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Abstract. We develop topological methods for analyzing difference topology experi-
ments involving 3-string tangles. Difference topology is a novel technique used to unveil
the structure of stable protein-DNA complexes involving two or more DNA segments.
We analyze such experiments for the Mu protein-DNA complex. We characterize the
solutions to the corresponding tangle equations by certain knotted graphs. By investi-
gating planarity conditions on these graphs we show that there is a unique biologically
relevant solution. That is, we show there is a unique rational tangle solution, which is
also the unique solution with small crossing number.

In [PJH], Pathania et al determined the shape of DNA bound within the Mu trans-

posase protein complex using an experimental technique called difference topology [HJ,

KBS, GBJ, PJH, PJH2, YJPH, YJH] and by making certain assumptions regarding the

DNA shape. We show that their most restrictive assumption (the plectonemic form de-

scribed near the end of section 1) is not needed, and in doing so, conclude that the only

biologically reasonable solution for the shape of DNA bound by Mu transposase is the

one they found [PJH] (Figure 0.1). We will call this 3-string tangle the PJH solution.

The 3-dimensional ball represents the protein complex, and the arcs represent the bound

DNA. The Mu-DNA complex modeled by this tangle is called the Mu transpososome

Figure 0.1
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In section 1 we provide some biological background and describe eight difference topol-

ogy experiments from [PJH]. In section 2, we translate the biological problem of deter-

mining the shape of DNA bound by Mu into a mathematical model. The mathematical

model consists of a system of ten 3-string tangle equations (Figure 2.2). Using 2-string

tangle analysis, we simplify this to a system of four tangle equations (Figure 2.15). In

section 3 we characterize solutions to these tangle equations in terms of knotted graphs.

This allows us to exhibit infinitely many different 3-string tangle solutions. The existence

of solutions different from the PJH solution raises the possibility of alternate acceptable

models. In sections 3 - 5, we show that all solutions to the mathematical problem other

than the PJH solution are too complex to be biologically reasonable, where the com-

plexity is measured either by the rationality or by the minimal crossing number of the

3-string tangle solution.

In section 3, we show that the only rational solution is the PJH solution. In particular

we prove the following corollary.

Corollary 3.20. Let T be a solution tangle. If T is rational or split or if T has parallel

strands, then T is the PJH solution.

In section 4 we show that any 3-string tangle with fewer than 8 crossings, up to free

isotopy (i.e. allowing the ends of the tangle to move under the isotopy), must be either

split or have parallel strands. Thus Corollary 3.20 implies that any solution T different

from the PJH solution must have at least 8 crossings up to free isotopy. Fixing the framing

of a solution tangle (the normal framing of section 2), and working in the category of

tangle equivalence – i.e. isotopy fixed on the boundary – we prove the following lower

bound on the crossing number of exotic solutions:

Proposition 5.1. Let T be an in trans solution tangle. If T has a projection with fewer

than 10 crossings, then T is the PJH tangle.

The framing used in [PJH] is different than our normal framing. In the context of [PJH],

Proposition 5.1 says that if Mu binds fewer than 9 crossings, then the PJH solution is

the only solution fitting the experimental data. The PJH solution has 5 crossings. We

interpret Corollary 3.20 and Proposition 5.1 as saying that the PJH solution is the only

biologically reasonable model for the Mu transpososome.

Although we describe 8 experiments from [PJH], in the interest of minimizing lab time,

we show that only 3 experiments (in cis deletion) are needed to prove the main result

of sections 3 (Corollary 3.20) and 4. A fourth experiment (in trans deletion) allows us
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to rule out some solutions (section 3) and is required for the analysis in section 5. The

remaining four experiments (inversion) were used in model design [PJH].

The results in sections 2-4 extend to cases such as [YJPH, YJH] where the experimental

products are (2, L) torus links [HS] or the trefoil knot [KMOS]. The work in section 3

involves the analysis of knotted graphs as in [G], [ST], [T]. As a by-product, we prove

the following:

Theorem 3.25. Suppose Ĝ is a tetrahedral graph with the following properties:

(1) There exists three edges e1, e2, e3 such that Ĝ − ei is planar.

(2) The three edges e1, e2, e3 share a common vertex.

(3) There exists two additional edges, b12 and b23 such that X(Ĝ−b12) and X(Ĝ−b23)

have compressible boundary.

(4) X(Ĝ) has compressible boundary.

Then Ĝ is planar.

In subsection 3.4 we also give several examples of non-planar tetrahedral graphs to

show that none of the hypothesis in Theorem 3.25 can be eliminated.
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1. Biology Background and Experimental Data

Transposable elements, also called mobile elements, are fragments of DNA able to move

along a genome by a process called transposition. Mobile elements play an important role

in the shaping of a genome [DMBK, S], and they can impact the health of an organism by
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introducing genetic mutations. Of special interest is that transposition is mechanistically

very similar to the way certain retroviruses, including HIV, integrate into their host

genome.

Bacteriophage Mu is a system widely used in transposition studies due to the high

efficiency of Mu transposase (reviewed in [CH]). The MuA protein performs the first

steps required to transpose the Mu genome from its starting location to a new DNA

location. MuA binds to specific DNA sequences which we refer to as attL and attR

sites (named after Left and Right attaching regions). A third DNA sequence called the

enhancer (E) is also required to assemble the Mu transpososome. The Mu transpososome

is a very stable complex consisting of 3 segments of double- stranded DNA captured in a

protein complex [BM, MBM]. In this paper we are interested in studying the topological

structure of the DNA within the Mu transpososome.

1.1. Experimental design. We base our study on the difference topology experiments

of [PJH]. In this technique, circular DNA is first incubated with the protein(s)1 under

study (in this case, MuA), which bind DNA. A second protein whose mechanism is well

understood is added to the reaction (in this case Cre). This second protein is a protein

that can cut DNA and change the circular DNA topology before resealing the break(s),

resulting in knotted or linked DNA. DNA crossings bound by the first protein will affect

the product topology. Hence one can gain information about the DNA conformation

bound by the first protein by determining the knot/link type of the DNA knots/links

produced by the second protein.

In the experiments, first circular unknotted DNA is created containing the three bind-

ing sites for the Mu transpososome (attL, attR, E) and two binding sites for Cre (two

loxP sites). We will refer to this unknotted DNA as substrate. The circular DNA is

first incubated with the proteins required for Mu transposition, thus forming the trans-

pososome complex. This complex leaves three DNA loops free outside the transpososome

(Figure 1.1). The two loxP sites are strategically placed in two of the three outside loops.

The complex is incubated with Cre enzymes, which bind the loxP sites, introduce two

double-stranded breaks, recombine the loose ends and reseal them. A possible 2-string

tangle model for the local action of Cre at these sites is shown in Figure 1.2 [GGD]. This

1Although we use the singular form of protein instead of the plural form, most protein-DNA complexes
involve several proteins. For example formation of the Mu transpososome involves four MuA proteins
and the protein HU. Also since these are test tube reactions and not single molecule experiments, many

copies of the protein are added to many copies of the DNA substrate to form many complexes.
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cut-and-paste reaction may change the topology (knot/link type) of the DNA circle.

Changes in the substrate’s topology resulting from Cre action can reveal the structure

within the Mu transpososome.

attL
attR

enhancer lox p

lox p

Figure 1.1

Cre

Figure 1.2

By looking at such topological changes, Pathania et al. [PJH] deduced the structure

of the transpososome to be the that of Figure 0.1 (the PJH solution). In this paper

we give a knot theoretic analysis that supports this deduction. We show that although

there are other configurations that would lead to the same product topologies seen in the

experiments, they are necessarily too complicated to be biologically reasonable.

If the orientation of both loxP sites induces the same orientation on the circular

substrate (in biological terms, the sites are directly repeated), then recombination by Cre

results in a link of two components and is referred to as a deletion (Figure 1.3, left).

Otherwise the sites are inversely repeated, the product is a knot, and the recombination

is called an inversion (Figure 1.3, right).

5



Direct Repeats

= =

Inverted Repeats

Figure 1.3

In [PJH] six out of eight experiments were designed by varying the relative positions

of the loxP sites and their relative orientations. The last pair of experiments involved

omitting one of the Mu binding sites on the circular substrate and placing that site on a

linear piece of DNA to be provided “in trans” as described below.

In the first pair of experiments from [PJH], loxP sites were introduced in the substrate

on both sides of the enhancer sequence (E) (Figure 1.1). The sites were inserted with

orientations to give, in separate runs, deletion and inversion products. The transpososome

was disassembled and the knotted or linked products analyzed using gel electrophoresis

and electron microscopy. The primary inversion products were (+) trefoils, and the

primary deletion products were 4-crossing right-hand torus links ((2, 4) torus links).

The assay was repeated, but now the loxP sites were placed on both sides of the

attL sequence. The primary products were (2, 4) torus links for deletion, and trefoils for

inversion. In a third set of experiments, the assay was repeated again with the loxP

sites on both sides of the attR sequence. The primary products were (2, 4) torus links

for deletion, and 5-crossing knots for inversion.

Recall that in these first six experiments, the three Mu binding sites, attL, attR,

and the enhancer, are all placed on the same circular DNA molecule. We will refer

to these six experiments as the in cis experiments to differentiate them from the final

set of experiments, the in trans assay. In the in trans assay, circular DNA substrates

were created that contained attL and attR sites but no enhancer site. Each loxP site

was inserted between the attL and attR sites as shown in Figure 1.4. The enhancer

sequence was placed on a linear DNA molecule. The circular substrate was incubated

in solution with linear DNA molecules containing the enhancer sequence and with the

proteins required for transpososome assembly. In this case, we say that the enhancer

is provided in trans. The loxP sites in the resulting transpososome complex underwent

Cre recombination. After the action of Cre and the disassembly of the transpososome
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(including the removal of the loose enhancer strand), the primary inversion products were

trefoil knots, and the primary deletion products were (2,2) torus links (Hopf links).

attR

enhancer E

attL

loxP

loxP

Figure 1.4

The results of these experiments are summarized in Table 1.52. Vertical columns

correspond to the placement of loxP sites, e.g. the attL column shows inversion and

deletion products when the loxP sites were placed on both sides of the attL sequence.

enhancer attL attR in trans

Inversion (+)-trefoil trefoil 5-crossing knot trefoil

Deletion (2, 4)-torus (2, 4)-torus (2, 4)-torus (2, 2)-torus

link link link link

Table 1.5

1.2. Tangle Model. Tangle analysis is a mathematical method that models an enzy-

matic reaction as a system of tangle equations [ES1, SECS]. 2-string tangle analysis has

been successfully used to solve the topological mechanism of several site-specific recom-

bination enzymes [ES1, ES2, SECS, GBJ, D, VS, VCS, BV]. The Mu transpososome is

better explained in terms of 3-string tangles. Some efforts to classifying rational 3-string

tangles and solving 3-string tangle equations are underway [C1, C2, EE, D1]. In this

paper we find tangle solutions for the relevant 3-string tangle equations; we characterize

2The chirality of the products was only determined when the loxP sites were placed on both sides of
the enhancer sequence. We here assume the chirality in Table 1.5, where (2,4) torus link denotes the
4-crossing right-hand torus link. If any of the products are left-hand (2, 4) torus links, the results of
sections 2 - 5 applied to these products leads to biologically unlikely solutions.
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structure like that shown in Figure 1.93. The loxP sites were strategically4 placed close

to the Mu transpososome binding sites in order to prevent Cre from trapping random

crossings not bound within the Mu transpososome. In half the experiments it was as-

sumed that Cre trapped one extra crossing outside of the Mu transpososome in order to

obtain the loxP sequence orientation of Figure 1.2 (indicated by the arrows). It was also

assumed that this occurred with the higher crossing product when comparing inversion

versus deletion products. Hence a crossing outside of the Mu transpososome can be seen

in Figure 1.6in the case of E-deletion, L-deletion, R-inversion, and in trans inversion.

In all other cases, it was assumed that Cre did not trap any extra crossings outside of

the Mu transpososome. By assuming a branched supercoiled structure, [PJH] used their

experimental results to determine the number of crossings trapped by Mu in each of the

three branches. In sections 2–5 we show that we are able to reach the same conclusion as

[PJH] without assuming a branched supercoiled structure within the Mu transpososome.

Figure 1.9

2. Normal Form

2.1. Normal form. The substrate for Cre recombination in [PJH] is modeled as the

3-string tangle union T ∪ T0. We here introduce a framing for T called the normal form,

which is different from that in the PJH solution (section 1). The choice of framing affects

only the arithmetic in section 2 and does not affect any of the results in sections 3 or

4. The results of section 5 on the crossing number of T are made with respect to this

framing.

In Figure 2.1, let c1, c2, c3 be the strings of T0 and s12, s23, s31 be the strings of T . The

substrate is the union of the ci’s and the sij ’s. We assume there is a projection of T ∪ T0

3Electron microscopy of supercoiled DNA courtesy of Andrzej Stasiak.
4Although we described only 8 experiments from [PJH], they performed a number of experiments to

determine and check effect of site placement.
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so that c1, c2, c3 are isotopic (relative endpoints) onto the tangle circle and so that the

endpoints of sij are contiguous on the tangle circle (Figure 2.1). Note that this projection

is different from that in [PJH]. It is a simple matter to convert between projections, as

described below.

S12
S31

S23

c1

c2

c3

0

Figure 2.1

In each experiment the two recombination sites for Cre (loxP sites) are located on

two strings ci and cj (i 6= j). Cre bound to a pair of strings ci ∪ cj can be modeled as

a 2-string tangle P of type 0
1
. Earlier studies of Cre support the assumption that Cre

recombination takes P = 0
1

into R = 1
0
, where for both tangles, the Cre binding sites

are in anti-parallel orientation (Figure 1.2) [PJH, GBJ, GGD, KBS]. Note that from a

3-dimensional point of view, the two sites can be regarded as parallel or anti-parallel as

we vary the projection [SECS, VCS, VDL]. With our choice of framing any Cre-DNA

complex formed by bringing together two loxP sites (e.g. strings ci and cj) results in

P = (0) with anti-parallel sites when the loxP sites are directly repeated. Furthermore,

it is possible that Cre recombination traps crossings outside of the Mu and Cre protein-

DNA complexes. For mathematical convenience we will enlarge the tangle representing

Cre to include these crossings which are not bound by either Mu or Cre but are trapped by

Cre recombination. That is, the action of Cre recombination on ci∪cj will be modeled by

taking P = 0
1

into R = 1
d

for some integer d. Hence the system of tangle equations shown

in Figure 2.2 can be used to model these experiments where the rational tangles 1
di

, 1
vi

, 1
dt

,
1
vt

represent non-trivial topology trapped inside R by Cre recombination, but not bound

by Mu. The tangle T , representing the transpososome (i.e. the Mu-DNA complex), is

assumed to remain constant throughout the recombination event [SECS, PJH]. Recall

that the first six experiments where the three Mu binding sites, attL, attR, and the

enhancer, are all placed on the same circular DNA molecule will be referred to as the
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Figure 2.1 partially defines a framing for the tangle T . One can go further by specifying

values for d1, d2, d3 for the three in cis deletion experiments. We define the normal form

equations to be the system of equations (1) - (4) in Figure 2.2 (corresponding to the in

cis deletion experiments) with the additional requirement that d1 = d2 = d3 = 0. We

focus first on these four equations as only the in cis deletion experiments are needed for

our main results; but the other experiments were important experimental controls and

were used by [PJH] to determine the tangle model for the Mu transpososome.

Definition 1. A 3-string tangle T is called a solution tangle iff it satisfies the four normal

form equations.

Note that in the normal form equations, the action of Cre results in replacing P =

ci ∪ cj = 0
1

with R = 1
0

for the three in cis deletion experiments. If we wish to instead

impose a framing where P = ci ∪ cj = 0/1 is replaced by R = 1
dk

for given dk, k = 1, 2, 3,

we can easily convert between solutions. Suppose T is a solution to this non-normal

form system of equations. We can move ni twists from R into T at ci, for each i where

ni + nj = dk (Figure 2.3). Hence T with ni crossings added inside T at ci for each i is

a solution tangle (for the normal form equations). Note the ni are uniquely determined.

Similarly, if T is a solution tangle (for the normal form equations), then for given dk we

can add −ni twists to T at ci to obtain a solution to the non-normal form equations.

Remark. For biological reasons [PJH] chose d1 = −1, d2 = 0, d3 = −1. Hence n1 = 0,

n2 = −1, n3 = 0. This corresponds to adding a right-hand twist at c2 to a solution

in the PJH convention (such as Figure 0.1) to obtain a solution tangle (such as Figure

2.4). Conversely, by adding a single left-hand twist at c2 to a solution tangle, we get the

corresponding solution in the PJH convention (e.g. from the solution tangle of Figure

2.4 to the PJH solution of Figure 0.1).

n2

n1

n3

Figure 2.3
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Remark. We will show that knowing the number of crossings trapped by Cre outside of

the Mu transpososome in the three in cis deletion experiments is sufficient for determining

the number of crossings trapped outside the Mu transpososome in all experiments. In

other words choosing d1, d2, d3 determines v1, v2, v3, vt, and dt.

Next we apply traditional 2-string tangle calculus [ES1] to the equations arising from

the in cis deletion experiments.

2.2. The three in cis deletion tangle equations. With abuse of the ci notation of

Figure 2.1, let the tangle circle be the union of arcs c1∪x12∪c2∪x23∪c3∪x31 (Figure 2.4).

We think of these arcs as providing a framing for the tangle T .

c1

c2
c3

x 31

x
12

x23

Figure 2.4

Let Oi = T ∪ ci be the 2-string tangle obtained by capping off sji ∪ sik with ci. Then skj

is one of the strings of the 2- string tangle Oi, let ŝi denote the other (Figure 2.5)

s23

s1

O1=        c1

Figure 2.5

By capping T along each ci, we approach the problem of finding all possible 3-string

tangles for the Mu transpososome by first solving three systems of two 2-string tangle

equations (one for each ci). Figure 2.6 illustrates the definitions of 2-string tangle addition

(+) and numerator closure (N). Figure 2.7 shows a system of two 2-string tangle equations

arising from Cre recombination on the Mu transpososome. T ∪ c2 is represented by the
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blue and green 2-string tangle while the smaller pink 2-string tangle represents Cre bound

to loxP sites before (left) and after (right) recombination.

A C A

   A + C                  N(A) N(O2+0/1) = unknot       N(O2+1/0) = (2,4) torus link

==

Figure 2.6 Figure 2.7

Lemma 2.1. (in cis deletion) Let T be a solution tangle. That is, consider the three

in cis deletion experiments which convert unknotted substrates to right-hand (2, 4) torus

links. Let Oi = T ∪ ci be the 2-string tangle obtained by capping T along ci. Then Oi is

the −1/4 tangle, i = 1, 2, 3.

Proof. All the in cis deletion events, modeled by replacing P = cj ∪ ck = 0
1

by R = 1
0

in

normal form (see Figure 2.8), lead to identical systems of two 2-string tangle equations:

N(Oi + 0
1
) = unknot

N(Oi + 1
0
) = (2, 4) torus link

By [HS], Oi is a rational tangle. By tangle calculus, the system admits a unique

solution Oi = −1/4, i = 1, 2, 3 [ES1] (see also [D, VCS]).

�

ck

cj

unknot torus link

        ci        ci

Figure 2.8

2.3. The three in cis inversion tangle equations. Each Cre inversion experiment

is also modeled as a system of tangle equations:

N(Oi + 0
1
) = unknot

N(Oi + 1
vi

) = inversion product

If we assume that the DNA-protein complex is constant for each pair of deletion/inversion

experiments, then by Lemma 2.1, O1 = O2 = O3 = −1/4. If the inversion products are
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known, vi, i = 1, 2, 3, can be determined by tangle calculus. From [PJH] we assume that

both L-inversion and E-inversion produce the (+)trefoil. Also R-inversion produces a

5-crossing knot (see Table 1.5 ), which must be a 5-torus knot since O2 = −1/4. We

assume this is the (+)5-torus knot, for if it were the (-)5-torus knot then v2 = 9 which

is biologically unlikely. Hence the only biologically reasonable solutions to the inversion

equations, with Oi = −1/4, i = 1, 2, 3 are:

L-inversion, P =
0

1
and R =

1

1
, product =(+)trefoil;

R-inversion, P =
0

1
and R=

−1

1
, product = (+)5-torus knot;

E-inversion, P =
0

1
and R =

1

1
, product = (+)trefoil

(2.1)

Other possible solutions exist if Oi is allowed to change with respect to the deletion

versus inversion experiments. However, it is believed that the orientation of the Cre

binding sites (inverted versus direct repeats, Figure 1.3) does not affect the transpososome

configuration.

2.4. Linking number considerations. In Lemma 2.2 we compute linking numbers

related to the deletion experiments.

Assume T is a solution tangle. First, let x̂i be the arc on the tangle circle given by

xji ∪ ci ∪ xik. We compute the linking number between xjk ∪ sjk and ŝi ∪ x̂i, using

the orientation induced from the tangle circle into each component and using the sign

convention in Figure 2.9. The linking number quantifies the pairwise interlacing of arcs

after capping off.

Second, we compute the linking number of xij ∪ sij and xki ∪ ski, with sign and orien-

tation conventions as before. This linking number calculation quantifies the interlacing

between any two arcs in T .

(+) (-)

Figure 2.9
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Proposition 2.4. Let T be a solution tangle which also satisfies the in trans deletion

experiments, and let s23 correspond to the enhancer strand in the [PJH] experiments.

Then

(2.2) Oi = T ∪ ci = −
1

4
, T − s23 = −

1

2

The in trans deletion reaction of Cre is modeled by replacing c1 ∪ (c2 ∪ x23 ∪ c3) = 0
1

by

the 1
0

or 1
4

tangle (i.e. dt = 0, 4, see Figure 2.14).

c1

c2
c3

x31

x23

x12

s12

s23

s31

Figure 2.13 Figure 2.14

Remark. In declaring Oi = −1/4 we are using the framing coordinate of the tangle

circle with cj ∪ ck = 0/1, xjk ∪ x̂i = 1/0.

Proposition 2.4 can be generalized to products of deletion that are (2, Li) torus links,

and a (2, Lt) torus link for the in trans experiment:

Proposition 2.5. Let T satisfy equations (1)-(4), (8)-(9) of Figure 2.2 except that the

in cis deletion experiments produce (2, Li) torus links, Li 6= ±2, for i = 1, 2, 3 and the in

trans deletion experiment results in a (2, Lt) torus link. Assume d1 = d2 = d3 = 0 and

that s23 corresponds to the enhancer strand. Then

(2.3) Oi = T ∪ ci = −
1

Li

, T − s23 =
1

L2+L3−L1

2

.

If |Lt| = 2, then dt =
−Lj+Li+Lk±4

2
. If |Lt| 6= 2, then dt =

−Lj+Li+Lk−2Lt

2
.

Note similar results hold if Li = ±2 for i = 1, 2, and/or 3, but as this breaks into

cases, we leave it to the reader.

Remark. Sections 3 and 4 rely on the fact the tangles in Figure 2.15 are all of the

form 1
mi

. This would still be the case no matter the choice of framing (discussed at the

beginning of this section) or the type of the (2, Li) torus link products. Hence the results

of sections 3 and 4 apply more generally.
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Note that a 3-string tangle T is a solution tangle iff it satisfies the condition Oi =

T ∪ ci = −1
4

for i = 1, 2, 3 (see Definition 1 and Lemma 2.1). This corresponds to the

first three equations in Figure 2.15. The main result in section 3 (Corollary 3.20) only

depends on the three in cis deletion experiments.

=

=

=

=s23

Figure 2.15

If in addition a solution tangle satisfies the in trans deletion equation, then we call it

an in trans solution tangle:

Definition 2. A 3-string tangle T is called an in trans solution tangle iff it satisfies

Equation 2.2 of Proposition 2.4. This is equivalent to a tangle satisfying all the equations

of Figure 2.15.

Note: Proposition 2.4 reduces the study of transpososome tangles to that of

in trans solution tangles. In section 3 we classify solution tangles in terms of solution

graphs and use this to show that the only solution tangle (and hence the only in trans

solution tangle) that is rational is the PJH tangle.

Remark. The proof of Propositions 2.4 and 2.5 use the deletion products only. As the

remaining analysis depends only on Proposition 2.4, we see that the inversion products
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are unnecessary for our analysis. However, the inversion products were used to determine

the framing in [PJH].

3. Solution graphs

In sections 3.1 and 3.2 we relate solution tangles to wagon wheel graphs and tetrahedral

graphs. We use wagon wheel graphs to find an infinite number of solution tangles in

section 3.1. Recall by Definition 1 that a solution tangle is a 3-string tangle satisfying

the three in cis deletion equations (i.e., Oi = T ∪ ci = −1
4

for i = 1, 2, 3 in Equation

2.2 of Proposition 2.4; first three equations of Figure 2.15), while by Definition 2, an in

trans solution tangle is a solution tangle which also satisfies the in trans deletion equation

T − s23 = −1
2
. In section 3.3 we show that the only rational solution tangle is the PJH

tangle. In section 3.5, we extend this result to tangles which are split or have parallel

strands using results in section 3.4 regarding the exterior of a solution graph. In section

3.6, we show that if a solution tangle is also an in trans solution tangle, then its exterior

is a handlebody. We use this in section 3.7 to investigate the planarity of tetrahedral

graphs.

3.1. Solution tangles are carried by solution graphs.

Definition 3. A 3-string tangle is standard iff it can be isotoped rel endpoints to Fig-

ure 3.1. A standard tangle with ni = −2 is called the PJH tangle.

ni  right-handed 

twists if ni < 0
ni

ni  left-handed 

twists if ni > 0

{=

n
1

n
2 n 3

Figure 3.1

Lemma 3.1. If a solution tangle is standard, then it is the PJH tangle.

Proof. Write and solve the three equations, ni + nj = −4, describing the integral tangles

resulting from capping along individual ck. �

Lemma 3.2. If an in trans solution tangle is standard, then it is the PJH tangle.
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Proof. By Lemma 3.1, since an in trans solution tangle is also a solution tangle. �

Remark. The assumption in [PJH] of the branched supercoiled structure (see the end

of section 1) is equivalent to assuming the in trans solution tangle is standard. In that

paper, the authors deduced the transpososome configuration with a method similar to

that of Lemma 3.1. The PJH solution thus obtained is equivalent to our PJH tangle

when normal framing is imposed.

Definition 4. The abstract wagon wheel is the graph of Figure 3.2. The vertices are

labelled v1, v2, v3; the edges labelled e1, e2, e3, b12, b23, b31. A wagon wheel graph, G, is a

proper embedding of the abstract wagon wheel into B3 with the endpoints of the ei in

the 10, 2, and 6 o’clock positions on the tangle circle (e.g. Figure 3.3). Two wagon wheel

graphs are the same if there is an isotopy of B3, which is fixed on ∂B3, taking one graph

to the other.

Definition 5. If a properly embedded graph lies in a properly embedded disk in the

3-ball, we call it planar.

Figure 3.4 gives examples of planar and non-planar wagon wheel graphs. Note that

the non-planar graph in Figure 3.4 contains the knotted arc e2 ∪ b23 ∪ e3. The disk in

which a planar wagonwheel lies may be taken to be the one given by the plane of the

page, whose boundary is the tangle circle.

e1

e2 e3

b31b12

b23

v1

v2 v3

e1

e2 e3

b12

v1

v3

v2

Figure 3.2 Figure 3.3

23



b12

e1 e1

e2
e2e3 e3

b23

planar non-planar

Figure 3.4

Definition 6. Let G be a wagon wheel graph, and let N(G) denote a regular neighbor-

hood of G in the 3-ball. Let J1,J2,J3 be meridian disks of N(G) corresponding to edges

e1, e2, e3. Let Ji = ∂Ji. Let Γ12, Γ23, Γ31 be meridian disks of N(G) corresponding to

edges b12, b23, b31. Let γij = ∂Γij . See Figure 3.5.

N(G)

1

32

Γ31
Γ12

Γ23

Figure 3.5

Definition 7. X(G) = exterior of G = B3 − (N(G) ∪ N(∂B3)). Note that ∂X(G) is a

surface of genus 3.

Definition 8. G is a solution graph iff it is a wagon wheel graph with the property that

deleting any one of the edges {e1, e2, e3} from G gives a subgraph that is planar.

Definition 9. G is an in trans solution graph iff it is a wagon wheel graph with the

property that deleting any one of the edges {e1, e2, e3, b23} from G gives a subgraph that

is planar.

The graphs G in Figure 3.6 are in trans solution graphs.

Definition 10. Let G be a wagon wheel graph. A 3-string tangle T is carried by G,

written T (G), iff its 3-strings s12, s23, s31 can be (simultaneously) isotoped to lie in ∂N(G)

such that
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1) sij intersects each of Ji, Jj once

2) sij intersects γij once and is disjoint from the remaining γst.

Figures 3.6 gives examples of tangles carried by wagon wheel graphs.

G

G

e2

e3

e1

(G)

(G)

Figure 3.6

Lemma 3.3. If T1, T2 are both carried by G, then they are isotopic in B3 (rel endpoints)

up to twisting N(G) along the Ji (i.e., they differ by twists at the ends).

Proof. Left to the reader. �

Lemma 3.4. If a 3-string tangle T is carried by a planar wagon wheel graph G then T

is standard.

Proof. There is an isotopy of B3, keeping the boundary of B3 fixed, taking G to the

planar wagon wheel graph of Figure 3.6 (upper left). Apply Lemma 3.3 to see T as

standard. �

The following theorem and corollary lets us work with graphs rather than tangles. The

solution graph economically encodes the conditions needed for a solution tangle.
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Theorem 3.5. Let T be a solution tangle, then T is carried by a solution graph. Con-

versely, a solution graph carries a unique solution tangle.

Proof. Let T be a solution tangle with strands s12, s23, s31. We show that T is carried

by a solution graph G. Let C = c1 ∪ s12 ∪ c2 ∪ s23 ∪ c3 ∪ s31, recalling that the ci are the

capping arcs of Figure 2.13. For each i = 1, 2, 3, let Pi be a point in ci. Isotope C into

the interior of B3 by pushing each ci slightly to the interior. Under the isotopy Pi traces

out an arc ei from Pi ∈ ∂B3 to C.

e3e2

e1

C

>

> >

>

G

Figure 3.7

Define G = C ∪ e1 ∪ e2 ∪ e3. See Figure 3.7. G is a wagon wheel graph that carries

T . Note that the strings sij of T correspond to the edges bij of G. The conditions for

T to be a solution tangle now correspond to those defining G as a solution graph. For

example, if T is a solution tangle, s23∪ (s12 ∪ c1∪s31)∪ c2∪ c3 (where c1 has been pushed

into the interior of B3) lies in a properly embedded disk D in B3. Hence G − e1 lies in

D and is planar.

We now show that a solution graph carries a unique solution tangle. By Lemma 3.3

the tangles carried by G are parameterized by integers n1, n2, n3 as in Figure 3.8 (where

the boxes are twist boxes). Denote these tangles by T (n1, n2, n3). As G is a solution

graph, T (0, 0, 0)∪ ci will be the 2-string tangle 1
fi

, where fi ∈ Z. Then T (n1, n2, n3) ∪ ci
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will be the 2-string tangle 1
fi+nj+nk

where {i, j, k} = {1, 2, 3}.

n
1

n2
n3

N(G)

Figure 3.8

Based on Lemma 2.1, we choose ni, nj , nk to satisfy

n1 + n2 + f3 = −4

n2 + n3 + f1 = −4

n3 + n1 + f2 = −4

Since f1 +f2 +f3 is even, this has a unique integer solution. Then T (n1, n2, n3)∪ ci = 1
−4

tangle for each i. Thus T is a solution tangle.

The uniqueness of T follows from the parameterization of the tangles by the ni and

the fact that T ∪ ci = 1
−4

tangle.

�

Corollary 3.6. Let T be an in trans solution tangle, then T is carried by an in trans

solution graph. Conversely, an in trans solution graph carries a unique in trans solution

tangle.

Proof. Let T be an in trans solution tangle. Since T is an in trans solution tangle, T

is a solution tangle. Hence T is carried by a solution graph, G. G − b23 corresponds to

the graph s12 ∪ c1 ∪ s31 ∪ e1. As T is an in trans solution tangle, s12 ∪ c1 ∪ s31 lies in a

properly embedded disk D in B3. Hence G − b23 lies in D and is planar. Thus G is an

in trans solution graph.

Suppose G is an in trans solution graph. Thus G is a solution graph and carries a

solution tangle. Since G is an in trans solution graph, G − b23 is also planar. Then the

2-string tangle T (n1, n2, n3) − s23 = 1
f

for some integer f . Furthermore, we have chosen

n1, n2, n3 so that ℓk(xij ∪ sij , ŝi ∪ x̂i) = −2. The argument of Lemma 2.2 shows that

ℓk(x12 ∪ s12, x31 ∪ s31) = −1. Thus T (n1, n2, n3) − s23 = 1
−2

tangle. Therefore T is an in

trans solution tangle. T is unique by Theorem 3.5.

27



�

Corollary 3.6 allows us to construct infinitely many in trans solution tangles, via in

trans solution graphs. Recall that a Brunnian link, L, is one such that once any compo-

nent is removed the remaining components form the unlink. By piping a Brunnian link to

a given in trans solution graph, we generate a new in trans solution graph as pictured in

Figure 3.9 (where we have begun with the second solution graph of Figure 3.6). Similar

results hold for solution tangles.

e2

e1

e3
b23

Figure 3.9

3.2. Wagon wheel graphs and tetrahedral graphs. Attaching a 3-ball, B′, to the

3-ball B3 in which G lies, then collapsing B′ to a point, gives a new graph, Ĝ, in the

3-sphere. Ĝ is a tetrahedral graph in S3, i.e. a graph abstractly homeomorphic to the

1-skeleton of a tetrahedron. The edges of Ĝ are those of G: e1, e2, e3, b12, b23, b31. The

planarity of G (i.e. lying on a disk in B3) then corresponds to the planarity of Ĝ in S3

(i.e. lying on a 2-sphere in S3). Also, the exteriors of G and Ĝ, in B3 and S3 (resp.), are

homeomorphic.

Definition 11. A surface F in a 3-manifold M is compressible if there is a disk D

embedded in M such that D ∩ F = ∂D and ∂D does not bound a disk in F . F is

incompressible otherwise (where F is not a 2-sphere).

Recall a graph is abstractly planar in S3 if there exists an embedding of it onto a

2-sphere in S3. We are now in a position to use the following characterization of planar

graphs in the 3-sphere.
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Theorem 3.7. (Theorem 2.0 of [T], see also [ST]) Let Ĝ be an abstractly planar graph

embedded in S3. Ĝ is planar if and only if:

(1) Every proper subgraph of Ĝ is planar, and

(2) X(Ĝ) = S3 − int(N(Ĝ)) has compressible boundary.

Lemma 3.8. Let en, n = 1, 2, 3, be three edges of the tetrahedral graph Ĝ which share a

common vertex and suppose Ĝ − en is planar for n = 1, 2, 3. Suppose there is a fourth

edge, bjk, such that X(Ĝ − bjk) has compressible boundary. Then Ĝ − bjk is a planar

graph in S3.

Proof. We can think of Ĝ − bjk as a theta-curve graph, Θ̂, with two vertices and three

edges ei, ej ∪ bij , and ek ∪ bki. Since Ĝ − en is planar for n = 1, 2, 3, the subgraphs

(Ĝ − bjk) − ei, (Ĝ − bjk) − (ej ∪ bij), and (Ĝ − bjk) − (ek ∪ bki) are all planar subgraphs.

Since X(Ĝ− bjk) has compressible boundary, Ĝ− bjk is a planar graph in S3 by Theorem

3.7. �

A tetrahedral graph, its corresponding wagon wheel graph, and the tangles carried by

the wagon wheel graph are all related by their exterior.

Definition 12. Let T be a 3-string tangle with strings s12, s23, s31. X(T ) = B3 −

nbhd(s12 ∪ s23 ∪ s31 ∪ ∂B3).

Lemma 3.9. If T is carried by the wagon wheel graph G and if Ĝ is the corresponding

tetrahedral graph, then X(G) = X(Ĝ) is isotopic to X(T ) and X(G − bij) = X(Ĝ − bij)

is isotopic to X(T − sij).

Proof. See Figure 3.7. �

3.3. Rational tangles. T is rational if there is an isotopy of B3 taking T to a tangle

containing no crossings. Rational tangle solutions are generally believed to be the most

likely biological models. For simplification we model a protein-DNA complex as a 3-

ball (the protein) with properly embedded strings (the DNA segments). However, it is

believed in many cases that the DNA winds around the protein surface without crossing

itself. Thus, if we push the DNA inside the ball, we have a rational tangle.

Lemma 3.10. Suppose a rational tangle T is carried by G, then X(G) has compressible

boundary and X(G − bjk) has compressible boundary for all bjk.
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Proof. If T is rational, then there is a disk, D, separating sij from sik. Thus X(G)

has compressible boundary. This disk D also separates the two strands of T − sjk and

thus X(T − sjk) has compressible boundary. Since X(T − sjk) and X(G − bjk) are

homeomorphic, X(G − bjk) has compressible boundary. �

Corollary 3.11. Suppose T is rational and T is a solution tangle, then T is the PJH

tangle.

Proof. By Theorem 3.5, T is carried by a solution graph G. Thus, G − en is planar

for n = 1, 2, 3. By Lemma 3.10, X(G) has compressible boundary and X(G − bjk)

has compressible boundary for all bjk. Lemmas 3.9 and 3.8 imply Ĝ − bjk (where Ĝ is

the tetrahedral graph corresponding to G) is planar for all bjk, and hence Ĝ is planar

(Theorem 3.7). Thus G is planar. By Lemma 3.4, T is standard and hence the PJH

tangle (Lemma 3.1). �

Proposition 2.5 allows us to extend the results of this section to experiments in which

the in cis deletion products are (2, p) torus links (rather than specifically (2,4)). For

example, the analog of Corollary 3.11 would state that if the synaptic tangle is rational,

then three (2, p) torus link in cis products would force it to be standard (plectonemic

form) as in Figure 3.1.

In contrast to Corollary 3.11, the examples in Figures 3.10 and 3.11, as discussed in

the proof of Theorem 3.12, show that no other set of three deletion experiments would

be enough to determine that a solution T is standard just from the knowledge that it is

rational.

Theorem 3.12. A system of four deletion experiments with (2, p) torus link products

must include all three in cis experiments to conclude that a rational tangle satisfying this

system is standard.

Proof. For the tetrahedral graph in Figure 3.10, Ĝ − e1, Ĝ − b12, Ĝ − b31, Ĝ − b23 are

all planar subgraphs. Deleting a neighborhood of the vertex adjacent to the ei’s results

in a wagonwheel graph, G. The subgraph G − e2 carries a 2-string tangle which is not

rational. Hence G−e2 is not planar and thus G is not planar, yet it does carry a rational

tangle. Thus three in trans experiments and one in cis experiments is not sufficient to

determine T is standard under the assumption that T is rational.

Instead of removing a neighborhood of the vertex adjacent to the ei’s, we can delete

a neighborhood of the vertex adjacent to the edges e2, b12, and b23 from the tetrahedral
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graph in Figure 3.10. In this case, we also obtain a wagon wheel graph carrying a rational

tangle which is not standard. Hence the nonplanar tetrahedral graph in Figure 3.10 can

also be used to show that two in trans and two in cis experiments, where three of the

four corresponding edges in the tetrahedral graph share a vertex, is also not sufficient to

determine T is standard.

The tetrahedral graph in Figure 3.11 is not planar as Ĝ−e2 − b31 is knotted. However,

Ĝ − e1, Ĝ − e3, Ĝ − b23, and Ĝ − b12 are all planar. Hence this graph shows that

the remaining case, two in trans and two in cis experiments where no three of the four

corresponding edges in the tetrahedral graph share a common vertex, is also not sufficient

to determine T is standard.

b31

b23

b12

e2

e3

e1

b12

b23

b31
e1

e2

e3

Figure 3.10 Figure 3.11

�

3.4. The exterior X(G). Our goal is to prove Corollary 3.20, which extends Corollary

3.11. In Section 4, we will use Corollary 3.20 to show there is a unique small crossing

solution tangle. We first establish some properties of the exterior of both solution graphs

and in trans solution graphs.

Definition 13. Let M be a 3-manifold, F a subsurface of ∂M , and J a simple closed

curve in F . Then τ(M, J) is the 3-manifold obtained by attaching a 2-handle to M along

J . That is, τ(M, J) = M ∪J H , where H is a 2-handle. σ(F, J) is the subsurface of

∂τ(M, J) obtained by surgering F along ∂H . That is, σ(F, J) = (F ∪∂H)− int(F ∩∂H).

Handle Addition Lemma. ([J],[CG],[Sch], [Wu1]) Let M be an orientable, irreducible

3-manifold and F a surface in ∂M . Let J be a simple, closed curve in F . Assume σ(F, J)

is not a 2-sphere. If F is compressible in M but F − J is incompressible, then σ(F, J) is

incompressible in τ(M, J).

Lemma 3.13. Let G be a wagon wheel graph and X(G) its exterior. Let Ji and γij be the

meridian curves on ∂X(G) in Figure 3.5 (and defined right above the figure). Suppose
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∂X(G) compresses in X(G). If G is a solution graph, then ∂X(G) − (J1 ∪ J2 ∪ J3) is

compressible in X(G). If G is an in trans solution graph, then ∂X(G)−(γ23∪J1∪J2∪J3)

is compressible in X(G).

Proof. Assume ∂X(G) compresses in X(G). Note that X(G) is irreducible. We will use

the following four claims to prove this lemma:

Claim 3.14. If G−b23 is planar (e.g., G is an in trans solution graph), then ∂X(G)−γ23

is compressible in X(G).

Proof. Since G − b23 is planar, τ(X(G), γ23) = X(G − b23) has compressible boundary.

The claim now follows from the Handle Addition Lemma. �

If G is an in trans solution graph, let F1 = ∂X(G) − γ23. By Claim 3.14, F1 is

compressible in X(G). Else if G is a solution graph, let F1 = ∂X(G). In this case, F1 is

compressible in X(G) by hypothesis.

Claim 3.15. F2 = F1 − J1 is compressible in X(G).

Proof. F1 is compressible in X(G). On the other hand, since τ(X(G), J1) = X(G − e1)

and G − e1 is planar, σ(F1, J1) compresses in τ(X(G), J1), see Figure 3.12. The claim

now follows from the Handle Addition Lemma. �

D6

J3J2

D = compressing disk 

Figure 3.12

Claim 3.16. F3 = F2 − J2 is compressible in X(G).

Proof. Since G−e2 is planar, σ(F2, J2) is compressible in τ(X(G), J2) (as in the analog of

Figure 3.12). Thus Claim 3.15 with the Handle Addition Lemma implies the claim. �

Claim 3.17. F = F3 − J3 is compressible in X(G).
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Proof. G − e3 is planar, hence σ(F3, J3) is compressible in τ(X(G), J3) = X(G − e3) (as

in the analog of Figure 3.12). Claim 3.16 with the Handle Addition Lemma says that

F3 − J3 is compressible in X(G). �

Thus if G is a solution graph, then F = ∂X(G) − (J1 ∪ J2 ∪ J3) is compressible in

X(G). If G is an in trans solution graph, then F = ∂X(G) − (γ23 ∪ J1 ∪ J2 ∪ J3) is

compressible in X(G). �(Lemma 3.13)

3.5. Solution graphs.

Lemma 3.18. Let G be a solution graph and X(G) its exterior. Let Ji and γij be the

meridian curves on ∂X(G) in Figure 3.5 (and defined right above the figure). If ∂X(G)

compresses in X(G), then there is a properly embedded disk in X(G) that intersects each

γij algebraically once in ∂X(G) and is disjoint from the Ji.

Proof. Let D′ be a disk, guaranteed by Lemma 3.13, properly embedded in X(G) such

that ∂D′ ⊂ F = ∂X(G) − (J1 ∪ J2 ∪ J3) and ∂D′ does not bound a disk in F . Write

B3 = X(G) ∪∂X(G) M where M = nbhd(G ∪ ∂B3). In the notation of Figure 3.5, let

M −nbhd(J1∪J2∪J3) = M1∪M2 where M1 is S2×I and M2 is a solid torus. If ∂D′ lies

in ∂M1, we can form a 2-sphere, S, by capping off D′ with a disk in M1 (take the disk

bounded by ∂D′ on ∂M1 and push in slightly). That is, S is a 2-sphere which intersects

∂X(G) in ∂D′. But then S would have to be non-separating (there would be an arc from

J1 to J2, say, on ∂M1 which intersected ∂D′ once and an arc connecting J1 to J2 on

∂M2 which missed ∂D′, hence S, altogether). But 2-spheres in a 3-ball are separating.

Thus ∂D′ must lie in ∂M2. If ∂D′ is essential in ∂M2, then ∂D′ must intersect any

meridian of the solid torus M2 algebraically once (else B3 would contain a lens space

summand). Then D′ is the desired disk, and we are done. So assume ∂D′ bounds a disk,

D′′, in ∂M2. Then the disks nbhd(J1 ∪ J2 ∪ J3) ∩ ∂M2 must lie in D′′, as S = D′ ∪ D′′

is separating. Since G − e1 is planar, M2 is an unknotted solid torus in B3. Thus there

is a properly embedded disk D ⊂ B3 − intM2 such that ∂D is a longitude of ∂M2 and

hence is essential. Furthermore, we can arrange that D is disjoint from D′′. Then D ∩ S

is a collection of trivial circles in D′ and D can be surgered off S without changing ∂D.

In particular, D is properly embedded in X(G) since the ei lie on the opposite side of S

from D. D is the desired disk.

�
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Definition 14. Let T be a 3-string tangle. T is split if there is a properly embedded

disk separating two of its strands from the third (Figure 3.13(a)). Strands s1, s2 of T are

parallel if there is a disk D in B3 such that int(D) is disjoint from T and ∂D = s1∪α∪s2∪β

where α, β are arcs in ∂B3 (Figure 3.13(b)).

D

s1
s2

   a.) split                               b.) parallel

Figure 3.13

Note: Rational tangles are split and have parallel strands.

Lemma 3.19. Let T be a 3-string tangle carried by a solution graph G . If T is ra-

tional, split, or if T has parallel strands, then X(G) and X(G − bij), for each i, j, have

compressible boundary.

Proof. If T is rational, split, or has parallel strands then ∂X(T ) is compressible in X(T ).

By Lemma 3.9, ∂X(G) is compressible in X(G).

We now argue that ∂X(G−bij) is compressible in X(G−bij). Below {i, j, k} = {1, 2, 3}.

If T is split, then there is a disk, D, separating one strand from two. If sij is on the side

of D containing two, then D still separates the two strands of T −sij and X(T −sij) still

has compressible boundary. By Lemma 3.9, X(G − bij) has compressible boundary. So

we assume sij is on one side of D and sjk, ski on the other. As a disk properly embedded

in X(G), D separates the curves γij, γjk of ∂X(G). By Lemma 3.18 there is a disk D′

in X(G) that intersects γjk on ∂X(G) algebraically a non-zero number of times. After

surgering along D (while preserving the non-zero algebraic intersection with γjk), we may

assume that D′ is disjoint from D, and hence from γij. But then D′ is a compressing

disk for G − bij .

If T has parallel strands, we argue in two cases according to which strands are parallel:

First, assume sjk, ski are parallel. Then they are parallel in T − sij and X(T − sij)

has compressible boundary. By Lemma 3.9 then X(G− bij) has compressible boundary.

So, assume that sij and sjk are parallel. Then there is a disk, D, properly embedded

in X(G) that intersects γij exactly once, γjk exactly once, and is disjoint from γki. By
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Lemma 3.18, there is also a disk, D′, in X(G) that intersects γki algebraically once.

After possibly surgering D′ along D we may assume the D and D′ are disjoint. But

X(G− nbhd(D)) is homeomorphic to X(G− bij), and D′ becomes a compressing disk in

X(G − bij).

�

Corollary 3.20. Let T be a solution tangle. If T is rational or split or if T has parallel

strands, then T is the PJH tangle.

Proof. Let G be a solution graph carrying T . Then Lemmas 3.19, 3.9 and 3.8 imply that

Ĝ− bjk planar for all bjk where Ĝ is the associated tetrahedral graph. Thus Theorem 3.7

implies Ĝ is planar. Thus G is planar. By Lemma 3.4, T is standard. Now Lemma 3.1

says T is the PJH tangle. �

Remark. Since in trans solution tangles are also solution tangles, Corollary 3.20 also

applies to in trans solution tangles. Although the three in cis deletion equations suffice to

determine T if T is rational, split or has parallel strands, the in trans deletion experiment

does rule out some exotic solutions. For example, the tangle in Figure 3.14 satisfies all

the in cis experimental results (i.e. it is a solution tangle), but does not satisfy the in

trans results (i.e. it is not an in trans solution tangle).

Figure 3.14

3.6. In trans solution graphs. In Lemma 3.21 we will show that the exterior of an

in trans solution graph is a handlebody. This need not be true for solution graphs. The

solution graph of Figure 3.14 contains an incompressible genus 2 surface in its exterior (it

is based on Thurston’s tripos graph). Thus its exterior is not a handlebody. We will also

use Lemma 3.21 to further explore planarity of tetrahedral graphs in the next section.

Lemma 3.21. Let G be an in trans solution graph and X(G) its exterior. Let Ji and

γij be the meridian curves on ∂X(G) in Figure 3.5 (and defined right above the figure).

If ∂X(G) compresses in X(G), then there is a properly embedded disk in X(G) that
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intersects γ23 exactly once, intersects each of γ12, γ31 algebraically once, and is disjoint

from the Ji. Furthermore, X(G) is a handlebody.

Proof. By Lemma 3.13, there is a disk D′ properly embedded in X(G) such that ∂D′ ⊂

F = ∂X(G) − (γ23 ∪ J1 ∪ J2 ∪ J3) and ∂D′ does not bound a disk in F . Write B3 =

X(G) ∪∂X(G) M where M = nbhd(G ∪ ∂B3). In the notation of Figure 3.5, let M −

nbhd(J1 ∪ J2 ∪ J3 ∪ Γ23) = M1 ∪ M2 where M1 is S2 × I and M2 is a 3-ball. ∂D′ lies in

∂Mi for some i, hence we can form a 2-sphere, S, by capping off D′ with a disk in Mi (take

the disk bounded by ∂D′ on ∂Mi and push in slightly). That is, S is a 2-sphere which

intersects ∂X(G) in ∂D′. If ∂D′ lay on ∂M1, then S would have to be non-separating

(there would be an arc from J1 to J2, say, on ∂M1 which intersected ∂D′ once and an

arc connecting J1 to J2 on ∂M2 which missed ∂D′, hence S, altogether). But 2-spheres

in a 3-ball are separating.

J1

J3

J2 γ236D

d

Figure 3.15

Thus ∂D′ must lie in ∂M2. But then in ∂M2, the disks nbhd(J1∪J2∪J3)∩∂M2 must lie

on opposite sides of ∂D′ from the disks Γ′

23 ∪ Γ′′

23 = nbhd(Γ23) ∩ ∂M2, as S is separating.

Thus S can be isotoped to intersect N(G) in the curve gotten by connecting the two

disks Γ′

23, Γ′′

23 by a band d lying in ∂N(G). See Figure 3.15. We may view S as a 2-sphere

which intersects G in only two points and separates off a subarc b′23 of b23. Now b′23

must be unknotted in the 3-ball bounded by S, otherwise deleting e1 would not give a

planar graph. Hence, there exists a disk D in the 3-ball bounded by S such that the

boundary of D consists of the arc b′23 and an arc in Γ′

23 ∪ Γ′′

23 ∪ d. Then D can be taken

to be a disk, properly embedded in X(G) whose boundary is disjoint from J1 ∪ J2 ∪ J3

and whose boundary intersects γ23 exactly once. Finally, as γ12, γ31 are isotopic to γ23

on the boundary of the solid torus component of M − nbhd(J1 ∪J2 ∪J3), ∂D intersects
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these curves algebraically once. Furthermore, X(G∪D) is homeomorphic to X(G−γ23),

which is a handlebody. Thus X(G) is a handlebody.

�

3.7. Tetrahedral graph planarity. In the above model, each mathematical assump-

tion about the planarity of the in trans solution graph after deleting an edge corresponds

to an experimental result. For the economy of experiment, then, it is natural to ask

how much information is necessary to conclude the planarity of the graph. Recall that

by collapsing the outside 2-sphere to a vertex, a wagon wheel graph in B3 becomes a

tetrahedral graph Ĝ in S3. We discuss this issue of economy in the context of tetrahedral

graphs and in the spirit of Theorem 3.7 (see also [ST], [Wu2], [G]). In particular, Theo-

rem 3.22 and Corollary 3.25 say that, in contrast to Theorem 3.7, to check the planarity

of a tetrahedral graph, one does not need to check the planarity of all subgraphs. We

end with examples showing that Corollary 3.25 is sharp.

Theorem 3.22. Let Ĝ be a tetrahedral graph. Then Ĝ is planar if and only if

(1) the exterior of Ĝ has compressible boundary; and

(2) there is an edge, ǫ′, of Ĝ such that for any edge e 6= ǫ′ of Ĝ , Ĝ − e is planar.

Proof. If Ĝ is planar then clearly the two conditions hold. We prove the converse: the

two listed conditions on Ĝ guarantee that Ĝ is planar. Let ǫ be the edge of Ĝ which does

not share an endpoint with ǫ′.

Let e1, e2, e3, e4 be the four edges of Ĝ other than ǫ, ǫ′. Let di be the meridian disk

corresponding to the edge ei in nbhd(Ĝ) and let mi = ∂di be the corresponding meridian

curve on the boundary of X(Ĝ), the exterior of Ĝ .

Claim 3.23. X(Ĝ) is a handlebody.

Proof. Pick a vertex, v, of Ĝ not incident to ǫ′. Then removing a neighborhood of v

from S3, Ĝ becomes an in trans solution graph G in a 3-ball. Furthermore, X(G) is

homeomorphic to X(Ĝ) . The Claim now follows from Lemma 3.21. �

Recall the following from [G].

Theorem 3.24. Let C be a set of n + 1 disjoint simple loops in the boundary of a

handlebody X of genus n, such that τ(X; C′) is a handlebody for all proper subsets C′ of

C. Then ∪C bounds a planar surface P in ∂X such that (X, P ) ∼= (P × I, P × 0), where

I = [0, 1].
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Set X = X(Ĝ) and C = {m1, m2, m3, m4}. Since Ĝ − ei is planar for i = 1, ..., 4,

Theorem 3.24 implies that there is a planar surface P in X(Ĝ) whose boundary is

{m1, m2, m3, m4} and such that (X(Ĝ), P ) ∼= (P × I, P × 0). Capping P × 1
2

with

the meridian disks {d1, d2, d3, d4} gives a 2-sphere P̂ in S3 disjoint from Ĝ except for

a single point intersection with each of the edges e1, e2, e3, e4. Let Ĝ − P̂ = G1 ∪ G2.

Labeling the edges as in Ĝ , we take G1 with edges {ǫ, e1, e2, e3, e4} and G2 with edges

{ǫ′, e1, e2, e3, e4}. Furthermore, we may label so that e1, e2 share a vertex in G1 and e2, e4

share a vertex in G2. See Figure 3.16.

P

G1

G2

e1e2

e4

e3

Figure 3.16

Let N1 = nbhd(G1) and N2 = nbhd(G2). Then nbhd(Ĝ) is the union of N1 and N2

along the meridian disks {d1, d2, d3, d4}. Now the pair (Ni,∪dj) = (Fi×I,∪αj
i ×I) where

i ∈ {1, 2}, j ∈ {1, 2, 3, 4} and where each Fi is a disk, each αj
i is an arc in ∂Fi. Each G2

can be taken to lie in Fi×{1/2}. Write S3 = B1∪ bP B2 where the Bi are 3-balls. Because

(X(Ĝ), P ) ∼= (P × I, P × 0), we may extend Fi × {1/2} to a properly embedded disk F ′

i

in Bi containing G2. By a proper choice of the initial Fi we may assume that F ′

i − (∪αj
i )

is a union of four arcs βj
i , labelled as in Figure 3.17.
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e1

e 3 e4
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F2
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1
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e1

e 2 e4

e3 F2

Figure 3.17

In particular,

• β1
1 is isotopic to e1 ∪ e2 and β3

1 is isotopic to e3 ∪ e4 in B1 (keeping the endpoints

in ∪dj on ∂B1 = P̂ ).

• β1
2 is isotopic to e1 ∪ e3 and β3

2 is isotopic to e2 ∪ e4 in B2 (keeping the endpoints

in ∪dj on ∂B1 = P̂ ).

The boundary of F ′

1 frames the 4-punctured sphere P ⊂ P̂ . This allows us to assign a

rational number slope on properly embedded arcs in P (up to proper isotopy in P ). We

take β1
1 , β

3
1 to have slope 0

1
and β2

1 , β
4
1 to have slope 1

0
. It follows that β1

2 , β
3
2 must have

slope 1
n
: otherwise the edges e1, e2, e3, e4 of Ĝ will form a non-trivial 2-bridge knot, but

we are assuming that Ĝ − ǫ is planar.

By re-choosing F1 we may assume that β2
1 is β3

2 and that β4
1 is β1

2 . Then re-choosing

F2 (by twisting along the disk disjoint from β1
2 ∪ β3

2 in B2), we may further take β2
2 to

be β1
1 and β4

2 to be β3
1 . Then F ′

1 ∪ F ′

2 is a 2-sphere in S3 containing Ĝ (Alternatively,

instead of rechoosing F2, after rechoosing F1 so that β2
1 = β3

2 and β4
1 = β1

2 , we can

extend F1 to a disk containing Ĝ− ǫ′. Thus Ĝ− ǫ′ is planar and Ĝ is planar by Theorem

3.7). �(Theorem 3.22)

We will now use Theorem 3.22 to prove Corollary 3.25.

Corollary 3.25. Suppose Ĝ is a tetrahedral graph with the following properties:

(1) There exists three edges ǫ1, ǫ2, ǫ3 such that Ĝ − ǫi is planar.

(2) The three edges ǫ1, ǫ2, ǫ3 share a common vertex.

(3) There exists two additional edges, ǫ4 and ǫ5 such that X(Ĝ − ǫ4) and X(Ĝ − ǫ5)

have compressible boundary.
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(4) X(Ĝ) has compressible boundary.

Then Ĝ is planar.

Proof. By Lemma 3.8, Ĝ − ǫ4 and Ĝ − ǫ5 are planar. Thus by Theorem 3.22, Ĝ is

planar. �

We finish this section with examples that show that if any single hypothesis of Corollary

3.25 is dropped then its conclusion, that Ĝ is planar, may not hold. The tetrahedral graph

in Figure 3.11 is not planar as Ĝ− e2 − b31 is knotted. However, Ĝ− e1, Ĝ− e3, Ĝ− b23,

and Ĝ − b12 are all planar. Furthermore, X(Ĝ) is a handlebody as the edge b23 can be

isotoped onto a neighborhood of Ĝ − b23. (Alternatively, we can determine that X(Ĝ)

is a handlebody by removing the vertex adjacent to the en’s, creating a wagon wheel

graph, G, which carries a rational tangle T . Since X(Ĝ) = X(G) = X(T ) and T is

rational, X(Ĝ) is a handlebody.) Thus X(Ĝ) has compressible boundary. X(Ĝ − b31),

and X(Ĝ − e2) also have compressible boundary. Thus properties 1, 3, 4 in Corollary

3.25 hold, but property 2 does not hold.

In Figure 3.10, Ĝ − e1, Ĝ − b12, Ĝ − b31, Ĝ − b23 are all planar graphs. The edges e1,

b12, and b31 share a common vertex. Since Ĝ− b23 is planar, X(Ĝ− b23) has compressible

boundary. Removing the vertex adjacent to the en’s in Ĝ results in a wagon wheel graph,

G, which carries a rational tangle. By Lemma 3.9 X(G) is a handlebody, and thus X(Ĝ)

has compressible boundary. On the other hand, G − e2, G − e3 carry tangles which are

non-trivial disk sums that do not have compressible boundary (by Lemma 3.3 of [Wu3]).

By Lemma 3.9, neither X(G − e2) nor X(G − e3) have compressible boundary. Hence

neither X(Ĝ − e2) nor X(Ĝ − e3) have compressible boundary. In particular, Ĝ is not

planar. Thus the tetrahedral graph in Figure 3.10 satisfies properties 1, 2, 4 in Corollary

3.25, but only satisfies half of property 3 (X(Ĝ − b23) has compressible boundary, but

there does not exist a fifth such edge).

Note that the tangle, T , in Figure 3.18 is carried by a nonplanar wagon wheel graph,

G. If G were planar, then T would be the PJH tangle by Lemmas 3.4 and 3.1. To see

that T is not the PJH tangle, cap off these tangles by arcs along the tangle circle that are

complementary to the ci (i.e. the xij of Figure 2.4) to form 3 component links. These two

3-component links are not isotopic. For example, they have different hyperbolic volumes

as computed by SnapPea. Let Ĝ be the tetrahedral graph corresponding to G. Every

subgraph of Ĝ is planar. Hence conditions 1, 2, 3 of Corollary 3.25 hold, but X(Ĝ) does

not have compressible boundary (by Theorem 3.7).
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Figure 3.18

4. If T is not the PJH tangle, then Cr(T ) ≥ 8 up to free isotopy

Definition 15. Two 3-tangles T1, T2 are freely isotopic if there is an isotopy of the 3-ball,

which is not necessarily fixed on its boundary, taking T1 to T2.

In the last section we showed that if a solution tangle is split or has two parallel strands,

then it must be the PJH tangle. Here we show that if a tangle can be freely isotoped

to have fewer than eight crossings, then it is either split or has two parallel strands.

Hence a solution tangle which can be freely isotoped to have fewer than eight crossings

must be the PJH tangle (Corollary 4.5). As a rational tangle is one which can be freely

isotoped to have no crossings, one can think of Corollary 4.5 as a generalization of the

result (Corollary 3.20) that the only rational solution tangle is the PJH tangle. Corollary

4.5 also gives a lower bound on the crossing number of an exotic solution tangle. Using

the in trans deletion result, we will improve this lower bound in the next section after

imposing a normal framing on the tangle (working with tangle equivalence rather than

free isotopy).

Lemma 4.1. If one string of a 3-tangle T crosses the union of the other two strings at

most once, then T is split.

Proof. If the string passes over the union, isotop the strand to the front hemisphere of

the tangle sphere, otherwise isotop to the back. �

Definition 16. To a projection of a 3-string tangle T we associate the 4-valent graph

Γ(T ), that is obtained by placing a vertex at each crossing. If T is not split, we label in

sequence e1, . . . , e6 the distinct edges which are incident to the tangle circle. Let v1, . . . , v6
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be the vertices of Γ(T ) which are endpoints of e1, . . . , e6.

e1

v1

v3 e3

Lemma 4.2. Assume T is not split. If vi = vj for some i 6= j, then the crossing number

of its projection can be reduced by free isotopy.

Proof. Assume vi = vj with i 6= j. If ei, ej are opposing at vi, then ei ∪ ej is a string of

T intersecting the other strings exactly once. By Lemma 4.1, T is split. So we assume

ei, ej are not opposing at vi.

ei ej

vi = vj

But then we can untwist ei, ej to reduce the crossing number. �

Definition 17. If T is not split, let fi be the face of Γ(T ) containing ei, ei+1.

Lemma 4.3. Assume T is not split. No two edges of fi correspond to the same edge

of Γ(T ). If two vertices of fi correspond to the same vertex of Γ(T ), then the crossing

number of the projection can be reduced by an isotopy fixed on the boundary. Finally, if

vj is incident to fi, then j ∈ {i, i + 1} or a crossing can be reduced by a free isotopy.

Proof. Assume that two edges of fi correspond to the same edge of Γ(T ) (Figure 4.1).

Then there would be a circle in the interior of the tangle circle intersecting the edge

once. Then a string of T intersects this circle exactly once contradicting the Jordan

Curve Theorem.

fi fi

Figure 4.1 Figure 4.2
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Similarly, if two vertices of fi correspond to the same vertex, v, of Γ(T ), there would

be a circle intersecting Γ(T ) only in v (Figure 4.2). This would give rise to a crossing

that could be reduced by an isotopy rel ∂B3.

Now assume vj is incident to fi with j 6= i, i + 1 (Figure 4.3). Then ej /∈ fi for

otherwise T would be split. Thus ej lies in the exterior of fi.

ej

ei ei+1

vj

fi

ej

fi

Figure 4.3 Figure 4.4

But now we can untwist the crossing at vj by bringing ej into fi (Figure 4.4). �

Theorem 4.4. If T is a 3-string tangle which can be freely isotoped to a projection with

at most seven crossings, then either T is split or has two parallel strands.

Proof. Note that T being split or having parallel strands is invariant under free isotopy.

Freely isotope T to a minimal projection with ≤ 7 crossings and let Γ(T ) be the corre-

sponding graph. Assume T is not split. By Lemma 4.2, Γ(T ) has at least 6 vertices

(thus T has at least 6 crossings). If the six vi are the only vertices incident to
⋃

i fi, then

(Lemma 4.3) we must have Figure 4.5.

f1
v

Figure 4.5 Figure 4.6

But then T has a closed curve, a contradiction.

Thus Γ(T ) must have another vertex v lying on f1, say, which is not a vi. Since T has

at most 7 crossings, there is exactly one such v and we have Figure 4.6. Enumerating

the possibilities, we see there are nine cases, six of which are shown in Figure 4.7, while
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the remaining three can be obtained from the top three via reflection:

Figure 4.7

Note in each case we see two parallel strands (since we assumed T is not split). For

example, see Figure 4.8.

= =

=

free

isotopy

free

isotopy

parallel strands

Figure 4.8

�

Theorem 4.4 and Corollary 3.20 imply the following:

Corollary 4.5. Assume T is a solution tangle. If T can be freely isotoped to a projection

with at most seven crossings, then T is the PJH tangle.

5. If T is not the PJH tangle, then T has at least 10 crossings

Because the three DNA segments captured by the Mu transpososome in [PJH] are

relatively short (50, 175 and 190 base pairs), one can argue that any projection of the

transpososome must have few crossings. Let T be an in trans solution tangle – a tangle

satisfying both the in cis and the in trans deletion experiments. In this section we show

that if T is not the PJH tangle (Figure 2.4), then T must be complicated, as measured

by its minimal crossing number:
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Proposition 5.1. Let T be an in trans solution tangle. If T has a projection with fewer

than 10 crossings, then T is the PJH tangle.

In this section, we are interested in crossing number up to tangle equivalence, that is,

up to isotopy of the tangle fixed on the boundary. So we must fix a framing for our in

trans solution tangle. We take that of Proposition 2.4, the normal form.

Remark. As pointed out in section 2, one goes from an in trans solution tangle in

normal framing to one in the [PJH] framing by adding one left-handed twist at c2. Thus,

it formally follows from Proposition 5.1 that if an in trans solution tangle under the PJH

framing has fewer than 9 crossings, it must be the [PJH] solution of Figure 0.1.

The proof of Proposition 5.1 breaks down into checking cases of possible tangle dia-

grams. We focus on the fact that s12 ∪ s13 = T − s23 is the −1/2 tangle. Lemma 5.2

shows that each pair of strings must cross at least twice. Hence if an in trans solution

tangle has less than 10 crossings, s12 ∪ s13 contains at most 5 crossings. Theorems 5.5,

5.7, 5.12, 5.14 handle the cases when s12 ∪ s13 = 2, 3, 4, 5, respectively. In each case

it is shown that an in trans solution tangle with less than 10 crossings can be isotoped

to a tangle with 7 crossings. By Corollary 4.5, such a tangle is the PJH tangle. This

section holds more generally under normal framing when the in trans deletion product

is the (2,2) torus link while the remaining deletion products are (2, Li) torus links where

Li ≥ 4.

Lemma 5.2. Let T be a solution tangle. In any projection of T , |sij ∩ sik| ≥ 2.

Proof. Assume not. Then |sij∩sik| = 0. But then ℓk(sij∪xij , sik∪xik) = 0, contradicting

Lemma 2.2. �

Let T be an in trans solution tangle with crossing number less than 10. We assume

that s23 is the enhancer strand. To simplify notation we set e = s23, α2 = s12, α3 = s13.

Recall that T − e = α2 ∪ α3 is the −1/2-tangle.

Assumption 5.3. T has a projection, in normal form (see the beginning of Section 2),

with at most nine crossings. Furthermore, among all such projections, take α2 ∪ α3 to

have the fewest crossings.

Remark. We will often blur the distinction between e, α2, α3 and their projections.

We will first prove in Theorem 5.5 that Proposition 5.1 holds when α2∪α3 has exactly

two crossings. In this case let R1, R2, R3 be the closures of the complementary regions of
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α2 ∪ α3 in Figure 5.1. Note all figures in this section have been rotated by 90 degrees,

and thus the tangle T − e = −1/2 is displayed as an integral 2 tangle.

e R2
R3

α2

α3

R1

Figure 5.1

Lemma 5.4. If e crosses R1 ∩ (α2 ∪ α3) fewer than four times then T can be freely

isotoped to eliminate two crossings. Furthermore if e ∩ R1 contains only four crossings

of T then we can reduce T by two crossings unless e∩R1 is as pictured in Figure 5.2 (up

to symmetry).

(a) (b) (c)

Figure 5.2

Proof. Assume e intersects R1 ∩ (α2 ∪ α3) in fewer than four crossings. By Lemma 5.2,

e must cross R1 ∩ (α2 ∪ α3) exactly twice. Then R1 writes T ∪ c1 as a disk sum. As

T ∪ c1 is a rational 2-string tangle, e ∩ R1 must be an integral summand [L, ES1]. But

then we can reduce the crossing number by at least two under a free isotopy by removing

the crossings in the integral tangle e∩R1 as well as the two crossings where e intersects
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R1 ∩ (α2 ∪ α3). See Figure 5.3.

Figure 5.3

Thus we assume e∩R1 must have at least 4 crossings in R1 with α2 ∪ α3. Assume these

are the only crossings of T in R1. Then there are no crossings in int R1. This allows

for two crossing reductions except in the cases pictured in Figure 5.2. See Figure 5.4.

�(Lemma 5.4)

Figure 5.4

Theorem 5.5. Let T be an in trans solution tangle satisfying Assumption 5.3. Under

this projection, assume α2 ∪ α3 has exactly two crossings. Then T can be freely isotoped

to have at most seven crossings.

Proof. Let R1, R2, R3 be the closures of the complementary regions of α2∪α3 in Figure 5.1.

We divide the proof of Theorem 5.5 into two cases.

Case I: e has 4 intersections in R1.

Case II: e has at least 5 intersections in R1.

Proof of Case I: R1 contains exactly 4 crossings (involving e). In this case, there are 3

possible configurations up to symmetry (shown in Figure 5.2) that do not immediately

allow a crossing reduction by two in R1.

Since there are at most 9 crossings, if e intersects R2 then e∩R2 must contribute exactly

2 crossings and e ∩ R3 must be empty. But this allows a reduction of two crossings: In

case (a) and (b) in Figure 5.2, the two crossing involving α2 and α3 can be removed as
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shown in Figure 5.5.

Figure 5.5

In case (c) one reduction comes from α1 ∩ α2, the other from e ∩ (α2 ∪ α3) (Figure 5.6).

Figure 5.6

Thus we take e disjoint from R2, and we must have (a) or (b) in Figure 5.7.

(a) (b)

Figure 5.7

But (a) gives two crossing reductions and (b) contradicts Lemma 5.2.

Q.E.D. (Case I)

Proof of Case II: Because e must pick up at least two crossings in R2 ∪ R3, (else we

can reduce by two crossings), e must have exactly 4 crossings with (α2 ∪ α3) ∩ R1 and

exactly 1 self-crossing inside R1. This accounts for nine crossings. For subcases 1 and 2,

we assume the two crossings are with R3 — if not, a similar argument works if the two

crossings are with R2 by using the fact that the crossing at R3 would be reducible.

Let δ2, δ3 (in α2, α3, resp.) be the arc components of [α2 ∪ α3 − (α2 ∩ α3)] ∩ R1.

Subcase 1). |δ2 ∩ e| = 2 = |δ3 ∩ e| (intersection here refers to the projection)
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Then we may assume we have

δ2

δ3

Figure 5.8

Since int R1 has exactly one crossing, the possible cases are

Figure 5.9

In each case we can reduce two crossings.

Subcase 2). |δ2 ∩ e| = 3, |δ3 ∩ e| = 1 (case when |δ2 ∩ e| = 1, |δ3 ∩ e| = 3 is similar).

We have two possibilities

(a) (b)

Figure 5.10

Recall that R1 can have only one more crossing in its interior. If this crossing can

be reduced, we can reduce two more crossings by case 1. Hence, we assume that this

crossing cannot be reduced. Thus we see that both of the cases in Figure 5.10 allow a
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reduction of two crossings:

(a)

(b)

or

or

Figure 5.11

Subcase 3). |δ2 ∩ e| = 4, |δ3 ∩ e| = 0 (case when |δ2 ∩ e| = 0, |δ3 ∩ e| = 4 is similar).

Recall |e∩ (R2 ∪R3)| = 2. If |e∩R3| = 2, then |e∩α3| < 2, contradicting Lemma 5.2.

If |e ∩ R2| = 2, then we can remove the two crossings of α2 ∩ α3.

Subcases (1)–(3) exhaust all possibilities, showing a reduction in crossing number by

two in Case II.

Q.E.D. (Case II)

This finishes the proof to Theorem 5.5. �(Theorem 5.5)

Definition 18. αi has a trivial self-intersection w.r.t. αj if αi has a self-intersection such

that the subarc of αi connecting the double points is disjoint from αj , {i, j} = {2, 3}.

Lemma 5.6. If T is an in trans solution tangle satisfying Assumption 5.3 and αi has

a trivial self-intersection w.r.t. αj for {i, j} = {2, 3}, then we can reduce T by two

crossings.

Proof. Assume α2 has a trivial self-intersection w.r.t. α3, and let δ ⊂ α2 be the subarc

connecting its double points. As |α2 ∩ α3| is minimal, Figure 5.12 shows that we may

assume |δ ∩ e| ≥ 4.

e e

α2 α2

Figure 5.12

By Lemma 5.2, |α2∩α3| ≥ 2 and |e∩α3| ≥ 2. Thus |δ∩e| = 4, |α2∩α3| = 2, |e∩α3| = 2

and α2 has a self crossing, accounting for all nine crossings. Let α′

2 = α2 − int(δ). Let

R1, R2, R3 be the closures of the complementary regions of α′

2∪α3 as in Figure 5.1. Then

50



|e ∩ ∂R1| ≥ 2 and |e ∩ (∂R2 ∪ ∂R3)| ≥ 2, otherwise we can reduce by two the number of

crossings. Thus |e∩(α2∪α3)| ≥ 8. Because |α2∩α3| ≥ 2, we have too many crossings. �

Theorem 5.7. Let T be an in trans solution tangle satisfying Assumption 5.3. If α2∪α3

contributes three crossings to T (including self-crossings), then T can be freely isotoped

to have at most seven crossings.

Proof. Let T be such an in trans solution tangle. Then α3, say, must have a self-

intersection which we may assume is not trivial w.r.t. α2. Thus α2 ∪ α3 must be as

in Figure 5.13, with R1, R2 complementary components of α2 ∪ α3, R1 containing the

endpoints of e, and δ1, δ2, . . . , δ8 the arc components of α2 ∪ α3 − (α2 ∩ α3).

δ3 δ7 δ6

δ8 δ4

δ2δ1

δ5

R1

R2

Figure 5.13

Claim 5.8. If |e ∩ (R1 ∩ (α2 ∪ α3))| < 4, then T can be reduced by two crossings.

Proof. We may assume that |e∩ (R1 ∩ (α2 ∪α3))| = 2. Then a copy of ∂R1 writes T ∪ c1

as a disk sum. Since T ∪ c1 is a rational tangle, one of the summands must be integral

w.r.t. to the disk. This must be the left-hand side, R1 ∩ e. After a free isotopy we may

take this to be 0
1
. Hence we can take e to have no self-crossings in R1.

Let δ1, δ2 be as pictured in Figure 5.13. If |e ∩ δ1| = 2, then we can freely isotop away

two crossings. If |e ∩ δ1| = 1, then |e ∩ δ2| ≥ 3 (else we can reduce two crossings in R2).

Since |e ∩ α2| ≥ 2 by Lemma 5.2, |e ∩ α2| must be two, accounting for all intersections.

That is, if |e ∩ δ1| = 1 we are as in Figure 5.14, where we can reduce by two crossings.

δ1

Figure 5.14
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Thus we assume e is disjoint from δ1.

Similarly we show that e is disjoint from δ3 (see Figure 5.13). If |e ∩ δ3| = 2, then we

can reduce by two crossings in R1. So assume |e∩δ3| = 1. If e∩δ2 is empty we can reduce

two crossings (the self-intersection and e ∩ δ3 ), so |e ∩ δ2| ≥ 2. The only possibility is

shown now in Figure 5.15, which we can reduce by two crossings.

δ5

δ2

δ4

α2

Figure 5.15 Figure 5.16

So we assume e is disjoint from arcs δ1 and δ3 in ∂R1. See Figure 5.16.

Now |e ∩ α2| ≥ 2 by Lemma 5.2, and |e ∩ δ2| ≥ 2 (else we can reduce two crossings).

This accounts for all nine crossings. But we must also have a crossing between e and

δ4 ∪ δ5. �

Claim 5.9. e must intersect δ1.

Proof. By Claim 5.8, we may assume |e∩(R1∩(α1∪α3))| ≥ 4. Label the arc components

of α2 ∪ α3 − (α2 ∩ α3) as in Figure 5.13. Assume e is disjoint from δ1. It cannot also

be disjoint from δ2, otherwise we can eliminate the crossing at δ1 ∩ δ2 and argue as in

Case I of Theorem 5.5. Thus e must intersect δ2 exactly twice, thereby accounting for

all crossings. But the crossings of e at δ2 lead to additional crossings. �

Claim 5.10. T can be reduced by two crossings if |e ∩ (R1 ∩ (α2 ∪ α3))| < 6.

Proof. By Claim 5.8, we may assume |e ∩ (R1 ∩ (α1 ∪ α3))| = 4.

Subclaim 5.11. e ∩ (δ6 ∪ δ7) is non-empty.

Proof. Suppose e ∩ (δ6 ∪ δ7) is empty. Then |e ∩ δ3| = 2 by Lemma 5.2. If e crosses δ5

then it must cross twice, accounting for all crossings of T . Then there are no crossings in

int R1. Since |e ∩ δ1| > 0 and |e ∩ δ3| = 2, we have two crossing reductions in R1. Thus

e is disjoint from δ5.

Similarly e must not cross δ2. If |e ∩ δ2| 6= 0, then there can be no crossings in int R1.

Since |e∩ δ1| > 0 and |e∩ δ3| = 2, we see the crossing reductions for T . Since e does not

cross δ2, but does cross δ1, e must cross δ1 twice. Hence e also does not cross δ8.
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Thus we assume e does not cross δ2, δ5, δ6, δ7, or δ8. As the 2-string tangle α2, α3

forms a two crossing tangle, we see that the crossings between α2 and α3 may be reduced

in T . �(5.11)

Assume first that e crosses δ7. Then e must cross δ5 ∪ δ7 twice, accounting for all

crossings. Then e does not cross δ2 and crosses δ1 exactly two times. These crossings can

be reduced.

Thus e crosses δ6. If e does not cross δ2 then we again see two crossings at δ1 that

can be reduced. If e crosses δ2 then it crosses it once, accounting for all crossings. Thus

e crosses each of δ1 and δ3 an odd number of times and has no self-crossings in int R1.

Enumerating the possibilities one sees that we can reduce the crossings of e at δ3, δ6 or

at δ1, δ2.

This finishes the proof of Claim 5.10. �(5.10)

By Claim 5.10 we may assume |e∩R1 ∩ (α2 ∪α3)| = 6. This accounts for all crossings

of T . By Lemma 5.2, |e∩ δ3| ≥ 2. As all crossings are accounted for, two of the crossings

of e with δ1∪δ3 can be eliminated by a free isotopy.

Q.E.D. (Theorem 5.7)

�

Theorem 5.12. Let T be an in trans solution tangle satisfying assumption 5.3. If α2∪α3

has four crossings (including self-crossings), then there is a free isotopy of T reducing it

to at most seven crossings.

Proof. Assume T is as hypothesized. By Lemma 5.6, α2 ∪ α3 has no trivial loops and

we enumerate the possibilities for α2 ∪ α3 in Figure 5.17 where R1 is the closure of the

(planar) complementary region of α1 ∪ α2 containing the ends of e and where δ1, δ2 are
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the extremal arc components of α2 ∪ α3 − (α2 ∩ α3) in R1.

(a) (b)

δ1

δ2

R1 R2

δ1
R1

δ2

(c) (d)
 (e)


R1
R2

δ1

δ2

R1

R2

δ1

δ2

R1

R2

δ1

δ2

Figure 5.17

Lemma 5.13. With T as in the hypothesis of Theorem 5.12, if e contains a self-crossing

then that self-crossing appears in R1.

Proof. Assume a self-crossing appears in a complementary region R 6= R1 of α2 ∪ α3.

Since |α2 ∩α3| = 4, |e∩α2| = 2 |e∩α3| = 2, e can have at most one self-crossing. Hence

R has exactly 5 crossings involving e: four from e crossing α2 ∪ α3 and one self-crossing.

By Lemma 5.2, e must cross α2 twice and α3 twice in R. Exactly one pair of these

crossings must be in a component of α2 ∪ α3 − (α2 ∩ α3) shared with R1 (all crossings

are accounted for). If this component is δ1 or δ2 we may reduce by two crossings. So we

assume this pair is in a different component. Looking at the possibilities of Figure 5.17,

we immediately rule out (a) and (b). In cases (c), (d), and (e), we can reduce two

crossings of α2 ∪ α3 since we have accounted for all crossings (for case (d), note e must

cross each of α2 and α3 twice in R).

�

We continue the proof of Theorem 5.12.

Case I: e crosses R1 ∩ (α2 ∪ α3) exactly twice. If both crossings are in δ1 ∪ δ2, then

we can reduce by two crossings. This rules out configurations (a),(b) of Figure 5.17. If

T has nine crossings, then one must be a self-crossing. By Lemma 5.13 it must occur in

R1 and hence can be untwisted to reduce the crossing number by one. Thus we assume

T has only 8 crossings. Hence e must be disjoint from δ1 ∪ δ2. In cases (c), (d), and (e),

e must then be disjoint from the region labelled R2. But then we can reduce the crossing

at R2. �(Case I)
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Case II: e crosses R1 ∩ (α2 ∪ α3) four times. If T has nine crossings then one must

be a self-crossing of e. By Lemma 5.13, the self-crossing occurs in R1. Thus, whether T

has eight or nine crossings, all crossings of T involving e lie in R1. By Lemma 5.2, two

of the crossings of e are with α2 and two with α3. Looking at Figure 5.17, we see that

e must have exactly two crossings with δi for i = 1 or 2 (in cases (c) and (e) we could

otherwise reduce by two crossings). Either we can reduce by two crossings or near δi we

have Figure 5.18.

δi

Figure 5.18

This writes T ∪c1 as a disk sum. As T ∪c1 is integral w.r.t. the disk slope, each summand

is integral w.r.t. to the disk slope. But this means we can eliminate the crossings at δi

by a free isotopy of T . �(Case II)

Q.E.D. (Theorem 5.12)

Theorem 5.14. Let T be an in trans solution tangle satisfying assumption 5.3. If α2∪α3

has five crossings (including self-crossings), then there is a free isotopy of T reducing it

to at most seven crossings.

Proof. Let T be such a tangle. WLOG assume α2 has at most one self-intersection.

By Lemma 5.2 e must cross each of α2, α3 exactly twice. Since e can contribute at

most 4 crossings this accounts for all crossings coming from e. In particular, e has no

self-crossings.

Case I. α2 crosses α3 twice.
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We have three possibilities as shown in Figure 5.19 (Lemma 5.6), where R1 is the

complementary region of α2 ∪ α3 containing the ends of e (ℓ is discussed below).

δ1

δ2

R1 R1

δ1

δ1

δ2

R1

(a) (b) (c)

Figure 5.19

In case (c) we may reduce the crossings of T by two (T has no local knots, hence

|e ∩ (δ1 ∪ δ2)| = 2). So we restrict our attention to (a) and (b) and consider the arc ℓ

in Figure 5.19. Since |e ∩ α2| = 2, ℓ intersects e twice. Hence e ∪ ℓ is as in Figure 5.20,

where e′, e′′ are components of e − ℓ.

e
e

Figure 5.20

Let ℓ′ be the arc pictured in Figure 5.20, consisting of e′′ and part of ℓ.

Claim 5.15. |ℓ′ ∩ α3| = 2.

Proof. |ℓ′∩α3| is even and at least 2, since the endpoints of α3 are below ℓ′. If |ℓ′∩α3| ≥ 4,

then |e′′ ∩ α3| = 2 = |(ℓ′ − e′′) ∩ α3|. Going back to Figure 5.19 we see we can eliminate

the crossings of e and α2. �(5.15)

By Claim 5.15, ℓ′ writes T ∪ c2 as a disk sum. By Lemma 2.1, if T is a normal form

solution tangle, T ∪c2 is the -1/4 tangle. As the crossing number of the summand below ℓ′

is at most 3, the tangle below ℓ′ is integral w.r.t. the disk slope — allowing us to eliminate

the crossings there. Thus there is at most one crossing below ℓ′. Now we can eliminate

two crossings from T , where α3 crosses e′′ or α2 near where α3 crosses ℓ′. �(Case I)

Case II. α2 crosses α3 four times.
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WLOG assume α2 has no self-intersections and α3 only one. Then α2 ∪ α3 must be

one of the cases in Figure 5.21.

R1 R2R1

R1

R1 R2R1

R1 R1 R2

R1

R2

R1
R2

(1a)

(2b)(2a)

(3a) (3b)

(4b)(4a)

(5b)(5a)

R1

(1b)

Figure 5.21

Claim 5.16. |e ∩ (δ1 ∪ δ2)| ≤ 1.

Proof. Assume |e∩ (δ1 ∪ δ2)| ≥ 2. If |e∩R1 ∩ (α2 ∪α3)| ≤ 2, then the crossings at δ1 ∪ δ2

can be eliminated. So assume |e ∩ R1 ∩ (α2 ∪ α3)| = 4, accounting for all crossings of e.

Then |e ∩ δi| = 2 for some i = 1, 2, and we can reduce these crossings. �(5.16)

Claim 5.16 eliminates cases (1a), (2a), (3a), (4a). If |e ∩ δi| = 1 then it must give rise

to a reducible crossing in R1. In cases (2b), (3b), (4b) we could then reduce also the

crossing at R2. In these cases then we assume e disjoint from δ1 ∪ δ2. By inspection we

now see we can reduce by two crossings (|e ∩ (α2 ∪ α3)| = 4).

We are left with (1b), (5a) and (5b). If |e∩δ2| = 1, then we can eliminate two crossings

at e ∩ R2. If |e ∩ δ1| = 1, then we can eliminate this crossing and the self-crossing of α3.

With |e ∩ α2| = 2 = |e ∩ α3| and e ∩ (δ1 ∪ δ2) empty, we see that in all possibilities we
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can eliminate two crossings from T .

Q.E.D. (Theorem 5.14)
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