
Distributed Consensus	

Reaching agreement is a fundamental problem in distributed  
computing. Some examples are 

Leader election / Mutual Exclusion	

Commit or Abort in distributed transactions	

Reaching agreement about which process has failed	

Clock phase synchronization	

Air traffic control system: all aircrafts must have the same view	




Problem Specification	
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Each process pk has an input value uk. These processes run a program 
to exchange their inputs, so that finally the outputs of all non-faulty 
processes become identical, even if one or more processes fail at any 
time. Furthermore, the output v must be equal to the value of at least 
one process.   
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Problem Specification	


Termination.   Every non-faulty process must eventually decide. 
Agreement.  The final decision of every non-faulty process  

   must be identical.  
Validity.   If every non-faulty process begins with the same  

   initial value v, then their final decision must be v. 



Observation	


•  If there is no failure, then reaching consensus is 
trivial. All-to-all broadcast followed by a applying 
a choice function …  

•  Consensus in presence of  failures can however 
be complex. The complexity depends on the 
system model and the type of failures 



Asynchronous Consensus	


Seven members of a busy household decided to hire a cook, since they do not 
have time to prepare their own food. Each member separately interviewed 
every applicant for the cook’s position. Depending on how it went, each 
member voted "yes" (means “hire”) or "no" (means “don't hire”).  

These members will now have to communicate with one another to reach a 
uniform final decision about whether the applicant will be hired. The process 
will be repeated with the next applicant, until someone is hired. 

Consider various modes of communication like shared memory or message 

 passing. Also assume that one process (i.e. a member) may crash at any time.	




Asynchronous Consensus	


Theorem. 
In a purely asynchronous distributed system,  
the consensus problem is impossible to solve  
if even a single process crashes.  

Result due to Fischer, Lynch, Patterson (commonly 
known as FLP 85). Received the  most influential paper 
award of ACM PODC in 2001 



Proof 	


Bivalent and Univalent states 

A decision state is bivalent, if starting from that state, there exist 
two distinct executions leading to two distinct decision values 0 or 1. 
Otherwise it is univalent.  

A univalent state may be either 0-valent or 1-valent. 



Proof (continued)	


Lemma.   
No execution can lead from a 0-valent to a 1-valent  
state or vice versa. 

Proof.   
Follows from the definition of 0-valent and 1-valent states.  



Proof	


Lemma.  Every consensus protocol must have a bivalent initial state. 

Proof by contradiction. Suppose not. Then consider the following input patterns: 
!        n-1                                 2    1   0	


s[0] !0 0 0 0 0 0 …0 0 0 	
{0-valent) 	
there must be a j:	

	
 	
0 0 0 0 0 0 …0 0 1 	
 	
 	
s[j] is  0-valent	

	
 	
0 0 0 0 0 0 …0 1 1 	
 	
 	
s[j+1] is 1-valent	

	
 	
… 	
… 	
… 	
… 	
 	
	


s[n] 	
1 1 1 1 1 1 …1 1 1 	
{1-valent}	


What if process j crashes at the first step? 



 Lemma.   

 In a consensus protocol, starting 
from any initial bivalent state S, 
there must exist a reachable 
bivalent state T, such that every 
action taken by some process p 
in state T leads to either a 0 
valent or a 1-valent state. 

Note that bivalent states should not 

form a cycle, since it affects termination. 

Q

S R U T

T0 T1R0 R1

action 0 action 0action 1 action 1

o-valent 1-valent o-valent 1-valent

bivalent

bivalent

bivalent bivalent bivalent

Actions 0 and 1 from T must be 
taken by the same process p. Why? 

Proof of FLP (continued)	




Proof of FLP (continued)	
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Starting from T, let e1 be a computation that excludes any step by p. 
Let p crash after reading. Then e1 is a valid computation from T0 too. 
To all non-faulty processes, these two computations are identical, but the  
outcomes are different! This is not possible! But then, starting from a 0-valent  
state, a computation reaches decision = 1 which is not feasible 

Case 1. 1-valent 

0-valent 

Assume shared memory communication.  
Also assume that p ≠ q. Various cases are possible 

Such a computation must exist 
since p can crash at any time 

? 



Proof (continued)	


T 

T0 

T1 Decision =1 

Decision = 0 p writes 

q writes 
e1 

e0 

Both write on the same variable, and p writes first. 

•  From T, let e1 be a computation that excludes any step by p. 
•  Let p crash after writing. Process q’s writing will overwrite it. 

  Therefore e1 is a valid computation from T0 too. 

To all non-faulty processes, these two computations are identical, 
(q overwrites the value written by p) but the outcomes are different! 

Case 2.  1-valent 

0-valent 



Proof (continued)	


T 

T0 

T1 

Z 

Decision =1 

Decision = 0 p writes 

q writes 

Let both p and q write, but  on different variables.  

Then regardless of the order of these writes, both computations lead  

to the same intermediate global state Z, which must be univalent.   

Is Z 1-valent or 0-valent? Both are absurd. 

Case 3 

0-valent 

1-valent 

p writes 

q writes 



Proof (continued)	


Similar arguments can be made for communication using 
the message passing model too (See Nancy Lynch’s book).  
These lead to the fact that p, q cannot be distinct processes,  
and p = q. Call p the decider process. 

What if p crashes in state T? No consensus is reached! 



Conclusion	

•  In a purely asynchronous system, there is no solution to 

the consensus problem if a single process crashes.. 

•  Note that this is true for deterministic 
 algorithms only. Solutions do exist for the 
 consensus problem using randomized algorithm,  
 or using the synchronous model. 



Consensus in Synchronous Systems: 
Byzantine Generals Problem	


	
Describes and solves the consensus problem on 
the synchronous model of communication.  
Processor speeds have lower bounds and 
communication delays have upper bounds. 

-  The network is completely connected 

-  Processes undergo byzantine failures, the worst 
possible kind of failure 



Byzantine Generals Problem	


•  n generals {0, 1, 2, ..., n-1} decide about whether to "attack" or to 
"retreat" during a particular phase of a war. The goal is to 
agree upon the same plan of action.  

•  Some generals may be "traitors" and therefore send either no 
input, or send conflicting inputs to prevent the "loyal" 
generals from reaching an agreement.  

•  Devise a strategy, by which every loyal general eventually agrees 
upon the same plan, regardless of the action of the traitors.  



Byzantine Generals	


0 

3 2 

1 
Attack = 1 Attack=1 

Retreat = 0 Retreat = 0 

{1, 1, 0, 0} 

{1, 1, 0, 0} 

Every general will broadcast his judgment to everyone else. 
These are inputs to the consensus protocol. 

{1, 1, 0, 1} 

{1, 1, 0, 0} 

traitor 

The traitor 
may send out 
conflicting inputs 



Byzantine Generals	


We need to devise a protocol so that every peer 
(call it a lieutenant) receives the same value from  
any given general (call it a commander). Clearly,  
the lieutenants will have to use secondary information. 

Note that the roles of the commander and the  
lieutenants will rotate among the generals. 



Interactive consistency specifications	


IC1. Every loyal lieutenant receives  
 the same order from the    
commander. 

IC2. If the commander is loyal, then  
 every loyal lieutenant receives  
 the order that the commander  
 sends. 

commander 

lieutenants 



The Communication Model	


Oral Messages 

1. Messages are not corrupted in transit. 
2. Messages can be lost, but the absence of  message 

can be detected. 
3. When a message is received (or its absence is 

detected), the receiver knows the identity of the 
sender (or the defaulter). 

OM(m) represents an interactive consistency protocol  
in presence of at most m traitors. 



An Impossibility Result	


commander 0 commander 0

lieutenent 1 lieutenant 2 lieutenent 1 lieutenant 2

1 1

0

1 0

0

1

(a) (b)

Using oral messages, no solution to the Byzantine 
Generals problem exists with three or fewer  
generals and one traitor. Consider the two cases: !

In (a), to satisfy IC2, lieutenant 1 must trust the commander, but  
in IC2, the same idea leads to the violation of IC1. 



Impossibility result	


Using oral messages, no solution to the Byzantine Generals 
problem exists with 3m  or fewer generals and m traitors  (m > 0). 

 The proof is by contradiction. Assume that such a solution exists. Now, divide 
the 3m generals into three groups of m generals each, such that all the traitors 
belong to one group. Let one general simulate each of these three groups. This 
scenario is equivalent to the case of  three generals and one traitor. We already 
know that such a solution does not exist. 

 Note. In the original paper, Lamport asks readers to be always suspicious about 
such an informal reasoning. 



The OM(m) algorithm	

Recursive algorithm 

  OM(m) 

   

  OM(m-1) 

    

  OM(m-2) 

  OM(0)  

 OM(0) = Direct broadcast 

	
OM(0)	




The OM(m) algorithm	


1. Commander i sends out a value v (0 or 1) 

2. If m > 0, then every lieutenant j ≠ i, after 
receiving v,  acts as a commander and  
initiates OM(m-1) with everyone except i .  

3. Every lieutenant, collects (n-1) values: 
 (n-2) values received from the lieutenants using 
OM(m-1), and  one direct value from the 
 commander. Then he picks the majority of 
 these values as the order from i 



Example of OM(1)	
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Example of OM(2)	
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Proof of OM(m)	


Lemma. 
Let the commander be 
loyal, and n > 2m + k, 
where m = maximum 
number of traitors.  

Then OM(k)  satisfies IC2 
m traitors

n-m-1 loyal lieutenants

values received via OM(r) 

loyal commander



Proof of OM(m)	

Proof 
If k=0, then the result trivially holds. 

Let it hold for k = r (r > 0) i.e. OM(r) 
satisfies IC2.  We have  to show that 
it holds for  k = r + 1 too. 

By definition n > 2m+ r+1, so n-1 > 2m+ r 
So OM(r)  holds for the lieutenants in  
the bottom row. Each loyal lieutenant  
collects n-m-1 identical good values and 
m bad values. So bad values are voted 
out (n-m-1 > m+r implies n-m-1 > m) 

m traitors

n-m-1 loyal lieutenants

values received via OM(r) 

loyal commander

“OM(r) holds” means each loyal  
lieutenant receives identical values  
from every loyal commander 



The final theorem	

Theorem. If n > 3m where m is the maximum number of  
traitors, then OM(m)  satisfies both  IC1 and IC2. 

Proof. Consider two cases: 
Case 1. Commander is loyal. The theorem follows from  
the previous lemma (substitute k = m). 
Case 2. Commander is a traitor. We prove it by induction.  
Base case. m=0 trivial.  
(Induction hypothesis) Let the theorem hold for m = r.  
We have to show that it holds for m = r+1 too. 



Proof (continued)	

 There are n > 3(r + 1) generals and r + 1 traitors. Excluding 
the commander, there are > 3r+2 generals of which there 
are r traitors. So > 2r+2 lieutenants are loyal. Since 3r+ 2 > 
3.r, OM(r) satisfies IC1 and IC2 

> 2r+2 r traitors 



Proof (continued)	

In	  OM(r+1),	  a	  loyal	  lieutenant	  chooses	  the	  

majority	  from	  	  

(1)	  >	  2r+1	  values	  obtained	  from	  the	  loyal	  

lieutenants	  via	  OM(r),	  	  

(2)	  the	  r	  values	  from	  the	  traitors,	  and	  	  

(3)	  the	  value	  directly	  from	  the	  commander.	  	  
> 2r+2 r traitors 

The	  set	  of	  values	  collected	  in	  part	  (1)	  &	  (3)	  are	  the	  same	  for	  all	  loyal	  lieutenants	  –	  

	  it	  is	  the	  same	  set	  of	  values	  that	  these	  lieutenants	  received	  from	  the	  commander.	  

	  Also,	  by	  the	  inducFon	  hypothesis,	  in	  part	  (2)	  each	  loyal	  lieutenant	  receives	  	  

idenFcal	  values	  from	  each	  traitor.	  So	  every	  loyal	  lieutenant	  eventually	  

collects	  the	  same	  set	  of	  values.	  


