
Distributed Consensus	

Reaching agreement is a fundamental problem in distributed
computing. Some examples are

Leader election / Mutual Exclusion	

Commit or Abort in distributed transactions	

Reaching agreement about which process has failed	

Clock phase synchronization	

Air traffic control system: all aircrafts must have the same view	

Problem Specification	

u3

u2
u1

u0 v

v

v

v

Each process pk has an input value uk. These processes run a program
to exchange their inputs, so that finally the outputs of all non-faulty
processes become identical, even if one or more processes fail at any
time. Furthermore, the output v must be equal to the value of at least
one process.

input output

p0

p1
p2

p3

Problem Specification	

Termination. Every non-faulty process must eventually decide.
Agreement. The final decision of every non-faulty process

 must be identical.
Validity. If every non-faulty process begins with the same

 initial value v, then their final decision must be v.

Observation	

•  If there is no failure, then reaching consensus is
trivial. All-to-all broadcast followed by a applying
a choice function …

•  Consensus in presence of failures can however
be complex. The complexity depends on the
system model and the type of failures

Asynchronous Consensus	

Seven members of a busy household decided to hire a cook, since they do not
have time to prepare their own food. Each member separately interviewed
every applicant for the cook’s position. Depending on how it went, each
member voted "yes" (means “hire”) or "no" (means “don't hire”).

These members will now have to communicate with one another to reach a
uniform final decision about whether the applicant will be hired. The process
will be repeated with the next applicant, until someone is hired.

Consider various modes of communication like shared memory or message

 passing. Also assume that one process (i.e. a member) may crash at any time.	

Asynchronous Consensus	

Theorem.
In a purely asynchronous distributed system,
the consensus problem is impossible to solve
if even a single process crashes.

Result due to Fischer, Lynch, Patterson (commonly
known as FLP 85). Received the most influential paper
award of ACM PODC in 2001

Proof 	

Bivalent and Univalent states

A decision state is bivalent, if starting from that state, there exist
two distinct executions leading to two distinct decision values 0 or 1.
Otherwise it is univalent.

A univalent state may be either 0-valent or 1-valent.

Proof (continued)	

Lemma.
No execution can lead from a 0-valent to a 1-valent
state or vice versa.

Proof.
Follows from the definition of 0-valent and 1-valent states.

Proof	

Lemma. Every consensus protocol must have a bivalent initial state.

Proof by contradiction. Suppose not. Then consider the following input patterns:
! n-1 2 1 0	

s[0] !0 0 0 0 0 0 …0 0 0 	
{0-valent) 	
there must be a j:	

	
 	
0 0 0 0 0 0 …0 0 1 	
 	
 	
s[j] is 0-valent	

	
 	
0 0 0 0 0 0 …0 1 1 	
 	
 	
s[j+1] is 1-valent	

	
 	
… 	
… 	
… 	
… 	
 	
	

s[n] 	
1 1 1 1 1 1 …1 1 1 	
{1-valent}	

What if process j crashes at the first step?

 Lemma.

 In a consensus protocol, starting
from any initial bivalent state S,
there must exist a reachable
bivalent state T, such that every
action taken by some process p
in state T leads to either a 0
valent or a 1-valent state.

Note that bivalent states should not

form a cycle, since it affects termination.

Q

S R U T

T0 T1R0 R1

action 0 action 0action 1 action 1

o-valent 1-valent o-valent 1-valent

bivalent

bivalent

bivalent bivalent bivalent

Actions 0 and 1 from T must be
taken by the same process p. Why?

Proof of FLP (continued)	

Proof of FLP (continued)	

T

T0

T1 Decision =1

Decision = 0 p reads

q writes

e1

e0

Starting from T, let e1 be a computation that excludes any step by p.
Let p crash after reading. Then e1 is a valid computation from T0 too.
To all non-faulty processes, these two computations are identical, but the
outcomes are different! This is not possible! But then, starting from a 0-valent
state, a computation reaches decision = 1 which is not feasible

Case 1. 1-valent

0-valent

Assume shared memory communication.
Also assume that p ≠ q. Various cases are possible

Such a computation must exist
since p can crash at any time

?

Proof (continued)	

T

T0

T1 Decision =1

Decision = 0 p writes

q writes
e1

e0

Both write on the same variable, and p writes first.

•  From T, let e1 be a computation that excludes any step by p.
•  Let p crash after writing. Process q’s writing will overwrite it.

 Therefore e1 is a valid computation from T0 too.

To all non-faulty processes, these two computations are identical,
(q overwrites the value written by p) but the outcomes are different!

Case 2. 1-valent

0-valent

Proof (continued)	

T

T0

T1

Z

Decision =1

Decision = 0 p writes

q writes

Let both p and q write, but on different variables.

Then regardless of the order of these writes, both computations lead

to the same intermediate global state Z, which must be univalent.

Is Z 1-valent or 0-valent? Both are absurd.

Case 3

0-valent

1-valent

p writes

q writes

Proof (continued)	

Similar arguments can be made for communication using
the message passing model too (See Nancy Lynch’s book).
These lead to the fact that p, q cannot be distinct processes,
and p = q. Call p the decider process.

What if p crashes in state T? No consensus is reached!

Conclusion	

•  In a purely asynchronous system, there is no solution to

the consensus problem if a single process crashes..

•  Note that this is true for deterministic
 algorithms only. Solutions do exist for the
 consensus problem using randomized algorithm,
 or using the synchronous model.

Consensus in Synchronous Systems:
Byzantine Generals Problem	

	
Describes and solves the consensus problem on
the synchronous model of communication.
Processor speeds have lower bounds and
communication delays have upper bounds.

-  The network is completely connected

-  Processes undergo byzantine failures, the worst
possible kind of failure

Byzantine Generals Problem	

•  n generals {0, 1, 2, ..., n-1} decide about whether to "attack" or to
"retreat" during a particular phase of a war. The goal is to
agree upon the same plan of action.

•  Some generals may be "traitors" and therefore send either no
input, or send conflicting inputs to prevent the "loyal"
generals from reaching an agreement.

•  Devise a strategy, by which every loyal general eventually agrees
upon the same plan, regardless of the action of the traitors.

Byzantine Generals	

0

3 2

1
Attack = 1 Attack=1

Retreat = 0 Retreat = 0

{1, 1, 0, 0}

{1, 1, 0, 0}

Every general will broadcast his judgment to everyone else.
These are inputs to the consensus protocol.

{1, 1, 0, 1}

{1, 1, 0, 0}

traitor

The traitor
may send out
conflicting inputs

Byzantine Generals	

We need to devise a protocol so that every peer
(call it a lieutenant) receives the same value from
any given general (call it a commander). Clearly,
the lieutenants will have to use secondary information.

Note that the roles of the commander and the
lieutenants will rotate among the generals.

Interactive consistency specifications	

IC1. Every loyal lieutenant receives
 the same order from the
commander.

IC2. If the commander is loyal, then
 every loyal lieutenant receives
 the order that the commander
 sends.

commander

lieutenants

The Communication Model	

Oral Messages

1. Messages are not corrupted in transit.
2. Messages can be lost, but the absence of message

can be detected.
3. When a message is received (or its absence is

detected), the receiver knows the identity of the
sender (or the defaulter).

OM(m) represents an interactive consistency protocol
in presence of at most m traitors.

An Impossibility Result	

commander 0 commander 0

lieutenent 1 lieutenant 2 lieutenent 1 lieutenant 2

1 1

0

1 0

0

1

(a) (b)

Using oral messages, no solution to the Byzantine
Generals problem exists with three or fewer
generals and one traitor. Consider the two cases: !

In (a), to satisfy IC2, lieutenant 1 must trust the commander, but
in IC2, the same idea leads to the violation of IC1.

Impossibility result	

Using oral messages, no solution to the Byzantine Generals
problem exists with 3m or fewer generals and m traitors (m > 0).

 The proof is by contradiction. Assume that such a solution exists. Now, divide
the 3m generals into three groups of m generals each, such that all the traitors
belong to one group. Let one general simulate each of these three groups. This
scenario is equivalent to the case of three generals and one traitor. We already
know that such a solution does not exist.

 Note. In the original paper, Lamport asks readers to be always suspicious about
such an informal reasoning.

The OM(m) algorithm	

Recursive algorithm

 OM(m)

 OM(m-1)

 OM(m-2)

 OM(0)

 OM(0) = Direct broadcast

	
OM(0)	

The OM(m) algorithm	

1. Commander i sends out a value v (0 or 1)

2. If m > 0, then every lieutenant j ≠ i, after
receiving v, acts as a commander and
initiates OM(m-1) with everyone except i .

3. Every lieutenant, collects (n-1) values:
 (n-2) values received from the lieutenants using
OM(m-1), and one direct value from the
 commander. Then he picks the majority of
 these values as the order from i

Example of OM(1)	

1 1

(a)

0

1 22 3

2 3 3 1 1 2

1

1 1 1 1 0 0

1 1

0

1 22 3

2 3 3 1 1 2

1 1 0 0 1 1

0

(b)

commander commander

Example of OM(2)	

0

1 2

2

3 4 5 6

4 5 6 5 6 2 4 6 2 4 5

Commander

OM(2)

OM(1)

v v vvv v

v v v v v v v v v v v v

5 6 2 6 2 5OM(0)

v v vv v v

OM(2)

OM(1)

OM(0)

Proof of OM(m)	

Lemma.
Let the commander be
loyal, and n > 2m + k,
where m = maximum
number of traitors.

Then OM(k) satisfies IC2
m traitors

n-m-1 loyal lieutenants

values received via OM(r)

loyal commander

Proof of OM(m)	

Proof
If k=0, then the result trivially holds.

Let it hold for k = r (r > 0) i.e. OM(r)
satisfies IC2. We have to show that
it holds for k = r + 1 too.

By definition n > 2m+ r+1, so n-1 > 2m+ r
So OM(r) holds for the lieutenants in
the bottom row. Each loyal lieutenant
collects n-m-1 identical good values and
m bad values. So bad values are voted
out (n-m-1 > m+r implies n-m-1 > m)

m traitors

n-m-1 loyal lieutenants

values received via OM(r)

loyal commander

“OM(r) holds” means each loyal
lieutenant receives identical values
from every loyal commander

The final theorem	

Theorem. If n > 3m where m is the maximum number of
traitors, then OM(m) satisfies both IC1 and IC2.

Proof. Consider two cases:
Case 1. Commander is loyal. The theorem follows from
the previous lemma (substitute k = m).
Case 2. Commander is a traitor. We prove it by induction.
Base case. m=0 trivial.
(Induction hypothesis) Let the theorem hold for m = r.
We have to show that it holds for m = r+1 too.

Proof (continued)	

 There are n > 3(r + 1) generals and r + 1 traitors. Excluding
the commander, there are > 3r+2 generals of which there
are r traitors. So > 2r+2 lieutenants are loyal. Since 3r+ 2 >
3.r, OM(r) satisfies IC1 and IC2

> 2r+2 r traitors

Proof (continued)	

In	 OM(r+1),	 a	 loyal	 lieutenant	 chooses	 the	

majority	 from	 	

(1)	 >	 2r+1	 values	 obtained	 from	 the	 loyal	

lieutenants	 via	 OM(r),	 	

(2)	 the	 r	 values	 from	 the	 traitors,	 and	 	

(3)	 the	 value	 directly	 from	 the	 commander.	 	
> 2r+2 r traitors

The	 set	 of	 values	 collected	 in	 part	 (1)	 &	 (3)	 are	 the	 same	 for	 all	 loyal	 lieutenants	 –	

	 it	 is	 the	 same	 set	 of	 values	 that	 these	 lieutenants	 received	 from	 the	 commander.	

	 Also,	 by	 the	 inducFon	 hypothesis,	 in	 part	 (2)	 each	 loyal	 lieutenant	 receives	 	

idenFcal	 values	 from	 each	 traitor.	 So	 every	 loyal	 lieutenant	 eventually	

collects	 the	 same	 set	 of	 values.	

