains three strings. Observe that one of the

strings in the green annulus loops back, connecting two of the three strings in the tangle T (see also Fig.

15 and the example in Fig. 5). Hence if we combine the three strings in the tangle T with the strings in

the green annulus, we obtain a 2-string tangle. Thus the tangles in Fig. 15 are 2-string tangles. Endpoints

23

of the two strings are marked by dots (note two strings have four endpoints).

TT T T TT

Figure 15: 2-string tangle analysis will be used to determine these 2-string tangles from Fig. 6. The ends of
the two strings are marked by dots.

We can solve for the 2-string tangles in Fig. 15 using the tangle equations in Fig. 6. This step requires

some mathematical background in tangle analysis, although there is software (available at KnotPlot.com)

for solving some 2-string tangle equations [38]. For information on how to solve 2-string tangle equations,

see [1, 33]. For additional 2-string tangle analysis applied to the Mu transpososome, see (Darcy IK, Luecke

J, Vazquez M: A tangle analysis of the Mu transpososome protein complex which binds three DNA

segments, manuscript in preparation).

We can use a theorem in [29] and tangle calculus [1] (or tangle software [38]) to solve for one of these

2-string tangles (Fig. 16, where the crossings are either all right-handed or all left-handed).

T T == implies T =

Figure 16: Solving for a 2-string tangle.

Similarly, by [36] and tangle calculus [1] (or tangle software [38]), we can solve for two more of these

2-string tangles (Fig. 17, where the crossings are either all right-handed or all left-handed).

T T= = implies T =

==T T implies =T

Figure 17: Solving for two more 2-string tangles.

This determines the remaining 2-string tangles in Fig. 15 since the last three tangles in Fig. 15 can be

obtained from the first three by adding a crossing. In fact solving the system of tangle equations in Fig. 6

is equivalent to solving the system of three tangle equations in Fig. 18 for the 3-string tangle T. Observe,

also, that the first 2-string tangle in Fig. 18 contains four right-handed or four left-handed crossings.

Hence in order to obtain a five crossing knotted product, the extra crossing in the green annulus in the top

24

right tangle equation in Fig. 6 must be of the same handedness as these four crossings. Thus the crossings

in the five crossing knotted product must be either all right- or all left-handed.

T = T = =T

Figure 18: Tangle equations (crossings are either all right-handed or all left-handed). This system of tangle
equations is equivalent to the system of tangle equation in Fig. 6 in that both systems have the same solution
set.

Checking the coloring invariants

We first check if a generated matrix could be the coloring matrix of a 3-string tangle, T, which satisfies the

system of tangle equations in Fig. 18. In order to use the coloring invariants, Ml(T), du(T), of this

3-string tangle, we must first move the six columns corresponding to the endpoint arcs so that they become

the six rightmost columns of the coloring matrix. For convenience, we will re-label these endpoint arcs as

x1, x2, ..., x6 as shown in Fig. 19.

X1

X6 X5

X2

X4

X3

Figure 19: Re-labeled endpoint arcs. When the coloring invariants are determined, the columns corresponding
to these endpoint arcs will be listed consecutively in the order shown and in the rightmost columns of the
coloring matrix.

Given a 3-string tangle T with k crossings, let MT be its k × (k + 3) coloring matrix. Let 0p×(k−3) be a

p× (k − 3) matrix with all zero entries. Suppose for some (k − 3)× (k − 3) matrix A(k−3)×(k−3), 3× 6

matrix M3×6 in standard echelon form and some (k − 3)× 6 matrix B(k−3)×6, SF (MT) is as in Eqn. (5):

SF (MT) =

(

A(k−3)×(k−3) B(k−3)×6

03×(k−3) M3×6

)

(5)

If T is a solution to the system of tangle equations in Fig. 18, then connecting the endpoint arcs, x1

and x2 of T results in the four crossing 2-string tangle T12 shown in Fig. 20. The coloring invariants of

T12 are given in Eqn. 6.

du(T12) = 1, Ml(T12) =

(

1 0 4 −5
0 1 3 −4

)

or

(

1 0 −4 3
0 1 −5 4

)

(6)

25

Connecting endpoint arcs x1 and x2 of T to obtain the 2-string tangle T12 results in adding the

equation x1 − x2 = 0 to the matrix MT to obtain the matrix MT12
(Eqn. 7).

MT12
=





A(k−3)×(k−3) B(k−3)×6

03×(k−3) M3×6

01×(k−3) 1 −1 0 0 0 0



 (7)

If T is a solution to the tangle equation in Fig. 20, then this (k + 1)× (k + 3) matrix, MT12
, is a

coloring matrix for T12. Since du(T12) = 1, we know that the upper left (k + 1− 2)× (k + 3− 4)

submatrix of the (k + 1)× (k + 3) matrix SF (MT12
) has determinant equal to 1. Since this matrix is in

standard echelon form, this upper left (k − 1)× (k − 1) submatrix must be the identity matrix,

I(k−1)×(k−1), which has 1’s along the diagonal and zero’s elsewhere. Thus A(k−3)×(k−3) is the

(k − 3)× (k − 3) identity matrix, I(k−3)×(k−3). We also know that the lower right-hand corner 2× 4

submatrix of SF (MT12
) is equal to Ml(T12). Thus if T is a solution to the tangle equation in Fig. 20,

SF (MT12
) is as in Eqn. 8 where * represents an arbitrary integer.

SF (M12) =













I(k−3)×(k−3) B(k−3)×6

04×(k−3)

1 0 0 0 ∗ ∗
0 1 0 0 ∗ ∗
0 0 1 0 4 −5
0 0 0 1 3 −4













or













I(k−3)×(k−3) B(k−3)×6

04×(k−3)

1 0 0 0 ∗ ∗
0 1 0 0 ∗ ∗
0 0 1 0 −4 3
0 0 0 1 −5 4













(8)

Hence, in order to determine if a matrix could correspond to a tangle, T, which is a solution to the

tangle equation in Fig. 20, we check if MT12
is row equivalent to one of the two matrices in Eqn. (8). This

is not a guarantee that T is a solution as different tangles can have the same coloring invariants [15], but

our computational results show that it is sufficient for solving the tangle equations in Fig. 18.

Similarly to determine if T could be a solution to the tangle equation in Fig. 21, we add the equation

x3 − x4 = 0 to the matrix MT and check if this matrix satisfies the coloring invariants of T34 as given in

Eqn. (9).

du(T34) = 1, Ml(T34) =

(

1 0 3 −4
0 1 2 −3

)

or

(

1 0 −3 2
0 1 −4 3

)

(9)

T =

Figure 20: The 2-string tangle T12. This 2-string tangle is obtained from the 3-string tangle, T, by connecting
endpoint arcs x1 and x2.

26

T =

Figure 21: The 2-string tangle T34. This 2-string tangle is obtained from the 3-string tangle, T, by connecting
endpoint arcs x3 and x4.

Finally, we determine if T could be a solution to the tangle equation in Fig. 22, by adding the equation

x5 − x6 = 0 to the matrix MT and checking if this matrix satisfies the coloring invariants of T56 as given

in Eqn. (10).

=T

Figure 22: The 2-string tangle T56. This 2-string tangle is obtained from the 3-string tangle, T, by connecting
endpoint arcs x5 and x6.

du(T56) = 1, Ml(T56) =

(

1 0 3 −4
0 1 2 −3

)

(10)

Alternatively, we can determine what the entries of the submatrix M3×6 of MT (Eqn. (5)) need to be

in order for T to satisfy the tangle equations in Fig. 18. To determine M3×6, we add the equations

xi − xi+1 for each i = 1, 3, 5, and determine the constraints needed to satisfy the coloring invariants of

Ti(i+1). If T satisfies the tangle equations in Fig. 18, then the determinant of A, the upper left

(k − 3)× (k − 3) submatrix of MT, is 1 and M3×6 is as in Eqn. (11).

M3×6 ∼





1 −1 1 −1 1 −1
0 1 t −1− t s− r − x −s + r + x

0 0 x 1− x r + x −1− r − x



 (11)

for some integer x, where r = 3 or -5, s = 2 or -4, and t = 2.

As a check, both methods were implemented.

Equivalence moves.

Recall that a tangle can be represented by a number of different diagrams related by Reidemeister moves.

While generating matrices, we omit matrices where the corresponding diagram can be simplified by RI or

RII moves and other matrix related moves (as described in the subsection Tangle generation). We also

added two additional equivalence relations.

27

We removed tangles containing the diagram shown in Fig. 23 by removing matrices containing the

submatrices in Eqn. (12).

xj+1

xj−1
xm

xm+1
xj

Figure 23: A diagram corresponding to Eqn. 12.









xj−1 xj xj+1 xm xm±1

i 1 1 −2 0 0
i + 1 0 1 1 0 −2

k 0 0 −2 1 1









&









xj−1 xj xj+1 xm xm±1

i− 1 1 1 0 0 −2
i −2 1 1 0 0
k −2 0 0 1 1









(12)

This also eliminates other tangle diagrams whose matrices contain these submatrices, but all such

tangles can be simplified.

A tangle diagram containing the left-hand side of an RIII move (Fig. 8) will be equivalent to the tangle

diagram obtained after the RIII move has been performed. Hence we choose one of these tangle diagrams

and discard the other. After the above equivalence moves, we are left with thirteen possible tangles which

can be checked by hand to determine if they correspond to equivalent or non-equivalent solutions to the

tangle equations in Fig. 18 (or equivalently, Fig. 6).

Authors contributions

CM and JN contributed to the mathematical analysis for applying the coloring invariant. JN also drafted

significant portions of the sections The coloring invariants, Tangle generation, Checking the

coloring invariants. AP, JS, and TT developed the software implementing the coloring invariant

calculations. RM contributed to the Non-drawable section and is responsible for the subroutine which

determines if a matrix corresponds to a drawable tangle. He was assisted by ND and JS. JC, ND, SM, and

JS developed equivalence moves which were implemented by ND, RM, and JS. ID conceived of and oversaw

this project, drafted much of the manuscript, and contributed to the mathematical and software

development. All authors read and approved the final manuscript.

Acknowledgements

This work was supported by a grant from the Joint DMS/NIGMS Initiative to Support Research in the

Area of Mathematical Biology to ID and S. D. Levene. (NIH GM 67242) and by an Interdisciplinary

28

Research Grant from The University of Iowa’s Obermann Center for Advanced Studies to ID, S. D. Levene,

and R. G. Scharein. We also thank John Luecke who ran a VIGRE REU at UT Austin which supported

JC, ND, SM, and JS. ND and JS were also supported through the U.I. Undergraduate Scholar Assistant

(USA) Program.

We also thank Abhijeet Bhutra for his contributions to the software discussed in this paper, Rob

Scharein and KnotPlot.com for figures 1A, 7, 8, and Yosune Camio and Melanie Devries for comments on

an earlier version of this manuscript.

References
1. Ernst C, Sumners DW: A calculus for rational tangles: applications to DNA recombination. Math.

Proc. Cambridge Philos. Soc. 1990, 108(3):489–515.

2. Crisona N, Weinberg R, Peter B, Sumners D, Cozzarelli N: The topological mechanism of phage lambda
integrase. J Mol Biol. 1999, 289(4):747–75.

3. Vazquez M, Colloms SD, Sumners D: Tangle analysis of Xer recombination reveals only three
solutions, all consistent with a single three-dimensional topological pathway. J Mol Biol. 2005,
346(2):493–504.

4. Vetcher AA, Lushnikov AY, Navarra-Madsen J, Scharein RG, Lyubchenko YL, Darcy IK, Levene SD: DNA
Topology and Geometry in Flp and Cre Recombination. J Mol Biol. 2006, 357(4):1089–1104.

5. Pathania S, Jayaram M, Harshey R: Path of DNA within the Mu transpososome. Transposase
interactions bridging two Mu ends and the enhancer trap five DNA supercoils. Cell 2002,
109(4):425–436.

6. Chaconas G, Harshey R: Transposition of phage Mu DNA. In Mobile DNA II (eds. N.L. Craig et al.)
ASM Press 2002.

7. Grainge I, Buck D, Jayaram M: Geometry of site-alignment during Int family recombination. J. Mol.
Biol. 2000, 298:749–764.

8. Kilbride E, Boocock M, Stark W: Topological selectivity of a hybrid site-specific recombination
system with elements from Tn3 res/resolvase and bacteriophage PL loxP/Cre. J. Mol. Biol. 1999,
289:1219–1230.

9. Pathania S, Jayaram M, Harshey R: A unique right end-enhancer complex precedes synapsis of Mu
ends: the enhancer is sequestered within the transpososome throughout transposition. The EMBO
journal 2003, 22(14):3725–3736.

10. Yin Z, Jayaram M, Pathania S, Harshey R: The Mu transposase interwraps distant DNA sites within a
functional transpososome in the absence of DNA supercoiling. J Biol Chem. 2005, 280(7):6149–6156.

11. Guo F, Gopaul DN, van Duyne GD: Structure of Cre Recombinase complexed with DNA in a
site-specific recombination synapse. Nature 1997, 389:40–46.

12. Fox RH: Metacyclic Invariants of Knots and Links. Canadian Journal Math 1970, 22:193–201.

13. Livingston C: Knot Theory. Washington, DC: Math. Assoc. Amer. 1993.

14. Przytycki J: 3-Coloring and other Invariants of Knots. Banach Center Publications 1998, 42:275–295.

15. Navarra-Madsen J, Darcy IK: Colorability and n-String Tangles. http:// xxx.lanl.gov/ find. mathGT/.

16. Dowker CH, Thistlethwaite MB: Classification of Knot Projections. Topol. Appl. 1983, 16:19–31.

17. Ewing B, Millett KC: Computational algorithms and the complexity of link polynomials. In Progress
in knot theory and related topics, Volume 56 of Travaux en Cours, Paris: Hermann 1997:51–68.

18. Doll H, Hoste J: A tabulation of oriented links. Math. Comp. 1991, 57(196):747–761.

29

19. Yuan JF, Beniac DR, Chaconas G, Ottensmeyer FP: 3D reconstruction of the Mu transposase and the
Type 1 transpososome: a structural framework for Mu DNA transposition . Genes & Development
2005, 19:840–852.

20. Kilbride EA, Burke ME, Boocock M, Stark W: Determinants of product topology in a hybrid Cre-Tn3
resolvase site-specific recombination system. J. Mol. Biol. 2006, 355(2):185–95.

21. Bar-Natan D: The Mathematica Package KnotTheory.
http:// katlas.math.toronto.edu/wiki/The_Mathematica_Package_KnotTheory .

22. Flammini A, Maritan A, Stasiak A: Simulations of action of DNA topoisomerases to investigate
boundaries and shapes of spaces of knots. Biophysical Journal 2004, 87:2968–2975.

23. Hoste J, Thistlethwaite M, Weeks J: The first 1,701,936 knots. Math. Intelligencer 1998, 20(4):33–48.

24. Culler M, Gordan C, Luecke J, Shalen P: Dehn surgery on knots. An. of Math 1987, 125:237–300.

25. Sumners D, Ernst C, Spengler S, Cozzarelli N: Analysis of the mechanism of DNA recombination using
tangles. Quarterly Reviews of Biophysics 1995, 28:253–313.

26. Ernst C: Tangle equations. J. Knot Theory Ramifications 1996, 5(2):145–159.

27. Ernst C: Tangle equations. II. J. Knot Theory Ramifications 1997, 6:1–11.

28. Ernst C, Sumners DW: Solving tangle equations arising in a DNA recombination model. Math. Proc.
Camb. Phil. Soc. 1999, 126:23–36.

29. Hirasawa M, Shimokawa K: Dehn surgeries on strongly invertible knots which yield lens spaces. Proc.
Amer. Math. Soc. 2000, 128:3445–3451.

30. Darcy IK: Biological distances on DNA knots and links: applications to XER recombination. J.
Knot Theory Ramifications 2001, 10(2):269–294. [Knots in Hellas ’98, Vol. 2 (Delphi)].

31. Kauffman LH, Lambropoulou S: Classifying and applying rational knots and rational tangles. In
Physical knots: knotting, linking, and folding geometric objects in R

3 (Las Vegas, NV, 2001), Volume 304 of
Contemp. Math., Providence, RI: Amer. Math. Soc. 2002:223–259.

32. Vazquez M, Sumners DW: Tangle analysis of Gin site-specific recombination. Math. Proc. Cambridge
Philos. Soc. 2004, 136(3):565–582.

33. Darcy IK: Solving unoriented tangle equations involving 4-plats. J. Knot Theory Ramifications 2005,
14(8):993–1005.

34. Darcy IK: Solving oriented tangle equations involving 4-plats. J. Knot Theory Ramifications 2005,
14(8):1007–1027.

35. Buck D, Verjovsky Marcotte C: Tangle solutions for a family of DNA-rearranging proteins. Math.
Proc. Cambridge Philos. Soc. 2005, 139:59–80.

36. Kronheimer P, Mrowka T, Ozsvath P, Szabo Z: Monopoles and lens space surgeries.
http:// lanl.arxiv.org/ abs/math.GT/0310164 .

37. Saka Y, Vazquez M: TangleSolve: topological analysis of site-specific recombination. Bioinformatics
2002, 18:1011–1012.

38. Darcy IK, Scharein RG: TopoICE-R: 3D visualization modeling the topology of DNA
recombination. Bioinformatics 2006, 22(14):1790–1791.

39. Cabrera-Ibarra H: Results on the classification of rational 3-tangles. J. Knot Theory Ramifications 2004,
13(2):175–192.

40. Cabrera-Ibarra H: On the classification of rational 3-tangles. J. Knot Theory Ramifications 2003,
12(7):921–946.

41. Emert J, Ernst C: N-string tangles. J. Knot Theory Ramifications 2000, 9(8):987–1004.

42. Scharlemann M, Thompson A: Detecting unknotted graphs in 3-space. J. Differential Geom. 1991,
34(2):539–560.

30

